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Abstract

matching accuracy and ciphertext size.

In liberalized energy markets, matching consumption patterns to energy tariffs is desirable, but practically limited due
to privacy concerns, both on the side of the consumer and on the side of the utilities. We propose a protocol through
which a customer can obtain a better tariff with the help of their smart meter and a third party, based on
privacy-preserving load profile matching. Our security analysis shows that the protocol preserves consumer privacy,
i.e, neither the load profile nor the matching result are disclosed to the utility, unless the consumer later decides to
actually purchase the tariff. In addition, the utility’s load profiles used for matching remain private, allowing each utility
to offer special tariffs without disclosing the associated load profiles to their competitors. Our approach is shown to
have a smaller ciphertext size than homomorphic encryption in practically relevant configurations. However,
matching is only possible with up to about 98 % accuracy in general and 93.5 % based on real-world load profiles,
respectively. Depending on the practical requirements, two protocol parameters provide a tradeoff between
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1 Introduction

A global trend towards the modernization of energy grids
is ongoing: Information and communication technolo-
gies are integrated into the energy grid infrastructures,
creating so-called smart grids. A multitude of new use
cases become possible, including the balancing of power
generation and consumption, electric mobility, renewable
energy sources, and real-time pricing. The modernization
on the technical side is accompanied by a move towards
deregulation on the regulatory side [1], thereby vastly
increasing the number of choices on the side of the end
consumer. In liberalized energy markets, the paradigm for
the customers will be changed: They will be able to change
tariff, provider or both frequently and to adapt dynami-
cally. There are a number of pilot regions that have shown
the benefit of this deregulation, e.g., the German eEnergy
projects, most notably the MeRegio project [1].
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Customers have to choose one tariff out of those offered
from their local utilities. In order to select the optimal tar-
iff, i.e., the one fitting their electricity consumption at a
given time, customers need to match their current usage
habits to the offered pricing schemes. As an example, con-
sider an energy provider which is interested in moving
energy consumption away from times with high demand
because this decreases the amount of immediately avail-
able but expensive energy resources. In order to encourage
customers to use energy at off-peak times, the provider
could offer better tariffs for load profiles that are dissim-
ilar to normal consumption profiles by, e.g., lowering a
fixed-price tariff from 23 cents/kWh to 17 cents/kWh.
As another example, in order to stimulate people loading
their cars during the night instead of during the day, a load
profile with high values during night might be associated
with another cheap tariff. A convenient way to perform
the matching of current and desired consumption profiles
is for the customer to provide a current load profile, i.e., a
recent energy usage record, to different energy providers
or to a third party providing a matchmaking service for
tariffs offered by various energy providers.
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However, while this is a convenient approach, there are
privacy concerns: It has been shown that personal infor-
mation, such as lifestyle, religion, habitual patterns, sleep-
wake cycles, and activities can be extracted from load
profiles (e.g., [2, 3]). On the side of the energy providers,
there is also reluctance to disclose the load profiles that
different tariffs are based on (e.g., typical load profiles
of customer groups), as this is internal information that,
in a liberated market, can make a difference in commer-
cial success [1]. Therefore, while both, the consumer side
and the provider side, are interested in facilitating optimal
matching, there are strong reasons against disclosing full
information for the matchmaking process.

In this paper, we propose a method for tariff selection
that preserves both consumer privacy and the internal
company data of energy providers. More precisely, the
load profiles of neither party are disclosed, as motivated
above. The method outperforms previously suggested
methods—in particular, it limits data expansion, which is
an issue when classical homomorphic encryption is used.
The trade-off is matching accuracy, which in the proposed
method is not 100 %. Depending on choice of parame-
ters, higher accuracy can be traded in for increased data
expansion. However, in real-word application scenarios,
the accuracy of 93.5 %, which can be realized with the pro-
posed approach at negligible data expansion, is sufficient
as will be shown.

The possible use cases of the proposed protocol are
manifold. An exemplary use case would be for a num-
ber of utilities to (continually) analyze and cluster the
energy usage data of their customers. Based on this anal-
ysis, different tariff groups can be created. For each tariff
group, the matching data is provided to a third party,
a broker which provides a matchmaking service, in a
privacy-preserving way, i.e., this third party cannot access
the content of the data in any way, but only perform
matchmaking. The third party—the broker—collects the
matchmaking data from any number of utilities. This bro-
ker could, for example, be an institution created (and
possibly operated) by the regulator (who, by design, is
interested in creating competition and providing freedom
of choice to energy consumers). Consumers who wish to
select the tariff which is best suited to their current con-
sumption habits can provide their load profiles to the
broker, again in a privacy-preserving way, i.e., the broker
cannot access the consumer data as it may reveal sensi-
tive information about them [4, 5]. The tariff selection will
usually be done automatically, e.g., by using the communi-
cation capabilities of a smart meter. Note that the broker
need not be trusted (there are, however, some security
considerations, which are discussed in the paper). The
broker matches the consumer load profile to the infor-
mation provided by the utilities in a privacy-preserving
way and determines the closest match. It then sends
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sufficient information back to the consumer’s smart meter
to determine the best-matching tariff, again in a privacy-
preserving manner. During the whole process, no load
information is disclosed either by the consumer or by the
utilities. Additionally, and in contrast to an aggregation
protocol, neither the escrow service itself nor the utilities
systematically collect load profiles of the smart meters.
The smart meters individually decide on their tariff, which
is neither revealed to the broker nor to the other utilities.

In summary, this paper contributes (i) a novel approach
based on nearest neighbor embedding [6] and oblivious
transfer [7] for finding the best-matching tariff without
revealing any load profiles to any involved party; and
(ii) it is shown that this approach can achieve a match-
ing performance comparable to classical homomorphic
encryption, but with less data expansion.

The rest of this paper is structured as follows: In
Section 2, related work is reviewed and previously pro-
posed approaches are discussed. In Section 3, we describe
our three-phase protocol in detail, i.e., initialization,
matching, and oblivious transfer. Section 4 discusses both
the security and complexity of the proposed protocol
and outlines its advantages over similar state-of-the-art
privacy-preserving protocols. In Section 5, we present
a prototypical implementation and evaluate the match-
ing performance of our protocol for real-world use cases.
Finally, in Section 6, this paper is summarized and an
outlook to future work is given.

2 Related work

In this section, we provide an overview of related work.
We distinguish between secure distance computation
methods which are suitable to compare load profiles and
other related work including oblivious transfer and smart-
grid literature with tariff selection and profile matching.
Comparisons to our approach described in Section 3 are
provided.

2.1 Secure distance computation

The following related work describes secure distance
computation algorithms. In our approach, we compare
load profiles using Euclidean distance measures, which is
a similar type of computation.

Mukherjee et al. [8] propose a method where a num-
ber of selected Fourier transform coefficients are per-
muted and communicated between the involved parties.
The properties of the Fourier transform are used to pro-
vide limited guarantees on distance preservation based on
the selection of transform coefficients. This makes their
approach probabilistic with the number of coefficients
retained providing a tradeoff between privacy and accu-
racy. Although our approach is probabilistic as well, the
level of privacy is not influenced by the parameters which
affect the accuracy of our approach.
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Ravikumar et al. [9] describe an algorithm for secure
Euclidean distance computation. Their approach is prob-
abilistic as well, but requires a high number of vectors
to be compared in order to come close to the actual
distance values. In contrast, our approach finds the mini-
mum distance in nearly all cases, allowing for near-perfect
matching.

Wong et al. [10] introduce transformations of database
points and query points that enable a ranking of the
database points with respect to their nearness to the
query points suitable for k-nearest neighbor determina-
tion. However, their transformations are not distance-
preserving which enhances security against attackers with
known plaintexts, but limits possible applications.

Rane and Boufounos [6] and Boufounos and Rane [11]
propose the use of distance-preserving embeddings
for privacy-preserving matching and nearest-neighbor
searches in the context of image retrieval. We apply these
distance-preserving embeddings as one step in our pro-
posed protocol and make use of their privacy-preserving
properties.

Homomorphic cryptosystems can be used for secure
distance computation [12, 13], e.g., in the context of image
retrieval [14], fingerprint matching [15], and face recog-
nition [16]. Kolesnikov et al. [17] combines homomorphic
encryption for computing distances with Garbled cir-
cuits for choosing the point having the minimum distance
to the query point. We provide a detailed comparison
between our approach and additive homomorphic cryp-
tosystems in Section 4.

2.2 Otherrelated work

In our proposed approach, we make use of oblivious trans-
fer [7, 18, 19]. It allows one of two parties to query one of
an arbitrary number of items from the second party with-
out revealing (i) which item has been requested and (ii)
any of the other items. A detailed description of the use
within our protocol is provided in Section 3.

From a use case point of view, apart from oblivious
transfer, related work includes literature on tariff deci-
sions, load profile matching, and forecasting as well as
demand-response and demand-side management. For the
latter two, Palensky and Dietrich [20] provide an overview.
In general, privacy concerns and communication over-
head on the smart meter side are seldomly addressed. We
focus on these aspects by providing some examples below.

Caron and Kesidis [21] describe an approach where cus-
tomers share load profile information so that the utility
can achieve a smoother aggregate load profile. This is also
possible with the approach proposed in our paper. How-
ever, the load profiles are not revealed to the utility, thus
preserving the privacy of the customers.

Similarly, Shao and Zhang [22] attempt to reduce peak
loads by incentivizing customers to shift time of use of
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electrical devices. This behavior can also be triggered
when applying our approach to provide suitable template
load profiles, albeit not in real time. Again, the load pro-
files do not need to be shared with the utility as opposed
to the approach by Shao and Zhang.

Ramchurn et al. [23] follow a game-theoretic approach
with customer incentives for reducing peak loads. They
use a decentralized protocol, as opposed to our as well
as to Caron and Kesidis’s [21] and Shao and Zhang'’s [22]
approach. The approach by Ramchurn et al. defers cer-
tain loads with defined probability imposing constraints
on the customer’s choices. In contrast, our approach gives
the customer full authority on tariff decisions.

Another game-theoretic approach for shifting energy
consumption is proposed by Mohsenian-Rad et al. [24]. In
this setting, the smart meters of the users interact in order
to minimize overall energy consumption. Their approach
requires peer-to-peer communication with transmission
overhead depending on the number of smart meters
involved. Conversely, our approach does not require any
peer-to-peer communication whatsoever.

3 Profile matching protocol

In this section, we propose our protocol which allows one
smart meter to find an optimal tariff based on its load
profile forecast. A number of template load profiles corre-
sponding to tariffs from different utilities are used for this
search. Throughout the process, none of the involved par-
ties has access to the others’ data. The process is therefore
privacy-preserving.

3.1 Protocol description

Figure 1 illustrates the different steps of our protocol
which are described in detail below. The protocol can be
split into three phases, named initialization, matching,
and oblivious transfer.

3.1.1 Initialization

Let the set of participating utilities be denoted as U. Each
utility U, u € {1,...,[U|} (cf Fig. 1, right) has a list
of tariffs T),; with corresponding template load profiles
L, ; (denoted as set £, in Fig. 1 where utilities can have
different numbers of load profiles [ € {1,...,|L,|}). For
example, utility U; has a standard tariff 77 ; for day work-
ers and a night-owl tariff 775 for night workers. The
corresponding template load profiles L;; and Lj show
peak loads at different times of the day opposite to the
respective working hours.

Template load profiles allow each utility to control
demand and response in a fine-grained manner, e.g., by
rewarding customers with atypical load profiles so that
peak loads are avoided. Although the tariffs need to be
known to the customers for billing and transparency, the
template load profiles are considered to be private to the
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Fig. 1 Overview of the proposed protocol: All participating utilities U, € U provide embedded template load profiles £, corresponding to their
tariffs 7, to a third party TP. A smart meter SM sends its embedded load profile forecast F to this third party which returns the best-matching utility
index u* and its tariff index /*. Subsequently, the smart meter can request information about the best-matching tariff T« » from the best-matching
utility U+ through oblivious transfer. Black vertical bars indicate rate limiters

respective utility. Therefore, no details are shared with
competing utilities. In practice, template load profiles and
tariffs may be significantly more complex than the exam-
ple described above, with privacy on the utility side being
a much more pressing issue.

In order to keep the template load profiles private, each
utility calculates an embedding L,,; € {0,1}" for each of
its original template load profiles L,,; € R¥ as the first step
of the initialization phase:

f-‘u,l = ’7

A is a random m x k matrix with ii.d. Gaussian ele-
ments with mean 0 and variance o2, and W is a random
m-dimensional vector with i.i.d. uniform elements in the
range [0, A]. A is both a quantization and a security
parameter and described in detail in [6, 11]. The values of
k and m are discussed in Section 5.

This embedding does not allow a potential attacker to
reconstruct the original load profile, but preserves the dis-
tance between load profiles within a very small margin
of error as described below. This enables comparisons of
load profiles without the need to handle the respective
original, private data.

AL, +W

A 1

—‘ mod 2

The second step of the initialization phase of our pro-
tocol requires each utility to send all of its calculated
embeddings L, to a third party, denoted as TP. The need
for this third party will become clear in the subsequent
matching phase.

3.1.2 Matching

In this phase, a smart meter, denoted as SM, first creates
a load profile forecast F. It can either be based on past
load profiles, e.g., of the current day or week, or on user
input, e.g., prospective changes in work schedules. Simi-
lar to each utility in the preceding initialization phase, the
smart meter first calculates an embedding of F, denoted
as F. This way, the smart meter does not need to dis-
close its original load profile which may reveal sensitive
information about the user.

As a second step, the embedding is sent to the third
party, like the embeddings from the utilities in the previ-
ous phase. As a third step, the third party finds the best
match for the load profile forecast out of the list of tem-
plate load profiles from all utilities through the received
embeddings. More precisely, it finds the template load
profile with the smallest normalized Hamming distance to
the forecast and outputs the template load profile index [*
as well as the corresponding utility index u*, i.e.,



Unterweger et al. EURASIP Journal on Information Security (2016) 2016:21

(", 1*) = argmin|[F — L,|}1. 2)
u,l
This is possible due to the distance-preserving property
of the embeddings (as described in more detail in [6]),
where the Euclidean distance of the original data vectors is
proportional to the normalized Hamming distance of the
embedded vectors with a configurable small error ¢, i.e.,

I|E — Lyl ~ |[E — Lygll> + €. (3)

As a consequence, the probability that the best match in
the original space and the best match in the embedded
space coincide, is close to one:

Pr |:argmin||l~f — IN,M,1||1 = argmin||F — Lu,l||2:| =1-6.

u,l u,l
(4)

This probability is referred to as matching accuracy. The
smaller € is, the higher the accuracy is.

The result (u*, [*) of the matching operation is a pair of
indices identifying the utility U, of the best match and its
tariff Tj«. However, no information about any load profile
is revealed. The tuple (u*,[*) is transmitted to the smart
meter as a fourth and final step, allowing the smart meter
to fetch the tariff information from the utility U« directly
in the next phase in order not to disclose the actual tariff
T+ associated with the index [*.

The third party needs to be involved in the calcula-
tion above since neither the smart meter nor any of the
utilities can be completely trusted to correctly perform
calculations on the data. In addition, malicious parties are
considered (see Section 4 below), i.e., they could manipu-
late their own input to bias the result in their favor or they
could use multiple different inputs to derive additional
information about the other parties’ data. This is avoided
by the use of an independent third party with a rate limiter
(vertical black bars in Fig. 1) which prevents bulk-probing
from the other parties. A detailed security analysis can be
found in Section 4.

The third party can be thought of as a neutral party
which performs only computations, e.g., a proxy of the
Council of European Energy Regulators (CEER) which
strives for a fair tariff market and competition. However,
since any party may be distrusted, including the third
party, the latter is not allowed to perform calculations
on the actual data, but on embeddings only. This is why
the latter need to be calculated by the other parties. This
way, the third party is not able to access the original load
profiles of either the smart meter or the utilities.

Note that the third party may collect statistics on the
matching results (i.e., the indices (u*,/*)) of all smart
meters. However, this can be rendered futile if the utili-
ties regularly shuffle their template load profiles’ indices
in the initialization phase, e.g., each day. For example,
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(u*,1*) = (1,1) means a standard tariff and (#*,[*) =
(1,2) a night-owl tariff, respectively, on one day, and the
other way around, i.e., (4*,[*) = (1,1) means a night-owl
tariff and (u*, [*) = (1, 2) a standard tariff, respectively, on
the next day.

Note that the third party could be omitted when using
verifiable computing [25, 26]. However, this would induce
substantial overhead which is critical on a device with
limited capabilities, such as smart meters. In the sub-
sequent oblivious transfer phase, the third party is not
involved at all and hence never has access to the tariff
T, 1+ itself. Therefore, the third party does not need to be
trusted.

3.1.3 Oblivious transfer

In the last phase of our proposed protocol, the smart
meter sends a query to the utility U+ in order to obtain
the best-matching tariff 7« based on its index [*. The third
party is not involved in this transaction and does there-
fore not obtain any information about the tariff itself apart
from its index.

At this stage, the customer has not yet made the decision
whether or not to switch to the best-matching tariff—they
still need the tariff information for this. Thus, on the one
hand, the smart meter must not disclose [* to the util-
ity since it would allow the utility to deduce information
about the original load profile, even when the customer
chooses not to switch to the matching tariff. On the other
hand, the utility does not want to disclose all tariffs, some
of which may exclusively be available to certain customers
or groups. It only wants to disclose the tariff correspond-
ing to the index [*, but without being allowed to know this
very index.

A solution for this is oblivious transfer [7, 18, 19]. It
allows the smart meter to retrieve a tariff /* from a vec-
tor of tariffs T+ ;, without the query (index) being known
to the utility U,» and without any other tariffs being dis-
closed to the smart meter apart from 7, ;«. In our use case,
communication with U+ yields the tariff T .

The steps of the oblivious transfer phase can be sum-
marized as follows: Initially, i.e., before any other commu-
nication, the utility U, sends one key K+ ; per template
load profile L, ; to the smart meter. The number of tem-
plate load profiles is identical to the number of tariffs as
described above. Thus, in total, | £,«| keys are sent.

Secondly, the smart meter generates a nonce # which is
encrypted with the (/*)th key. The encrypted nonce, ¢, is
then sent to the utility. This step requires a rate limita-
tion (e.g., one query per day) on the utility’s side since the
smart meter could otherwise query all available tariffs by
iterating through the available indices. The rate limit has
to be chosen such that the maximum number of allowed
queries is lower than or equal to the average frequency at
which utilities update their tariffs. If, for instance, utilities



Unterweger et al. EURASIP Journal on Information Security (2016) 2016:21

update their template load profiles daily, a rate limit of one
query per day is sufficient.

Thirdly, the utility decrypts ¢ with all of its keys, yield-
ing decryptions d;. For the key with the index sent by the
smart meter, the decryption yields the nonce #, while, for
all other keys, the decryption result is a garbage value g;.
For the utility, however, these are indistinguishable from
the nonce. Thus, the utility cannot find out the index /*.

Fourthly, the utility encrypts all tariffs T,+; with the
decryption results d as keys, i.e., the nonce known to the
smart meter for the index [* and garbage values g; for the
others. The encrypted tariffs, ¢;, are then sent to the smart
meter which decrypts the ([*)th encrypted tariff with the
previously generated nonce. This yields the desired tar-
iff T ;. The other tariffs cannot be decrypted since the
encryption and decryption keys do not match, thus do not
leak any information to the smart meter.

Encryption is performed with a symmetric cryptosys-
tem. This allows for fast computation without ciphertext
expansion. However, oblivious transfer requires the trans-
mission of all tariffs in encrypted form at one point, which
is analyzed in detail in Section 4 in terms of time and space
complexity and compared to existing approaches.

4 Analysis

In this section, we review the protocol presented in this
paper with respect to security, complexity, and in compar-
ison to related work.

4.1 Privacy and security analysis

This protocol is privacy-preserving as none of the partic-
ipating entities has access to the original load profiles of
the others. Only in case of the third party and utility col-
luding, privacy may not be preserved fully as explained in
detail below.

4.1.1 Assumptions

For the privacy and security analysis, we assume that the
security parameters (A, W, A) are kept secret among the
smart meters and the utilities. These parameters need to
be distributed by a trusted party or the smart meters, and
the utilities have to agree upon these parameters, e.g.,
through Diffie-Hellman key exchange [27]. Dealing with
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leaks of the security parameters to the remaining (third)
party remains future work since our protocol is intended
as a prototypical alternative to existing solutions.

We further assume that all parties involved in com-
munication through our proposed protocol are authen-
ticated, e.g., through X.509 certificates [28]. In addition,
for the initialization and matching phases, we assume all
communication links to be encrypted, e.g., by symmetric
encryption such as AES [29]. Note that, in the oblivi-
ous transfer phase, no additional encryption is necessary.
Nevertheless, the security properties of oblivious trans-
fer are not discussed in this analysis, but can be found
in literature, e.g., [7, 18, 19], since this analysis mainly
focuses on the privacy impact of the information that is
transferred.

4.1.2 Adversaries

Our protocol involves three distinct types of parties—
smart meters, the third party, and utilities. As shown in
Tables 1 and 2, a privacy breach occurs if (a) the load pro-
file forecast of a smart meter is revealed to either the third
party or any utility; (b) the template load profile of a utility
is revealed to the third party, any smart meter or any other
utility; or (c) the tariff that the smart meter receives at the
end of the protocol is revealed to either the third party or
the utility. Thus, all of the involved parties can be seen as
a potential adversary, attempting to learn any information
considered private (as described above) or manipulating
the matching result for their own benefit.

For this analysis, we consider each type of party individ-
ually, explicitly distinguishing between a semi-honest and
a malicious adversary. Additionally, collusions of different
parties are analyzed.

4.1.3 Single semi-honest adversary

A semi-honest smart meter wants to learn any template
load profile from any of the utilities. Since the smart meter
only communicates with the third party, it does not get
access to the template load profiles, but only the best-
matching tariff index (u*,/*) from which the associated
template load profile cannot be deduced. Furthermore,
the rate limiter together with daily shuffling of the indices
| prevents the smart meter from querying an arbitrary

Table 1 Comparison of potential privacy breaches and their feasibility for semi-honest adversaries: none of the attacks are feasible in

our protocol without collusions

Smart meter Third party Utility
Interested Feasible Interested Feasible Interested Feasible
(a) Load profile forecast revealed v -2 v -2
(b) Template load profiles revealed v -a v - b -2
(c) Best matching tariff revealed v -2 v -2

Int. stands for interested, feas. for feasible. Whenever attacks require collusions to be feasible, they are denoted by —2. A b denotes interest in revealing data from other entities

of the same type, but not oneself, e.g., other utilities
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Table 2 Comparison of potential privacy breaches and their feasibility for malicious adversaries: some of the attacks are feasible in our

protocol
Smart meter Third party Utility
Interested Feasible Interested Feasible Interested Feasible
(a) Load profile forecast revealed v -2 v -2
(b) Template load profiles revealed v -2 v -2 Ve -2
(c) Best matching tariff revealed v —cb v —cb

Int. stands for interested, feas. for feasible. Whenever attacks require collusions to be feasible, they are denoted by 2. If values are modified maliciously, denoted by -2,
information may be revealed. A © denotes interest in revealing data from other entities of the same type, but not oneself, e.g., other utilities

number of times with distinct load profile forecasts
calculated using different forecasting algorithms.

A semi-honest third party wants to learn (i) the load
profile forecast of the smart meter, (ii) any template load
profile from any of the utilities, and (iii) the tariff the smart
meter actually receives at the end of the protocol.

The semi-honest third party does not have access to
the unembedded load profile forecast and template load
profiles, since the embedding parameters (A, W, A) are
kept secret among the smart meters and the utilities. The
inability to deduce the original data relies on information-
theoretic privacy results of [30]. The embedding map can
be seen as minimizing the information needed to calculate
nearest neighbors keeping only the distance information
in a ball around the embedded profile. Theorem 3.1 in [30]
states that given two profiles with distance d, the mutual
information between the corresponding two embedded

2
signals exponentially decays with (%) . Therefore, the

radius of the ball and thus privacy depends on the size of
the security parameter A.

Since this paper focuses on the demonstration of the
usefulness of the approach, the accuracy of the approach is
studied in Section 5.2 using a rather large value of A. How
A should be set to reach a good tradeoff between privacy
and utility in practice is a topic for future research.

The best-matching tariff T« ;< is never revealed to the
third party, since it does not take part in the oblivious
transfer phase at all. Note that the third party may col-
lect statistics on the matching results (i.e., the indices
(u*, 1)) of all smart meters. However, if the utilities shuf-
fle their template load profiles’ indices frequently enough,
the linkage between the matching results gets lost.

A semi-honest utility wants to learn (i) the load profile
forecast of the smart meter, (ii) the tariff the smart meter
actually receives at the end of the protocol, and (iii) the
template load profile from any of the other utilities. Since
the utility only communicates with the third party, it does
not get access either to the load profile forecast or to tem-
plate load profiles of other utilities. The tariff the smart
meter receives at the end of the protocol is not revealed to
the utility due to the properties of the oblivious transfer.

4.1.4 Collusion of semi-honest adversaries

In any of the collusion attacks including the trusted third
party, it is assumed that the other colluding party does
not share the embedding parameters because otherwise
its own privacy could more easily be violated.

U-U: Similar to the single semi-honest utility case,
colluding utilities also get no information about smart
meters’ or non-colluding utilities’ load profiles because
they get no information except in the oblivious transfer
phase.

SM-SM: Semi-honest smart meters may collude in
order to get information about the utilities’ template
load profiles by combining their load profile forecasts F
and matching results (u*,[*). One possible attack is the
attempt to construct a Voronoi diagram defined by the
template load profiles as centers. While the borders of
the Voronoi diagram do not change due to shuffling, only
the labels of the partitions change from one shuffling
period to another. However, it is not clear (i) how accu-
rately the Voronoi diagram could be estimated in a high-
dimensional space; (ii) how the estimation depends on
the security parameter A; (iii) given the Voronoi-diagram,
how well the centers (corresponding to the template load
profiles) could be estimated; and (iv) how many smart
meters would need to collude in order to get meaningful
results.

These questions are left as open research questions for
future research. It should be noted, however, that, due
to the small information gain for the smart meters and
the limited usefulness, their interest in revealing template
load profiles can be considered small.

TP-U,:: A semi-honest third party and the best-
matching utility can determine the tariff that any of the
smart meters receives at the end of the protocol by simply
combining (#*,[*) (known to TP) and T (known to U,x),
revealing T j+.

TP-U/SM: A semi-honest third party may collude with
either smart meters or utilities in order to determine load
profiles of non-colluding parties. Here, we describe the
collusion between the third party and smart meters—the
other case can be treated analogously.
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TP can provide the colluding smart meters with embed-
ded template load profiles of utilities and computed dis-
tances to each embedded load profile forecast of the
colluding smart meters. Based on this information, the
template load profiles, each consisting of k real values,
may be obtained by the smart meters as follows.

Since the smart meters know the embedding parame-
ters, they also know the relation between the embedding
distance and the Euclidean distance of the original data.
When the smart meters have at least p > k different
load profile forecasts F; € R¥ within the privacy ball of
a given template load profile L € R, ie., in the linear
part of Fig. 5, they can simply read out the p original dis-
tances d; = d(L, F;) of their known load profile forecasts
to the given template load profile. The desired template
load profile L € RX can then be determined from the
distances d; to the p > k different points F; € RK by mini-
mization of the norm of the residual vector R € R”, where
Ri=||L - Fil|* - d}.

In the same way, a third party colluding with utilities
could determine the load profile forecast of the smart
meter. The smaller the security parameter A, the higher
this information-theoretic privacy will be because it will
be more difficult to find p > k profiles in a smaller ball
around the load profile forecast.

The necessity of the quantization operation in the
embedding calculation can be demonstrated for this kind
of collusion. If quantization is omitted, even the distance
of the load profile forecast to a single template load pro-
file leaking from TP to U may be enough information for
U to reconstruct the load profile forecast. Without quan-
tization, the embedding calculation is a linear transforma-
tion of the input profile. Especially for a high embedding
dimension m > k, this then forms an overdetermined sys-
tem of m equations that enables U to calculate the k values
of the load profile forecast.

Therefore, it would be safer to choose a low embedding
dimension m < k. However, this paper later shows that
a high embedding dimension m >> k is desired for rea-
sonable accuracy (Fig. 7). Thus, without quantization, this
constitutes a bad tradeoff between privacy and accuracy
which highlights the importance of quantization in Eq. 1.

In summary, collusions involving the third party lead to
a privacy breach. However, collusions like this are unlikely
to happen, given regulatory restrictions.

4.1.5 Single malicious adversary

A malicious adversary may make up data or violate
the protocol, e.g., replay and change messages, avoid or
add communication steps. However, due to state-of-the-
art encryption and authentication, as described at the
beginning of this section, the interception of other con-
nections is infeasible, making man-in-the-middle attacks
difficult.
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A malicious smart meter that wants to learn any tem-
plate load profile from any of the utilities cannot inter-
cept the communication of any L,; due to encryption
as described above. In contrast to the semi-honest case,
however, it may try to send many artificial load profile
forecasts.

On the one hand, it may re-send any load profile forecast
to determine the new index of the matching template load
profile. However, the rate limiter in the matching phase
prevents the smart meter from exploiting the knowl-
edge about index shuffling because it does not allow to
send another load profile forecast before the next index
shuffling (e.g., on the next day).

On the other hand, the smart meter may send a variation
of a previous load profile to find the border between the
previous best-matching tariff and the new one. However,
due to index shuffling, it will not know whether a changed
index was indeed due to a different match or due to the
index shuffling.

Note that the information about the index shuffling
could be derived by associating the index with the tar-
iff obtained in the oblivious transfer phase. Therefore, the
second rate limiter in the oblivious transfer phase is used
to prevent the smart meter from querying tariffs other
than the best-matching one, including those of other util-
ities than u*. The limit for this additional rate limiter in
the oblivious transfer phase should be chosen to be equal
to or even stricter than the limit for the rate limit in the
matching phase.

In summary, the combination of the rate limiter in the
matching phase, the rate limiter in the oblivious trans-
fer phase and index shuffling prevents a single malicious
smart meter interested in any template load profile from
creating Voronoi diagrams defined by the template load
profiles as centers.

A malicious third party wants to learn (i) the load profile
forecast of any of the smart meters; (ii) any template load
profile from any of the utilities; and (iii) the tariff that any
of the smart meters actually receives at the end of the pro-
tocol. For the third party, it is infeasible to learn any load
profiles or the tariff because the extension of the attacker’s
capabilities still does not include reversing the embedding
without knowledge of the embedding parameters as in the
semi-honest case. However, a malicious third party may
modify the matching result (z*,/*). This way, the third
party can force a tariff onto the smart meter. However,
due to index shuffling, the third party will not know which
tariff it forces onto the smart meter.

A malicious utility wants to learn (i) the load profile
forecast of the smart meter, (ii) the tariff the smart meter
actually receives at the end of the protocol, and (iii) the
template load profile from any of the other utilities.

The utility cannot intercept the submission of template
load profiles of any other utility (due to encryption as
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described above). In addition, the utility may, theoreti-
cally, provide one tariff for every possible template load
profile. This would allow the utility to associate perfect
matches and thereby reveal load profile forecasts. How-
ever, in a practical setting like in Section 5, with 96 values
of 16 bits size, this would require the utility to provide a
total of 216 > 101" different template load profiles,
which is clearly infeasible.

A malicious utility may attempt to provide one single
template load profile per day and change it on a daily basis.
If a load profile forecast matches, the utility knows which
tariff the smart meter receives in the oblivious transfer
phase. Additionally, the matching template load profile
can be seen as an approximation to the load profile fore-
cast. In order to prevent this, the third party can enforce
|L,] > 1 for all utilities .

4.1.6 Collusion of malicious adversaries

Whenever a collusion of semi-honest adversaries allows
for privacy breaches, the same is, of course, true for col-
luding malicious adversaries. Therefore, in the following,
only the cases where a collusion of semi-honest adver-
saries does not lead to a privacy breach are discussed.

U-U: Multiple malicious utilities may choose their tem-
plate load profiles in a coordinated way in order to infer
load profile forecasts. This case is analogous to the case of
a single malicious utility described above.

A malicious smart meter may collude with the third
party in order to learn any template load profile from any
of the utilities.

SM-SM: Multiple malicious smart meters may collude
in order to learn the template load profile from the utili-
ties. To do so, they make up a set of disjoint load profile
forecasts. Since each smart meter can send its forecast
separately, all smart meters combined bypass the rate lim-
iter and may derive more information about the template
load profiles.

This is a breach of privacy. However, this prevents every
involved smart meter from obtaining a matching tariff for
itself, likely keeping all of them at more unsuitable tariffs
with higher costs for the smart meters and increasing the
utility’s revenue.

Finally, a malicious third party may collude with a sin-
gle utility #’ and return a matching result («/,[*) from
that utility, even if it is just slightly worse than a matching
result (u,[*) from another utility.

In summary, except for the case when two utilities
collude, privacy is breached for colluding malicious adver-
saries.

4.2 Complexity analysis

In this section, we analyze both the time and space com-
plexity of our proposed approach. For the sake of readabil-
ity, in this section only, the number of utilities, formerly
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denoted as |U{|, will be denoted as M. Similarly, the num-
ber of tariffs per utility U,, formerly denoted as |L,|, will
be denoted as N. For simplicity, N is considered to be
equal for all utilities, yielding a total of MN tariffs for M
utilities.

Note that by space complexity, we here refer to the num-
ber and size of messages with respect to M and N, split
into inbound and outbound traffic. We do not refer to
any memory and storage requirements, be they temporary
or permanent. Similarly, the time complexity is specified
with respect to M and N.

Tables 3, 4, and 5 summarize the time and space com-
plexity per entity and phase, respectively. In the following
sections, a detailed complexity analysis is given per phase
with references to the two aforementioned tables.

4.2.1 |Initialization

In the initialization phase, each utility calculates one
embedding per template load profile. Since there is one
template load profile per tariff, each utility calculates N
embeddings, yielding a time complexity of O(N). Since all
embeddings have to be sent to the third party, the out-
bound space overhead per utility is also O(XN), whereas the
inbound space complexity for the third party is O(MN),
since it receives all tariffs from all utilities.

However, neither the third party nor the smart meter
perform any calculations or generate outbound traffic.
Thus, no time and outbound space complexity is given for
them in Tables 3 and 4, denoted by hyphens. Similarly, nei-
ther the smart meter nor the any of the utilities receive
inbound messages in this phase.

4.2.2 Matching
Likewise, no utility is involved in the subsequent match-
ing phase which is limited to interactions between the
smart meter and the third party. The former calculates the
embedding of its load profile forecast, which is indepen-
dent of both, the number of utilities and the number of
tariffs, yielding a time complexity of O(1) and an equal
outbound space complexity for the request, yielding an
identical inbound space complexity for the third party.
The third party needs to calculate the differences
between the load profile forecast and each template load

Table 3 Time complexity overview: list of the combined time
complexity of our proposed approach, detailed per entity and
phase

Smart meter Third party Utility
Initialization - - O(N)
Matching o O(MN) -
Oblivious transfer o) - O(N)

Hyphens denote parties which do not perform any operations in the respective
phases
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Table 4 Outbound space complexity overview: list of the
combined space complexity for outbound messages of our
proposed approach, detailed per entity and phase

Smart meter Third party Utility
Initialization - - O(N)
Matching o(1) o(1) -
Oblivious transfer o) - O(N)

Hyphens denote parties which do not perform any operations in the respective
phases

profile of each utility. Since there are M utilities with
N template load profiles each, O(MN) calculations have
to be performed by the third party. However, only one
result—the best match—has to be sent back to the smart
meter, yielding an outbound space complexity of O(1)
and an identical inbound space complexity for the smart
meter.

Note that the rate limiting function is not considered
in the above complexity analysis. We consider this to
be an implementation-specific issue which requires no
additional time or outbound space complexity. It does,
however, require additional memory (space complexity) to
store at least one time stamp per smart meter which con-
tacted the third party at least once. This is considered to
be outside the scope of this paper.

4.2.3 Oblivious transfer
In the oblivious transfer phase, the best-matching utility
sends N keys to the smart meter, yielding an initial out-
bound space complexity of O(N) and an identical inbound
space complexity for the smart meter. After receiving the
encrypted nonce of the smart meter, the utility decrypts
and re-encrypts it with N different keys, corresponding
to a total time complexity of O(N). Sending these N re-
encrypted messages yields an outbound space complexity
of O(N) and an identical inbound space complexity for the
smart meter. Together with the initial space complexity of
O(N), the total outbound space complexity for the utility
and the inbound space for the smart meter are both O(N).

In contrast to the third party’s time complexity for cal-
culating the different encryptions, the smart meter only
has to encrypt one message—the nonce. Since this is inde-
pendent of both,the number of utilities and the number
of tariffs, the time complexity for this step is O(1). Sim-
ilarly, the outbound space complexity when sending this
encrypted message is O(1), as is the inbound space com-
plexity for the utility. The final step, where one of the N
encrypted tariffs received from the utility is decrypted,
also yields a time complexity of O(1). In total, this does not
change the overall time complexity of O(1) for the smart
meter in this phase.

As in Section 4.2.2, the rate limiting function is not con-
sidered in the above complexity considerations. However,
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it does neither affect the time nor the outbound nor the
inbound space complexity denoted in Tables 3, 4, and 5.

4.2.4 Summary

In summary, it is clear that our proposed approach is very
efficient in terms of computational complexity. In particu-
lar, all operations on the smart meter—a device with very
limited computational capabilities—can be performed in
constant time with respect to the number of utilities and
tariffs. In contrast, the matching complexity is outsourced
to the third party and each utility which can determine
the computational complexity by the number of tariffs it
offers.

There are other approaches with similar total computa-
tional complexity considering only the number of utilities
and tariffs as variables. However, for other variables, e.g.,
ciphertext size, the complexity of related work is inferior
to ours as shown in the following section.

4.3 Comparison to related work

The core purpose of the presented approach is to find sim-
ilarities, i.e., nearest neighbors, of time series by Euclidean
distance computation while preserving the privacy of all
actors. In [6, 14, 31], approaches based on additively
homomorphic encryption, e.g., the Paillier cryptosystem
[32], are discussed which also allow calculating Euclidean
distances. Thus, they can be used as an alternative to
nearest-neighbor embeddings as proposed in this paper
and are therefore compared to the latter. Figure 2 shows
a simplified version of both our proposed scheme and
approaches using homomorphic encryption.

The smart meter communicates with each utility sepa-
rately sending an additively homomorphic encrypted load
profile forecast. Each utility responds with a partial result
for each template load profile as shown below. From this,
the smart meter can calculate the Euclidean distance in
order to retrieve the index (u*,[*) of the best-matching
template load profile. Finally, the smart meter and the util-
ity #* run the oblivious transfer protocol identically to our
approach in order to retrieve the tariff T, j+.

This homomorphic protocol comes without the need of
a third party. By contrast, fetching the template load pro-
files as well as the distance computation itself is performed

Table 5 Inbound space complexity overview: list of the
combined space complexity for inbound messages of our
proposed approach, detailed per entity and phase

Smart meter Third party Utility
Initialization - O(MN) -
Matching o) o -
Oblivious transfer O(N) - o)

Hyphens denote parties which do not perform any operations in the respective
phases
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Fig. 2 Comparison of our proposed scheme (left) to approaches using homomorphic encryption (right). The latter comes without a third party

by the smart meter. All encryptions are performed with
the public key, decryptions can only be performed by the
smart meter, which is the only party owning the private
key.

The Euclidean distance between the forecast load pro-
file and each of the template load profiles of all utilities
must be computed by using an additively homomorphic
cryptosystem [6] in an identical manner, i.e., with the same
modulus 7z of Paillier’s cryptosystem. Therefore, for the
sake of readability, L; is written instead of L,;; and A
and B are written instead of A,; and B,,;. The goal of the
protocol is to privately compute

IE=Llly = Y L?=) 2FLi+) F; = A+B+C. (5)
i i i

First, the smart meter submits its encrypted load profile
forecast values E (F;) directly to each utility. As a single
load profile forecast value is much smaller than the mod-
ulus, data packing is used for better exploiting the input
domain. Therefore, not a single value is encrypted, but all
k values of the load profile forecast are packed, encrypted,
and sent as one message. Data packing is achieved by
shifting values to a certain bit range, such that for all
operations, the value remains within that range [13], e.g.,
for k values and a range of b bits v = vi|v|...|vx =
Zf:l y;2bG=1)

Using this encrypted load profile forecast and exploit-
ing the homomorphic properties E(x + y) = E(x)E(y) and
E(x)¢ = E(cx), the utility can compute and send back the
partial result

E(A+B)=E (Z L,2> [1e®)" ©)

to the smart meter. Exploiting the homomorphic property
again, term C can be added and the smart meter gets the
Euclidean distance by

|IE — LIl =D<E (ZF?) E(A+B)) @)

When following the above protocol, neither the utility
knows the smart meter’s load profile forecast, nor does
the smart meter know the utility’s template load profile. In
addition, the inner product F - L is never revealed to any
of them.

Now, the communication need is calculated and com-
pared with this paper’s solution. In the first step of the
protocol, the smart meter needs to send k packed and
homomorphically encrypted load values F; to each of the
|U| utilities. By encrypting a single value with the Paillier
cryptosystem, a plaintext p € Z results in a ciphertext
E(p) € Z}, leading to an expansion of the bit size by a
factor of 2.

The second message is the encryption of

A+B= ZL? - Z2F,'L,» € [— ZFE,ZLE] (8)
i i i i
where the lower limit follows from the fact that

IF—L|y=A+B+C>0=A+B>—C. 9)

Since squaring of a number leads to an expansion of 2,
both the lower and upper limits need a maximum of k - 2s
bits, where s is the bit of a single load value F;. Therefore,
A + B needs 2 - 2ks = 4ks bits. Because of subsequent
data expansion by a factor of 2 due to encryption, finally,
the ciphertext fits into 8ks bits, which would require a
modulus of 8ks bits size for the Paillier cryptosystem with
modulus 7. If the modulus is smaller (see below for a
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practical example), the message can be split into multiple

messages, the number of which is 82—1;13 = 47/“ .

As a practical example, consider kK = 96 values of a
day profile arising from a 15-min measurement interval,
a bit size of s = 16 and |/| = 5 utilities, each having
|L,] = 20 template load profiles. Therefore, a template
load profile (as well as load profile forecast) is of size
4ks = 4-96-16 = 6144 bits. According to latest NIST rec-
ommendations [33], a Paillier modulus of # = 2048 bits
(expanding to 4096 bits) is chosen, which requires three
messages of that size, since SZ—I;S = 47]“ =3.

For the homomorphic encryption approach, the smart
meter sends its homomorphically encrypted load profile
forecast to each of the || utilities. As described above,
sending one load profile forecast requires three messages
of 4096 bits size after encryption. Sending all load profile
forecasts in this step therefore requires 3 - 4096|U| bits.

In addition, the oblivious transfer step at the end
requires one message of 256 bits size (when using AES-
256 [29]). Thus, the total sending need for a single smart
meter is 7.53 KiB (rounded to two decimal places).

Each utility responds to the requesting smart meter with
a partial result (see Eq. 6) for each of the | £,,| template load
profiles, as described above. From this, the smart meter
calculates the Euclidean distance. One template load pro-
file requires 3 - 4096 bits, as described above. One utility
therefore sends 3 - 4096|L,| bits. Thus, |I/| utilities send
3-4096| L, ||U| bits, which are received by the smart meter.

In addition, the oblivious transfer step requires send-
ing |£,| messages of 256 bits size. The smart meter thus
receives a total of 3 - 4096| L, ||U| + 256|L,| bits = 150.63
KiB (rounded to two decimal places). The resulting com-
munication need is shown in Fig. 3 (solid and dashed black
lines).

With the embedding approach, the smart meter needs
to send its load profile forecast consisting of m bits of
data to the third party. All |U{] utilities need to send |L,|
template load profiles of m bits each, totaling |U||L,|m
bits. For the communication of the best-matching indices
(u*,I*), s = 16 bits = 2 B should suffice.

Figure 3 shows the communication need of our pro-
posed embedding approach (solid and dashed red lines,
as well as dash-dotted blue line) for various embedding
dimensions m. m = 8192 (dashed-dotted gray line) is a
reasonable choice (cf. Fig. 7), resulting in an overhead of
100 KiB.

The sending and receiving need of smart meters is
orders of magnitudes smaller for our proposed embed-
ding protocol than for the protocol with homomorphic
encryption used for comparison. This is important, since
in practical scenarios, the bandwidth connecting smart
meters with other parties is likely to be low [34], especially
when using power-line communication (PLC). While the

Page 12 of 17

R T e - Y o = = g =

—— HE SM send

= = =HE SM receive
—+— Ours SM send

= # = QOurs SM receive
== Ours U send

10 T T ’\D'
1 -

S SO ]
Q9 10" ¢ 07 1
= Lo

@ 0~ 1

g 4 O"\ ; ‘/
5 10 E z . 3
5 = '

c o 1

S ;

ERLY f
c

>

IS

IS

S

(&)

8 9 10 11 12 13 14 15 16 17
loga(m)

Fig. 3 Comparison of the communication need of our protocol and
the one used for comparison with variable embedding dimension m:
The communication need for the smart meter is considerably lower
with our proposed embedding protocol (denoted ours) than with the
protocol using homomorphic encryption (denoted HE). Utilities only
need to send data to the TP using our proposed embedding
protocol (blue, dashed-dotted)

total communication amount for the embedding method
can even be higher than for the homomorphic method,
most of it is needed for the communication from utilities
to the third party where a much better connection is likely.

The approach based on homomorphic encryption does
not require a third party to perform the distance calcu-
lation, since either of the participants is involved exactly
once in exchanging messages and can limit the rate of
requests in order to prevent chosen-plaintext attacks to
learn about load profiles. However, the smart meter—
which is usually a device with only limited computational
capabilities—has to perform the distance computation
for every template load profile from every utility, which
results in a total of ), |£,| distance computations. This
is likely to be impractical for a device with low compu-
tational capabilities like a smart meter and thus another
disadvantage compared to our approach.

However, the homomorphic approach calculates all dis-
tances exactly. This is not the case in the profile matching
approach presented in this paper. In summary, the smaller
overhead in data expansion comes at the cost of only near-
perfect matching. However, the accuracy depends on m
which can be chosen appropriately. Thus, an evaluation of
this parameter is conducted in the following section.

5 Evaluation

In this section, we evaluate privacy-preserving load pro-
file matching. We briefly describe the test data and assess
the matching performance of our approach using that
data. For the evaluation, we prototypically implemented
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the complete proposed matching protocol as described in
Section 3 in Java and Matlab.

5.1 Data

The data set we use for our evaluation consists of load
profiles of 40 residential households from a local energy
provider. The evaluated load profiles cover a time span of
about 1 year with 96 measurements per day, i.e., 15-min
data granularity. The measured values are in Watts with
16 bits of precision. Thus, one day of one household can
be represented by 96 - 16 = 4096 bits.

All load profiles are normalized by dividing every one
of the 96 load values by the average load per day. We use
the captured data as load profile forecasts F as described
in Section 3. Note that forecasting can be done with his-
toric data (e.g., [35, 36]) since usage patterns are unlikely
to change very much over longer periods of time.

For matching, we consider the following template load
profiles L, ; depicted in Fig. 4:

e Flat (gray circles): The load does not change over
time.

e Standard (blue plusses): There is a lower load during
night hours.

e Night owl (dashed red line): There is a higher load
during night hours and a lower load during the day.

e HO workday (dash-dotted green line): The
standardized [37] average load of a household during
workdays with two small load peaks at noon and one
larger peak in the evening. The type of households
and the broader geographic region for the “H0”
profile in the standard are the same as for our test
data described above.

® HO Sunday (solid black line): The standardized
average load of a household on Sundays with one
load peak at noon and one in the evening.

5.2 Matching performance

All load profile forecasts of all 40 households from the
data set are matched with one of the five template profiles
in Fig. 4. For each day’s forecast, the template load profile
with the lowest Euclidean distance is found. For compari-
son, the same operation is performed with the embedded
load profiles and the normalized Hamming distance. The
matching performance is then assessed by the matching
accuracy (Eq. 4) which is estimated by the percentage of
coinciding matches. The slightly different distance calcu-
lations (see Eq. 3) lead to a decrease in accuracy. Ideally,
parameters are chosen such that the correlation between
the distances in the original space R¥ and the distances
in the embedded space {0, 1} is high. While the match-
ing accuracy for a single smart meter is not affected by
the number of participating smart meters, two parameters
influence the matching accuracy in two different ways.
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5.2.1 Effectof A

If the first security parameter, A, is chosen too large (at
least as big as the maximum original distance), it only has
a constant effect on all computed distances in the embed-
ded space since the modulo operation in Eq. 1 does not
change the final result. As already discussed in Section 4,
embedding will not increase privacy, and Eq. 3 holds
everywhere.

However, the security parameter has an essential influ-
ence on the embedding distance when it is small enough
to be within the range of the original distance. This influ-
ence is described in the left panel of Fig. 5, where dis-
tances in the embedding space are computed with varying
security parameter A. Two regions can then be distin-
guished: region R~ of original distances that are (roughly)
smaller than A and region R of original distances that
are (roughly) larger than A. In region R~, the embedding
distance is linearly depending on the original distance and
Eq. 3 holds. Due to this linear dependence, the utility-
region R~ offers high utility, but no privacy.

In contrast, in region R", the embedding distance is near
0.5 and not depending on the original distance. Thus, the
privacy-region R exhibits privacy, but no utility.

As a consequence, if all template profiles are far enough
away from the forecast such that the original distances are
all in region R*, the best match in the embedding dis-
tance will lead to no information on the best match in the
original space. This behavior is confirmed by Fig. 6 which
shows that a very small A has a devastating effect on the
accuracy yielding values that are as bad as pure guessing.
For A > 14, which is near the maximum original dis-
tance values, distances are in the utility region R~ leading
to a high accuracy above 90 %. Accuracy does not increase
significantly with further increases in A (see also [11]).
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5.2.2 Effectofm

For our application, we are interested in finding template
load profiles which have a small distance to the forecast.
Therefore, the distance of the load profile to the best
matching template load profile are supposed to be in the
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Fig. 6 Accuracy of the matching process with embedding dimension
m = 8192 and variable A: the percentage of coinciding matches for
distance calculations with and without embedding increases with the
security parameter A. The dotted gray line symbolizes the gap
between A = 16and A = 30
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utility region R™. In this part, the correlation between
the original and the embedding distance depends on the
second parameter of our matching protocol, the dimen-
sion m of the embedded space: the higher m is, the higher
the correlation. This is an effect of the smaller amount
of scatter in the right panel of Fig. 5 (A = 30 was
chosen high in order not to mix the effect of the two
parameters).

As a consequence, the distance preservation property of
the embedding transformation will have the effect that the
best match in the original space R¥ should also be the best
match in the embedding space {0, 1}"”. It is experimen-
tally confirmed for all 40 households that the accuracy
increases with the embedding dimension m (Fig. 7). For
small values of m, the median accuracy is impractically
low (below 65 %), while it is 98 % for very large values of
m. However, such values are not desired since they result
in a large ciphertext size as already discussed in Section 4.

An embedding dimension of m = 8192 provides a rea-
sonable tradeoff between ciphertext size and accuracy at
93.5 %. In practice, 93.5 % are sulfficient since the selec-
tion of the (most likely) second-best-matching tariff only
results in a minor deviation as shown below. Note that,
as described above, the accuracy can be increased if nec-
essary at the cost of data expansion. This is can be also
be used to compensate for a small number of tariffs in
borderline cases.
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5.2.3 Load profile examples

We conclude this section by matching two example load
profiles for the purpose of illustration of tariff matching.
While the selection of a suitable parameter A is a topic for
future research, for purpose of illustration, A was selected
high as 30. Two cases are shown. The first shows a load
profile forecast where matching in the embedded space
returns the same template load profile as in the original
space. The second depicts a forecast where the best match
in the original space RX does not coincide with the best
match in the embedded space {0, 1}"".

The case in Fig. 8 shows a load profile of household
3 and our template load profiles. Using this load profile
(solid blue line) as load profile forecast F, we see that the
HO workday template load profile (dash-dotted red line)
is the best match of all five template load profiles, i.e., the
Euclidean distance is smallest.

In contrast, Fig. 9 shows the load profile of household 1
which is an example for a mismatch. It is the worst case
from within all days of that household. The best match for
the load profile forecast of this worst-case example in the
original space RX is the flat template load profile (dashed
green line). However, the use of embedding slightly per-
turbs the result by yielding a smaller distance to the night
owl template load profile (dash-dotted red line). The dis-
tances in the embedded space are 3.38 for the flat profile
compared to 3.50 for the night owl profile. Further dis-
tances are 5.33 for the standard profile, 6.64 for the HO
workday profile, and 6.41 for the HO Sunday profile which
shows that the best match found in the embedded space
{0, 1} still yields a good result if compared to the other
template load profiles.

3
= Forecast
Flat
251 Standard
Night owl
=1 =1HO workday
27 Ho Sunday

Bl Al A. AAA.._',
e,

Wvﬂ

o]
0:00 6:00

Normalized load

12:00 18:00

Time of day [h:mm]

24:00

Fig. 8 Comparison of a load profile forecast and all template load
profiles: the HO workday template load profile (dash-dotted red line)
matches the forecast (solid blue line) best. The inferior matches are
depicted in gray

6 Conclusions

We described a load profile matching protocol which
enables tariff decisions in smart grids. We showed that
the protocol design and the use of embeddings and
oblivious transfer make our approach privacy-preserving
for both the smart meter and the participating utilities
when all parties are semi-honest and do not collude. In
comparison to a protocol based on the additive homo-
morphic Paillier cryptosystem, the proposed protocol
reduces the communication need for smart meters by
several orders of magnitude, albeit at the cost of non-
perfect matching. We achieve a matching accuracy of

25 ;
Forecast
Best match original
o === Best match embedded

Normalized load

0 L L L

0:00 6:00 12:00

Time of day [h:mm]

18:00 24:00

Fig. 9 Comparison of a worst-case load profile forecast: The load
profile forecast (blue line) best matches the flat template load profile
(dashed green line) in the original space, but the night owl profile

(dash-dotted red line) in the embedded space
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93.5 % with negligible outliers, which may be enough to
make it a viable, more lightweight alternative to homo-
morphic encryption for load profile matching in smart
grids.

Future work will focus on a broader set of use cases and
sample data. Further analysis and evaluation of a proto-
typical implementation of the entire protocol, including
all three phases, is planned. For this implementation, time
measurements for comparing homomorphic encryption
and our embedding approach are to be conducted.
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