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Abstract

We study the large-coalition asymptotics of fingerprinting and group testing and derive explicit decoders that
provably achieve capacity for many of the considered models. We do this both for simple decoders (which are fast but
commonly require larger code lengths) and for joint decoders (which may be slower but achieve the best code
lengths). We further make the distinction between informed decoding, where the pirate strategy is exactly known,
and uninformed decoding, and we design decoding schemes for both settings.
For fingerprinting, we show that if the pirate strategy is known, the Neyman-Pearson-based log-likelihood decoders
provably achieve capacity, regardless of the strategy. The decoder built against the interleaving attack is further
shown to be a universal decoder, able to deal with arbitrary attacks and achieving the uninformed capacity. This
universal decoder is shown to be closely related to the Lagrange-optimized decoder of Oosterwijk et al. and the
empirical mutual information decoder of Moulin. Joint decoders are also proposed, and we conjecture that these also
achieve the corresponding joint capacities.
For group testing, the simple decoder for the classical model is shown to be more efficient than the one of Chan et al.
and it provably achieves the simple group testing capacity. For generalizations of this model such as noisy group
testing, the resulting simple decoders also achieve the corresponding simple capacities.
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1 Introduction
1.1 Fingerprinting
To protect copyrighted content against unauthorized
redistribution, distributors commonly embed watermarks
or fingerprints in the content, uniquely linking copies to
individual users. Note that by watermarks/fingerprints,
which may have a different meaning in other contexts,
here we refer to the code words from collusion-resistant
codes that are embedded in the content. If the distributor
finds an unauthorized copy of the content online, he can
then extract the watermark from this copy and compare
it to the database of watermarks, to determine which user
was responsible.
To combat this solution, a group of c pirates may try

to form a coalition and perform a collusion attack. By
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comparing their unique versions of the content, they will
detect differences in their copies which must be part
of the watermark. They can then try to create a mixed
pirate copy, where the resulting watermark matches the
watermark of different pirates in different segments of
the content, making it hard for the distributor to find the
responsible users. The goal of the distributor of the con-
tent is to assign the watermarks to the users in such a way
that, even if many pirates collude, the pirate copy can still
be traced back to the responsible users.

1.2 Group testing
A different area of research that has received consider-
able attention in the last few decades is group testing,
introduced by Dorfman [1] in the 1940s. Suppose a large
population contains a small number c of infected (or
defective) items. To identify these items, it is possible to
perform group tests: testing a subset of the population will
lead to a positive test result if this subset contains at least
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one defective item, and a negative result otherwise. Since
the time to run a single test may be very long, the sub-
sets to test need to be chosen in advance, after which all
group tests are performed simultaneously. Then, when the
test results come back, the subset of defective items needs
to be identified. The goal of the game is to identify these
defectives using as few group tests as possible and with a
probability of error as small as possible.

1.3 Model
The above problems of fingerprinting and group test-
ing can be jointly modeled by the following two-person
game between (in terms of fingerprinting) the distribu-
tor D and the adversary C (the set of colluders or the
set of defectives). Throughout the paper, we will mostly
use terminology from fingerprinting (i.e., users instead of
items, colluders instead of defective items), unless we are
specifically dealing with group testing results.
First, there is a universe U of n users, and the adversary

is assigned a random subset of users C ⊆ U of size |C| = c.
The subset C is unknown to the distributor, but we assume
that the distributor does know the size c of C; there are var-
ious ways in practice to estimate the collusion size, and if
necessary, multiple decoders can be deployed for different
values of c, out of which themost accurate results could be
used as the estimate for c. The aim of the game for the dis-
tributor is ultimately to discover C. The two-person game
consists of three phases: (1) the distributor uses an encoder
to generate a fingerprinting code, used for assigning ver-
sions to users; (2) the colluders employ a collusion channel
to generate the pirate output from their given code words;
and (3) the distributor uses a decoder to map the pirate
output to a set C′ ⊆ U .

1.3.1 Encoder
The distributor generates a fingerprinting code X of
n binary code words of length �.1 The parameter � is
referred to as the code length, and the distributor would
like � to be as small as possible. For the eventual embed-
ded watermark, we assume that for each segment of the
content, there are two differently watermarked versions,
so the watermark of user j is determined by the � entries
in the jth code word of X .
A common restriction on the encoding process is to

assume that X is created by first generating a bias vector
�P ∈ (0, 1)� (by choosing each entry Pi independently from
a certain distribution fP) and then generating code words
�Xj ∈ X according to P(Xj,i = 1) = Pi. This guarantees
that watermarks of different users j are independent and
that watermarks in different positions i are independent.
Fingerprinting schemes that satisfy this assumption are
sometimes called bias-based schemes, and the encoders in
this paper (both for group testing and fingerprinting) are
also assumed to belong to this category.

1.3.2 Collusion channel
After generating X , the code words are used to select and
embed watermarks in the content, and the content is sent
out to all users. The colluders then get together, compare
their copies, and use a certain collusion channel or pirate
attack �� to determine the pirate output �Y ∈ {0, 1}�. If
the pirate attack behaves symmetrically both in the collud-
ers and in the positions i, then the collusion channel can
be modeled by a vector �θ ∈[ 0, 1]c+1, consisting of entries
θz = fYi|Zi(1|z) = P(Yi = 1|Z = z) (for z = 0, . . . , c) indi-
cating the probability of outputting a 1 when the pirates
received z ones and c − z zeroes. A further restriction on
�θ in fingerprinting is the marking assumption, introduced
by Boneh and Shaw [2], which says that θ0 = 0 and θc = 1,
i.e., if the pirates receive only zeros or ones, they have to
output this symbol.

1.3.3 Decoder
Finally, after the pirate output has been generated and
distributed, we assume the distributor intercepts it and
applies a decoding algorithm to �Y , X , and �P to compute a
set C′ ⊆ U of accused users. The distributor wins the game
if C′ = C (catch-all scenario) or ∅ �= C′ ⊆ C (catch-one
scenario) and loses if this is not the case.

1.3.4 Fingerprinting vs. group testing
While the above model is described in fingerprinting ter-
minology, it also covers many common group testing
models. The users then correspond to items, the collud-
ers translate to defectives, the code X corresponds to the
group testing matrix X (where Xj,i = 1 if item j is included
in the ith test), and the pirate output corresponds to posi-
tive/negative test results. The collusion channel is exactly
what separates group testing from fingerprinting: while in
fingerprinting it is commonly assumed that this channel
is not known or only weakly known to the distributor, in
group testing, this channel is usually assumed known in
advance. This means that there is no malicious adversary
in group testing but only a randomization procedure that
determines �Y . Note also that in (noisy) group testing, the
Boneh-Shaw marking assumption may not always hold.

1.4 Related work
Work on the fingerprinting game described above started
in the late 1990s, and lower bounds on the code length
were established of the order � ∝ c ln n [2], until in
2003, Tardos [3] proved a lower bound of the order � ∝
c2 ln n and described a scheme with � = O(c2 ln n), show-
ing this bound is tight. Since the leading constants of
the upper and lower bounds did not match, later work
on fingerprinting focused on finding the optimal leading
constant.
Based on channel capacities, Amiri and Tardos [4] and

Huang and Moulin [5] independently derived the optimal
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leading constant to be 2 (i.e., an asymptotic code length of
� ∼ 2c2 ln n) and many improvements to Tardos’s original
scheme were made [6–9] to reduce the leading constant
from 100 to 1

2π
2 ≈ 4.93. Recently, it was shown that

with Tardos’ original “score function” one cannot achieve
capacity [10], which lead to the study of different score
functions. Based on a result of Abbe and Zheng [11],
Meerwald and Furon [12] noted that a score function
designed against the worst-case attack achieves capacity
against arbitrary attacks. This also lead to a proposal for a
capacity-achieving score function in [13], which achieves
the lower bound on the leading constant of 2.
Most of the work on fingerprinting focused on the set-

ting of arbitrary, unknown attacks, but some work was
also done on the informed setting, where the decoder
knows or tries to estimate the pirate strategy [13–17].
It is well known that for suboptimal pirate attacks, the
required code length may be significantly smaller than
� ∼ 2c2 ln n, but explicit schemes provably achieving an
optimal scaling in � are not known.
Research on the group testing problem started much

longer ago, and already in 1985, exact asymptotics on
the code length for probabilistic schemes were derived as
� ∼ c log2 n [18], whereas deterministic schemes require
a code length of � ∝ c2 ln n [19, 20]. Later work focused
on slight variations of the classical model such as noisy
group testing, where a positive result may not always cor-
respond to the presence of a defective item due to “noise”
in the test output [21–24]. For noisy group testing, exact
asymptotics on the capacities (with leading constants) are
yet unknown, and so it is not known whether existing
constructions are optimal.

1.5 Contributions and outline
In this paper, we show how to build schemes using log-
likelihood decoders that provably satisfy given bounds
on the error probabilities and have a code length with
the optimal asymptotic scaling. We do this both for the
informed setting (where �θ is known to the decoder) and
the universal setting, where �θ is only known to satisfy
the marking assumption. The results for the informed
setting for fingerprinting are summarized in Table 1.
Simple informed and universal decoders are discussed
in Sections 2 and 3, and joint informed and universal
decoders are discussed in Sections 4 and 5, respectively.
In between, Section 3.4 discusses a completely different
approach to obtain a universal simple decoder (based on
the empirical mutual information decoder of Moulin [25])
and shows how in the end the result is again quite similar.

2 Simple informed decoding
In this section, we will discuss simple decoders with
explicit scheme parameters (code lengths, accusation
thresholds) that provably satisfy given bounds on the

Table 1 An overview of the provable asymptotic code lengths of
the informed fingerprinting decoders discussed in this paper

Fingerprinting attack Simple decoding Joint decoding

�θint: interleaving attack � ∼ 2c2 ln n � ∼ 2c2 ln n

�θall1: all-1 attack � ∼ c ln n
(ln 2)2

� ∼ c log2 n

�θmaj: majority voting � ∼ πc ln n � ∼ c log2 n

�θmin: minority voting � ∼ c ln n
(ln 2)2

� ∼ c log2 n

�θcoin: coin-flip attack � ∼ 4c ln n
(ln 2)2

� ∼ c log5/4 n

error probabilities. The asymptotics of the resulting code
lengths further show that these schemes are capacity-
achieving; asymptotically, the code lengths achieve the
lower bounds that follow from the simple capacities, as
derived in [26].
We will follow the bias-based and score-based frame-

work introduced by Tardos [3], which was later general-
ized to joint decoders by Moulin [25]. For simple decod-
ing, this means that a user j receives a score Sj of the
form

Sj =
�∑

i=1
Sj,i =

�∑
i=1

g(xj,i, yi, pi)

and he is accused iff Sj ≥ η for some fixed threshold η. The
function g is sometimes called the score function. Note
that since g only depends on X through �Xj, any decoder
that follows this framework is a simple decoder.

2.1 Simple log-likelihood decoders
Several different score functions g have been considered
before [3, 9, 13, 16], but in this work, we will restrict
our attention to log-likelihood scores, which are known
to perform well and which turn out to be quite easy to
analyze.
First, when building a decoder, we naturally want to be

able to distinguish between two cases: user j is guilty or
user j is not guilty. To do this, we assign scores to users
based on the available data, and we try to obtain an opti-
mal trade-off between the false positive error (accusing an
innocent user) and the false negative error (not accusing a
guilty user). This problem is well known in statistics as a
hypothesis testing problem, where in this case we want to
distinguish between the following two hypotheses H0 and
H1:

H0 : user j is guilty (j ∈ C),
H1 : user j is innocent (j /∈ C).

The Neyman-Pearson lemma [27] tells us that the most
powerful test to distinguish between H0 and H1 is to
test whether the following likelihood ratio exceeds an
appropriately chosen threshold η:
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�(�x, �y, �p) = f�X,�Y |�P(�x, �y|�p,H0)

f�X,�Y |�P(�x, �y|�p,H1)
.

Taking logarithms, and noting that different positions i
are i.i.d., it is clear that testing whether a user’s likelihood
ratio exceeds η1 is equivalent to testing whether his score
Sj exceeds η = ln η1 for g defined by

g(x, y, p) = ln
(
fX,Y |P(x, y|p,H0)

fX,Y |P(x, y|p,H1)

)
. (1)

Thus, the score function g from (1) corresponds to using
a Neyman-Pearson score over the entire code word �Xj,
and therefore, g is in a sense optimal for minimizing the
false positive error for a fixed false negative error. Score
functions of this form were previously considered in the
context of fingerprinting in, e.g., [17, 28], but these papers
did not show how to choose η and � to provably satisfy
certain bounds on the error probabilities.

2.2 Theoretical evaluation
Let us first see how we can choose � and η such that
we can prove that the false positive and false negative
error probabilities are bounded from above by certain val-
ues ε1 and ε2. For the analysis below, we will make use
of the following function M, which is closely related to
the moment-generating function of scores in one posi-
tion i for both innocent and guilty users. For fixed p, this
functionM is defined on [ 0, 1] by

M(t) =
∑
x,y

fX,Y |P(x, y|p,H0)
t fX,Y |P(x, y|p,H1)

1−t . (2)

By writing out the corresponding expectations and
scores Sj,i, it can be seen that the function M satisfies
M(t) = E

(
etSj,i |p,H1

)
andM(t) = E

(
e(t−1)Sj,i |p,H0

)
.

Theorem 1. Let p and �θ be fixed and known to the
decoder. Let γ = ln(1/ε2)/ ln(n/ε1), and let the code
length � and threshold η be chosen as

� =
√

γ (1 + √
γ − γ )

− lnM(1 − √
γ )

ln
(
n
ε1

)
, (3)

η = (1 − γ ) ln
(
n
ε1

)
. (4)

Then, with probability at least 1 − ε1, no innocent users
are accused, and with probability at least 1 − ε2 at least
one, colluder is caught.

Proof. For innocent users j, we would like to prove that
P(Sj > η|H1) ≤ ε1

n , where Sj is the user’s total score
over all segments. If this can be proved, then since inno-
cent users have independent scores, it follows that with
probability at least

(
1 − ε1

n
)n ≥ 1 − ε1, no innocent users

are accused. To get somewhat tight bounds, we start by
applying the Markov inequality to eαSj for some α > 0:

P(Sj > η|H1) = P

(
eαSj > eαη|H1

)
≤ E

(
eαSj |H1

)
eαη

=
∏�

i=1 E
(
eαSj,i |H1

)
eαη

= M(α)�

eαη
.

Let us now first switch to guilty users.We will prove that
for some guilty user j, P(Sj < η|H0) ≤ ε2. Again using
Markov’s inequality with some fixed constant β > 0, we
get

P(Sj < η|H0) = P

(
e−βSj > e−βη|H0

)
≤ E

(
e−βSj |H0

)
e−βη

=
∏�

i=1 E
(
e−βSj,i |H0

)
e−βη

= M(1 − β)�

e−βη
.

For both guilty and innocent users, we can now obtain
bounds by choosing appropriate values for α and β . Inves-
tigating the resulting expressions, it seems that good
choices for α,β leading to sharp bounds are α = 1 − √

γ

and β = √
γ . Substituting these choices for α and β , and

setting the bounds equal to the desired upper bounds ε1
n

and ε2, we get

P(Sj > η|H1) ≤ M(1 − √
γ )�

e−
√

γ η
e−η = ε1

n
,

P(Sj < η|H0) ≤ M(1 − √
γ )�

e−
√

γ η
= ε2.

Combining these equations, we obtain the given expres-
sion for η, and solving for � leads to the expression for �

in (3).

Compared to previous papers analyzing provable
bounds on the error probabilities [3, 6, 7, 9, 29], the proof
of Theorem 1 is remarkably short and simple. Note how-
ever that the proof that a colluder is caught assumes that
the attack used by the colluders is the same as the one the
decoder is built against and that the actual value of � is
still somewhat mysterious due to the termM(1− √

γ ). In
Section 2.4, we will show how to get some insight into this
expression for �.

2.3 Practical evaluation
Before going into details how the code lengths of
Theorem 1 scale, note that Theorem 1 only shows that
with high probability we provably catch at least one col-
luder with this decoder. Although this is commonly the
best you can hope for when dealing with arbitrary attacks
in fingerprinting,2 if the attack is colluder-symmetric,
it is actually possible to catch all colluders with high
probability. So instead, we would like to be able to claim
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that with high probability, the set of accused users C′
equals the set of colluders C. Similar to the proof for inno-
cent users, we could simply replace ε2 by ε2

c and argue
that the probability of finding all pirates is the product of
their individual probabilities of getting caught, leading to
a lower bound on the success probability of

(
1 − ε2

c
)c ≥

1 − ε2. This leads to the following heuristic estimate for
the code length required to catch all pirates.

Conjecture 1. Let γ in Theorem 1 be replaced by γ ′ =
ln(c/ε2)/ ln(n/ε1). Then, with probability at least 1 − ε1
no innocent users are accused, and with probability at
least 1 − ε2, all colluders are caught when the (colluder-
symmetric) pirate strategymatches the one predicted by the
decoder.

The problem with this claim is that the pirate scores
are related through �Y , so they are not independent. As a
result, we cannot simply take the product of the individual
probabilities

(
1 − ε2

c
)
to get a lower bound on the success

probability of 1 − ε2. On the other hand, especially when
the code length � is large and ε2 is small, we do not expect
the event {S1 > T} to tell us much about the probability
of, e.g., {S2 > T} occurring. One might thus expect that
{S2 > T} does not becomemuch less likely when {S1 > T}
occurs. But since it is not so simple to prove a rigorous
upper bound on the catch-all error probability without
assuming independence, we leave this problem for future
work.

2.4 Asymptotic code lengths
Let us now see how the code lengths � from (3) scale in
terms of c and n. In general, this expression is not so pretty,
but if we focus on the regime of large n (and fixed ε1 and
ε2), it turns out that the code length always has the optimal
asymptotic scaling, regardless of p and �θ .

Theorem 2. For large n and fixed ε1 and ε2, the code
length � of Theorem 1 scales as

� = log2 n
I(X1;Y |P = p)

[ 1 + O(
√

γ )] , (5)

where I(X1;Y |P = p) is the mutual information between a
pirate symbol X1 and the pirate output Y. As a result, � has
the optimal asymptotic scaling.

Proof. First, note that if n → ∞ and ε1, ε2 are fixed, then
γ → 0. Let us first study the behavior of M(1 − √

γ ) for
small γ , by computing the first order Taylor expansion of
M(1 − √

γ ) around γ = 0. For convenience, below we
abbreviate fX,Y |P(x, y|p) by f (x, y|p).

M(1 − √
γ )

=
∑
x,y

f (x, y|p,H0) exp
(

−√
γ ln

f (x, y|p,H0)

f (x, y|p,H1)

)

=
∑
x,y

f (x, y|p,H0)
(
1 − √

γ ln f (x,y|p,H0)
f (x,y|p,H1)

+ O(γ )
)

= 1 − √
γ

∑
x,y

f (x, y|p,H0) ln
f (x, y|p,H0)

f (x, y|p,H1)
+ O(γ ).

Here, the second equality follows from the fact that if
f (x, y|p,H0) = 0, then the factor f (x, y|p,H0) in front of
the exponentiation would already cause this term to be 0,
while if f (x, y|p,H0) > 0, then also f (x, y|p,H1) > 0 and
thus their ratio is bounded and does not depend on γ .
Now, recognizing the remaining summation as the mutual
information (in natural units) between a colluder symbol
X1 and the pirate output Y, we finally obtain:

M(1 − √
γ ) = 1 − I(X1;Y |P = p)√γ ln 2 + O(γ ).

Substituting this result in the original equation for �, and
noting that the factor ε1 inside the logarithm is negligible
for large n, we finally obtain the result of (5).

Note that in the discussion above, we did not make
any assumptions on p. In fact, both Theorems 1 and 2
hold for arbitrary values of p; the decoder always achieves
the capacity associated to that value of p. As a result,
if we optimize and fix p based on �θ (using results from
[26, Section II]), we automatically end up with a decoder
that provably achieves capacity for this attack.

2.5 Fingerprinting attacks
Let us now consider specific pirate attacks which are often
considered in the fingerprinting literature and investigate
the resulting code lengths. We will again consider the fol-
lowing five attacks of [26], which were also considered
in, e.g., [5, 12–17, 30–33]. Recall that θz = fY |Z(1|z) is
the probability of the pirates outputting a 1 when they
received z ones.

• Interleaving attack: The coalition randomly selects a
pirate and outputs his symbol. This corresponds to

(�θint)z = z
c
. (0 ≤ z ≤ c)

• All-1 attack: The pirates output a 1 whenever they
can, i.e., whenever they have at least one 1. This
translates to

(�θall1)z =
{
0 if z = 0;
1 if z > 0.
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• Majority voting: The colluders output the most
common received symbol. This corresponds to

(�θmaj)z =
{
0 if z < c

2 ;
1 if z > c

2 .
• Minority voting: The colluders output the least

common received symbol. This corresponds to

(�θmin)z =
{
0 if z = 0 or c

2 < z < c;
1 if z = c or 0 < z < c

2 .
• Coin-flip attack: If the pirates receive both symbols,

they flip a fair coin to decide which symbol to output:

(�θcoin)z =
⎧⎨
⎩

0 if z = 0;
1
2 if 0 < z < c;
1 if z = c.

Using Theorem 1, we can now obtain exact, prov-
able expressions for the code length � in terms of
�θ , p, c, n, ε1, ε2. In general, these expressions are quite
ugly, but performing a Taylor series expansion around
c = ∞ for the optimal values of p from [26, Section
II.A], we obtain the following expressions for �. Note that
�
(�θmin

)
∼ �

(�θall1
)
.

�
(�θint

)
= 2c2 ln

(
n
ε1

) [1 + √
γ − γ

1 − √
γ

+ O
(
1
c2

)]
,

(6)

�
(�θall1

)
= c ln (n/ε1)

ln(2)2
[√

γ (1+√
γ−γ ) ln 2

1−2−√
γ + O

( 1
c
)]

,

�
(�θmaj

)
= πc ln

(
n
ε1

) [1 + √
γ − γ

1 − √
γ

+ O
(
1
c

)]
,

�
(�θcoin

)
= 4c

ln(2)2
ln

(
n
ε1

)

×
[ √

γ (1+√
γ−γ ) ln 2

2−
(
1+ 1√

2

)√
γ −

(
1− 1√

2

)√
γ + O

(
1
c

)]
.

If we assume that both c → ∞ and γ → 0, then we
can further simplify the above expressions for the code
lengths. The first terms between brackets all scale as 1 +
O(

√
γ ), so the code lengths scale as the terms before the

square brackets. These code lengths match the capacities
of [26].
As for the score functions g, let us highlight one attack in

particular, the interleaving attack. The all-1 decoder will
be discussed in Section 2.6, while the score functions for
other attacks can be computed in a similar fashion. For the
interleaving attack, working out the probabilities in (1), we
obtain the following score function:

g(x, y, p) =

⎧⎪⎪⎨
⎪⎪⎩
ln

(
1 + p

c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c
)

if x �= y;
ln

(
1 + 1−p

cp

)
if x = y = 1.

2.6 Group testing models
For group testing, we will consider three models: the clas-
sical (noiseless) model and the models with additive noise
and dilution noise. Other models where the probability
of a positive test result only depends on the tally Z (such
as the threshold group testing models considered in [26])
may be analyzed in a similar fashion. Note that the classi-
cal model is equivalent to the all-1 attack in fingerprinting,
as was previously noted in, e.g., [17, 23, 34].

• Classical model: The test output is positive iff the
tested pool contains at least one defective:

(�θall1)z =
{
0 if z = 0;
1 if z > 0.

• Additive noise model: Just like the classical model,
but if no defectives are tested, the result may still be
positive:

(�θadd)z =
{
r if z = 0;
1 if z > 0. (r ∈ (0, 1))

• Dilution noise model: Similar to the classical model,
but the probability of a positive result increases with z:

(�θdil)z =
{
0 if z = 0;
1 − rz if z > 0. (r ∈ (0, 1))

We can again expand the expressions of Theorem 1
around c = ∞ for the optimal values of p from
[26, Section II.B] but with the added parameter r, the
resulting formulas are quite a mess. If we also let γ → 0,
thenwe can use Theorem 2 to obtain the following simpler
expressions:

�
(�θall1

)
= c ln n

ln(2)2

[
1 + O

(√
γ + 1

c

)]
,

�
(�θadd

)
= c ln n

ln(2)2 − r ln 2 + O(r2)

[
1 + O

(√
γ + 1

c

)]
,

�
(�θdil

)
= c ln n

ln(2)2 − O(r ln r)

[
1 + O

(√
γ + 1

c

)]
.

For more detailed expressions for �, one may combine
Theorems 1 and 2 with [26, Section II.B]. For the classical
model, working out the details, we obtain the following
result.

Corollary 1. For the classical group testing model, the
simple decoder for the optimal value p = psall1 ≈ ln 2

c is
given by3

g
(
x, y, psall1

) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if (x, y) = (0, 0);
−1 + O

( 1
c
)
if (x, y) = (0, 1);

−∞ if (x, y) = (1, 0);
+c if (x, y) = (1, 1).
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Using this decoder in combination with the parameters η

and � of Theorem 1, we obtain a simple group testing algo-
rithm with an optimal asymptotic number of group tests
of

� ∼ c ln n
ln(2)2

≈ 2.08c ln n ≈ 1.44c log2 n.

This asymptotically improves upon results of, e.g., Chan
et al. [35, 36] who proposed an algorithm with an asymp-
totic code length of � ∼ ec ln n ≈ 2.72c ln n. Their
algorithm does have a guarantee of never falsely iden-
tifying a non-defective item as defective (whereas our
proposed decoder does not have this guarantee), but the
price they pay is a higher asymptotic number of tests to
find the defectives.

3 Simple universal decoding
While in the previous section we discussed simple
decoders for the setting where �θ is completely known to
the decoder, let us now consider the setting which is more
common in fingerprinting, where the attack strategy is not
assumed known to the decoder. This setting may partially
apply to group testing as well (where there may be some
unpredictable noise on the test outputs), but the main
focus of this section is the uninformed fingerprinting
game.

3.1 The simple interleaving decoder, revisited
Let us now try to investigate how to build a decoder
that works against arbitrary attacks in fingerprinting. To
build such a decoder, Meerwald and Furon [12] previously
noted that Abbe and Zheng [11] proved in a more gen-
eral context that under certain conditions on the set of
allowed pirate strategies ��, a decoder that works against
the worst-case attack �θ∗ ∈ �� also works against arbitrary
other attacks �θ ∈ ��. In this case, the set of allowed pirate
strategies we consider is the set of all attacks satisfying the
marking assumption Pmark:

Pmark =
{�θ ∈[ 0, 1]c+1 | θ0 = 0, θc = 1

}
.

For finite c, the worst-case attack in fingerprinting (from
an information-theoretic perspective) has been studied
in, e.g., [5, 12], but in general, this attack is quite messy
and unstructured. Since this attack is not so easy to ana-
lyze, let us therefore focus on the asymptotics of large c
and n. Huang and Moulin [5] previously proved that for
large coalitions, the optimal pirate attack is the interleav-
ing attack. So combining this knowledge with the result
of Abbe and Zheng, perhaps a good choice for a univer-
sal decoder is the interleaving decoder, which we recall is
given by:

g(x, y, p) =

⎧⎪⎪⎨
⎪⎪⎩
ln

(
1 + p

c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c
)

if x �= y;
ln

(
1 + 1−p

cp

)
if x = y = 1.

(7)

Let us take a closer look at this decoder. For fixed δ > 0,
if we look at values p ∈[ δ, 1−δ] and focus on the regime of
large c, we can perform a Taylor series expansion around
c = ∞ to get ln(1 + x) ∼ x. The resulting expressions
then turn out to be closely related to Oosterwijk et al.’s [13]
decoder h:

g(x, y, p) ∼ h(x, y, p)
c

=

⎧⎪⎨
⎪⎩

+ p
c(1−p) if x = y = 0;

− 1
c if x �= y;

+ 1−p
cp if x = y = 1.

This implies that g and h are asymptotically equivalent
for p sufficiently far away from 0 and 1. Since for Oost-
erwijk et al.’s score function one generally uses cut-offs on
fP (i.e., only using values p ∈[ δ, 1 − δ] for fixed δ > 0)
to guarantee that h(x, y, p) = o(c) (cf. [29]), and since the
decoder of Oosterwijk et al. is known to achieve capac-
ity using these cut-offs, we immediately get the following
result.

Proposition 1. The score function g of (7) together with
the bias density function (encoder) f (δ)

P on [ δ, 1 − δ] of the
form

f (δ)
P (p) = 1

(π − 4 arcsin
√

δ)
√
p(1 − p)

(8)

asymptotically achieve the simple capacity for the unin-
formed fingerprinting game when the same cut-offs δ as
those of [29] are used.

So combining the log-likelihood decoder designed
against the asymptotic worst-case attack (the interleav-
ing attack) with the arcsine distribution with cut-offs, we
obtain a universal decoder that works against arbitrary
attacks.

3.2 Cutting off the cut-offs
Although Proposition 1 is already a nice result, the cut-offs
δ have been a nagging inconvenience ever since Tardos
introduced them in 2003 [3]. In previous settings, it was
well known that this cut-off δ had to be large enough to
guarantee that innocent users are not falsely accused and
small enough to guarantee that large coalitions can still
be caught. For instance, when using Tardos’ original score
function, it was impossible to do without cut-offs, and the
same seems to hold for Oosterwijk et al.’s decoder h, since
the scores blow up for p ≈ 0, 1.
Looking at the universal log-likelihood decoder, one

thing to notice is that the logarithm has a kind of mit-
igating effect on the tails of the score distributions. For
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0 � p � 1, the resulting scores are roughly a factor c
smaller than those obtained with h, but where the blow-
up effect of h for small p is proportional to 1

p , the function

g only scales as ln
(
1
p

)
in the region of small p. This moti-

vates the following claim, showing that with this decoder
g, we finally do not need any cut-offs anymore!

Theorem 3. The decoder g of (7) and the encoder f ∗
P (p),

defined on [ 0, 1] by

f ∗
P (p) = 1

π
√
p(1 − p)

, (9)

together asymptotically achieve the simple capacity for the
uninformed fingerprinting game.

Proof. We will argue that using this new universal
decoder g, the difference in performance between using
and not using cut-offs on fP is negligible for large c. Since
the encoder with cut-offs asymptotically achieves capac-
ity, it then follows that without cut-offs, this scheme also
achieves capacity.
Let us first prove that all moments of user scores are

finite, even if no cut-offs are used. We will show that
E[ g(x, y, p)]< ∞ for any x and y, so that after taking
weighted combinations, we also get E(Sj,i|H0/1) < ∞. Let
us consider the case where x = y = 1; other cases can be
analyzed in the same way. Using the density function f ∗

P
of (9), we have

E = E[ g(1, 1, p)k]

=
∫ 1

0

dp
π

√
p(1 − p)

logk
(
1 + 1 − p

cp

)
.

Splitting the interval [ 0, 1] into two parts [ δ, 1] and
[ 0, δ] (where δ depends on k but not on c), we obtain

E =
∫ 1

δ

dp
π

√
p(1 − p)

logk
(
1 + 1 − p

cp

)

+
∫ δ

0

dp
π

√
p(1 − p)

logk
(
1 + 1 − p

cp

)
.

Let us denote the two terms by E1 and E2. For the first
term, we can perform a Taylor series expansion to obtain:

E1 =
∫ 1

δ

dp
π

√
p(1 − p)

logk
(
1 + 1 − p

cp

)

=
∫ 1

δ

dp
π

√
p(1 − p)

(
1 − p
cp

+ O
(

(1 − p)2

c2p2

))k

≤
∫ 1

δ

dp
π

√
p(1 − p)

(
1
cδ

+ O
(

1
c2δ2

))k

(a)≤
∫ 1

δ

dp
π

√
p(1 − p)

= 1 < ∞.

Here, (a) follows from considering sufficiently large c
while δ remains fixed. (Note that for large c, we even

have E1 → 0.) For the other term, we do not expand the
logarithm:

E2 =
∫ δ

0

dp
π

√
p(1 − p)

logk
(
1 + 1 − p

cp

)

∝
∫ δ

0

dp√p
logk

(
1
p

)
(b)−→ 0. (10)

The last step (b) follows from the fact that the inte-
gration is done over an interval of width δ, while the
integrand scales as 1√p times some less important logarith-
mic terms. For arbitrary k, we can thus let δ = δ(k) → 0
as a function of k to see that this is always bounded. Simi-
lar arguments can be used to show that for other values of
x, y we also have E[ g(x, y, p)k]< 0.
As a result, all innocent and guilty user score moments

are finite, and so for large c from the Central Limit
Theorem, it follows that the distributions of user scores
will converge to Gaussians. If the scores of innocent and
guilty users are indeed Gaussian for large c, then as dis-
cussed in, e.g., [9, 13], all that matters for assessing the
performance of the scheme are the mean and variance of
both curves. Similar to (10), the effects of small cut-offs on
the distribution function fP are negligible as both means
and variances stay the same up to small order terms. So
indeed, in both cases, the “performance indicator” [13]
asymptotically stays the same, leading to equivalent code
lengths.

Note that the same result does not apply to the score
function h of Oosterwijk et al. [13], for which the effects
of values p ≈ 0, 1 are not negligible. The main difference
is that for small p, the score function h scales as 1

p (which
explodes when p is really small), while the log-likelihood
decoder g only scales as ln

(
1
p

)
. Figure 1 illustrates the dif-

ference in the convergence of normalized innocent user
scores to the standard normal distribution, when using the
score functions g and h. These are experimental results for
c = 10 and � = 10, 000 based on 10,000 simulated scores
for each curve, and for both score functions, we did not
use any cut-offs. As we can see, using g the normalized
scores S̃j = (Sj−ESj)/

√
Var Sj are close to Gaussian, while

using h the curves especially do not look very Gaussian for
S̃j � 0; in most cases, the distribution tails are much too
large. For the minority voting attack, the resulting curve
does not even seem close to a standard normal Gaussian
distribution.

3.3 Designing the scheme
With the above result in mind, let us now briefly discuss
how to actually build a universal scheme with the inter-
leaving decoder g. From Theorem 3, it is clear that for
generating biases, we should use the arcsine distribution
f ∗
P , and our decoder will be the interleaving decoder g
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ba

Fig. 1 Estimates of the probability density functions of normalized innocent user scores for c = 10 and � = 10, 000 based on 10,000 simulations of
innocent user scores for each attack. The different lines correspond to the interleaving attack (black), all-1 attack (red), majority voting (green),
minority voting (blue), and the coin-flip attack (yellow), while the gray dashed line corresponds to the standard normal distribution with
fZ(z) ∝ exp

(− 1
2 z

2
)
. Note that the drops near densities of 10−4 (the far ends of the curves) occur due to smoothening the curve with only 104

samples and do not reflect the real distribution tails

of (7). What remains is figuring out how to choose � and
η for arbitrary attacks.
First, it is important to note that the expected innocent

and guilty scores per segment (μ1 = E(Sj,i|H1) and μ0 =
E(Sj,i|H0)), and the variance of the innocent and guilty
scores (σ 2

1 = Var(Sj,i|H1) and σ 2
0 = Var(Sj,i|H0)) heav-

ily depend on the collusion channel �θ . This was not the
case for Tardos’ original decoder [3] and the symmetrized
decoder [9], for which η could be fixed in advance regard-
less of the collusion strategy. This means that we will
either have to delay fixing η until the decoding stage,
or scale/translate scores per segment accordingly at each
position i.
For choosing the code length � and threshold η, let

us focus on the regime of reasonably large c. In that
case, as argued above, the total innocent and guilty
scores will behave like Gaussians, with parameters S1 ∼
N

(
�μ1, �σ 2

1
)
and S0 ∼ N

(
�μ0, �σ 2

0
)
. To distinguish

between these two distributions, using, e.g., Sanov’s
theorem the code rate, �/ ln n should be proportional to
the Kullbeck-Leibler divergence between the two distribu-
tions:

d(S0‖S1) = (μ0 − μ1)2

σ 2
1

+ 1
2

(
σ 2
0

σ 2
1

− 1 − ln
σ 2
0

σ 2
1

)
.

A similar expression appears in [9, 13], where it was
noted that σ0 � σ1, so that the first term is the most
important term. In [13, 29], the ratio (μ0−μ1)2

σ 2
1

was coined
the “performance indicator,” and it was argued that this
ratio should be maximized. In [13], it was further shown
that when using their decoder h, this ratio is minimized by
the pirates when they choose the interleaving attack �θint.
In other words, assuming scores are Gaussian for large c,
the best attack the pirates can use is the interleaving attack
when using h as the decoder.
Since our new decoder g is very similar to Oosterwijk

et al.’s decoder h (by c · g ≈ h), a natural conjecture

would be that also for this new score function, asymp-
totically the best pirate attack maximizing the decoder’s
error probabilities is the interleaving attack. Experiments
with g and previous experiments of [13] with h indeed
show that other pirate attacks (such as those considered in
Section 2.5) generally perform worse than the interleaving
attack. As a result, a natural choice for selecting � would
be to base � on the code length needed to deal with the
(asymptotic) worst-case attack for this decoder, which we
conjecture is the interleaving attack. And for the interleav-
ing attack, we know how to choose � by Theorem 1, Eq. 6,
and Theorem 2:

� =
√

γ (1 + √
γ − γ )

− lnM(1 − √
γ )

ln
(
n
ε1

)

= 2c2 ln
(
n
ε1

) [1 + √
γ − γ

1 − √
γ

+ O
(
1
c2

)]

= 2c2 ln n
[
1 + O

(√
γ + 1

c2

)]
.

These choices for � thus seem reasonable estimates for
the code lengths required to deal with arbitrary attacks.
Finally, for choosing η, as argued before, this parame-

ter depends on the pirate strategy �θ , which may lead to
different scalings and translations of the curves of inno-
cent and guilty user scores. What we could do is compute
the parameters μ0/1, σ 2

0/1 after obtaining the pirate out-
put �y and normalize the scores accordingly. This means
that after computing user scores Sj, we apply the following
transformation:

S̃j = Sj − �μ1√
�σ1

.

This guarantees that the scores of innocent users will
roughly be distributed as a standard normal distribution,
and for guilty users, this results in a normal distribution
with mean

√
�
(

μ0−μ1
σ1

)
and variance σ 2

0
σ 2
1
. To guarantee
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that the probability that an innocent user has a score
below η is at least 1 − ε1

n , it suffices to let

η̃ = η − �μ1√
�σ1

≈ �−1
(
1 − ε1

n

)
∼

√
ln

(
n
ε1

)
,

where � denotes the distribution function of the stan-
dard normal distribution N (0, 1). This means that after
transforming the scores, the threshold can be fixed inde-
pendent of the pirate strategy.

3.4 Another simple universal decoder
Besides Oosterwijk et al.’s Lagrangian approach and our
Neyman-Pearson-based approach to obtaining efficient
decoders, let us now mention a third way to obtain a
similar capacity-achieving universal decoder.
To construct this decoder, we start with the empiri-

cal mutual information decoder previously proposed by
Moulin [25], and for now, let us assume pi ≡ p is fixed.4
With this decoder, a user is assigned a score of the form

Sj =
∑
x,y

f̂X,Y |P(x, y|p) ln
(

f̂X,Y |P(x, y|p)
f̂X|P(x|p)f̂Y |P(y|p)

)

and again the decision to accuse depends on whether this
score exceeds some fixed threshold η. Here, f̂ is the empir-
ical estimate of the actual probability f, i.e., f̂X,Y |P(x, y|p) =
|{i : (xj,i, yi) = (x, y)}|/�. Writing out the empirical proba-
bility outside the logarithm, and replacing the summation
over x, y by a summation over the positions i, this is
equivalent to

Sj = 1
�

�∑
i=1

ln
(

f̂X,Y |P(xj,i, yi|p)
f̂X,Y |P(xj,i, yi|p,H1)

)
.

Now, this almost fits the score-based simple decoder
framework, except for that the terms inside the log-
arithm are not independent for different positions i.
To overcome this problem, we could try to replace
the empirical probabilities f̂ by the actual probabili-
ties f, but to compute fX,Y |P(xj,i, yi|p), we need to know
whether user j is guilty or not. Solving this final prob-
lem using Bayesian inference, we get the following
result.

Lemma 1. Approximating the empirical probabilities in
the empirical mutual information decoder with actual
probabilities using Bayesian inference (with an a priori
probability of guilt P(j ∈ C) = c

n ), this decoder corresponds
to using the following score function m:

m(x, y, p) = ln
(
1 + c

n

[
fX,Y |P(x, y|p,H0)

fX,Y |P(x, y|p,H1)
− 1

])
.

(11)

Proof. The value of fX,Y |P(xj,i, yi|p,H1) can be computed
without any problems, so let us focus on the term
fX,Y |P(xj,i, yi|p). Using Bayesian inference, we have

fX,Y |P(x, y|p) = P(j ∈ C)fX,Y |P(x, y|p,H0)

+ P(j /∈ C)fX,Y |P(x, y|p,H1).

Assuming an a priori probability of guilt of P(j ∈ C) = c
n

and dividing by fX,Y |P(x, y|p,H1), we get

fX,Y |P(x, y|p)
fX,Y |P(x, y|p,H1)

= c
n
fX,Y |P(x, y|p,H0)

fX,Y |P(x, y|p,H1)
+ 1 − c

n
.

Taking logarithms, this leads to (11).

Although this score function looks very similar to
the log-likelihood decoder, there are some essential dif-
ferences. For instance, for the all-1 attack, we have
g(1, 0, p) = −∞ whilem(1, 0, p) = ln

(
1 − c

n
)

> −∞. For
the interleaving attack, for which we may again hope to
obtain a universal decoder using this approach, we do get
a familiar result.

Corollary 2. For the interleaving attack strategy, the
Bayesian approximation of the empirical mutual informa-
tion decoder of (11) satisfies

m(x, y, p) =

⎧⎪⎪⎨
⎪⎪⎩
ln

(
1 + p

n(1−p)

)
if x = y = 0;

ln
(
1 − 1

n
)

if x �= y;
ln

(
1 + 1−p

np

)
if x = y = 1.

(12)

For values of p ∈[ δ, 1 − δ] with δ > 0 and large c,
this decoder is again equivalent to both the log-likelihood
score function g and Oosterwijk et al.’s function h:

c · g(x, y, p) ∼ n · m(x, y, p) ∼ h(x, y, p).

For p ≈ 0, 1, the logarithm again guarantees that scores
do not blow up so much, but due to the factor n in the
denominator (rather than a factor c, as in g), the scores
relatively increase more when p approaches 0 than for the
score function g.

4 Joint informed decoding
In this section, we will discuss informed joint decoders
which we conjecture are able to find pirates with shorter
code lengths than simple decoders. The asymptotics of the
resulting code lengths furthermotivate that these schemes
may be optimal but proving that they are indeed optimal
remains an open problem.
Following the score-based framework for joint decoders

of Moulin [25], we assign tuples T of size c a score of the
form

ST =
�∑

i=1
ST ,i =

�∑
i=1

g({xj,i : j ∈ T}, yi, pi).
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Note that if �θ is colluder-symmetric, then this is equiva-
lent to

ST =
�∑

i=1
g(zT ,i, yi, pi),

where zT ,i = ∑
j∈T xj,i is the tally of the number of ones

received by the tuple T in position i. For the accusation
phase, we now accuse all users in T iff ST ≥ η for some
fixed threshold η. Note that this accusation algorithm is
not exactly well-defined, since it is possible that a user
appears both in a tuple that is accused and in a tuple that
is not accused. For the analysis, we will assume that the
scheme is only successful if the single tuple consisting of
all colluders has a score exceeding η and no other tuples
have a score exceeding η, in which case all users in that
guilty tuple are accused. This may be too pessimistic for
evaluating the performance of the scheme.

4.1 Joint log-likelihood decoders
For building a joint decoder, we would like to be able to
distinguish between the all-guilty tuple and other tuples,
when focusing on the catch-all scenario, so a natural
generalization of the hypotheses H0 and H1 for simple
decoding would be to let H0 : T = C and H1 : T �= C.
However, with this choice of H1, computing probabili-
ties fZ,Y |P(z, y|p,H1) is complicated: the event H1 does
not completely determine fY |Z(y|z), since that depends
on exactly how many colluders are present in T. To be
able to compute the likelihood ratios, we therefore use
the following two hypotheses, which were also used in,
e.g., [12]:

H0 : all users j ∈ T are guilty (T = C),
H1 : all users j ∈ T are innocent (T ∩ C = ∅).

We again use the corresponding log-likelihood ratio
per position as our score function g, which is again the
logarithm of the likelihood ratio over all positions i:

g(z, y, p) = ln
(
fZ,Y |P(z, y|p,H0)

fZ,Y |P(z, y|p,H1)

)
. (13)

Using this joint score function, g corresponds to a most
powerful test according to the Neyman-Pearson lemma
[27], so g is in a sense optimal for distinguishing between
H0 and H1. Joint decoders of this form were previously
considered in, e.g., [12].

4.2 Theoretical evaluation
Let us again study how to choose � and η such that we
can prove that the false positive and false negative error
probabilities are bounded from above by certain values ε1
and ε2. Below we will again make use of the function M
of (2) where the simple hypotheses have been replaced by
our new joint hypotheses H0 and H1.

Theorem 4. Let p and �θ be fixed and known to the
decoder. Let γ = ln(1/ε2)/ ln(nc/ε1), and let the code
length � and the threshold η be defined as

� =
√

γ (1 + √
γ − γ )

− lnM(1 − √
γ )

ln
(
nc

ε1

)
.

η = (1 − γ ) ln
(
nc

ε1

)
,

Then, with probability at least 1−ε1 all all-innocent tuples
are not accused, and with probability at least 1 − ε2, the
single all-guilty tuple is accused.

Proof. The proof is very similar to the proof of
Theorem 1. Instead of n innocent and c guilty users, we
now have

(n
c
)

< nc all-innocent tuples and just one all-
guilty tuple, which changes some of the numbers in γ , η,
and � above. We then again apply the Markov inequal-
ity with α = 1 − √

γ and β = √
γ to obtain the given

expressions for η and �.

For deterministic strategies �θ ∈ {0, 1}c+1, choos-
ing the scheme parameters is much simpler. Similar to
[26, Lemma 1], where it was shown that for deterministic
attacks the capacity is exactly 1

c , in this case, we get a code
length of roughly c log2 n.

Theorem 5. Let �θ be a deterministic attack, and let p be
chosen such that fY |P(1|p) = 1

2 . Let � and η be chosen as:

� = log2
(
nc

ε1

)
, η = ln

(
nc

ε1

)
,

Then, with probability 1− ε1, all all-innocent tuples will
not be accused, and the single all-guilty tuple will always
be accused.

Proof. For deterministic attacks, we have

fZ,Y |P(z, y|p,H0) = fZ|P(z|p)fY |Z(y|z),
fZ,Y |P(z, y|p,H1) = fZ|P(z|p)fY |P(y|p).

As a result, the score function g satisfies

g(z, y, p) =
{ − ln fY |P(y|p) if θz = y;

−∞ if θz �= y.
With the capacity-achieving choice of p of [26, Lemma 1],

we have fY |P(y|p) = 1
2 for y = 0, 1 leading to a score of

+ ln 2 for a match and −∞ for cases where yi does not
match the output that follows from �θ and the assumption
that T is the all-guilty tuple. For T = C, clearly, we will
always have a match, so this tuple’s score will always be
� ln 2, showing that this tuple is always accused.
For innocent users, f (z, y|p,H1) = 1

2 f (z, y|p,H0) implies
that in each position i, with probability 1

2 this tuple’s score
will not be −∞. So with probability 2−�, the tuple’s score
after � segments will not be −∞, in which case it equals
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� ln 2. Tomake sure that this probability is at most ε1/nc so
that the total error probability is at most ε1, we set 2−� =
ε1/nc, leading to the result.

Note that for deterministic attacks, any choice of η0 ≤ η

works just as well as choosing η; after � segments all tuples
will either have a score of −∞ or η.

4.3 Practical evaluation
Theorem 4 does not prove that we can actually find the
set of colluders with high probability, since mixed tuples
(consisting of some innocent and some guilty users) also
exist and these may or may not have a score exceeding η.
Theorem 4 only proves that with high probability, we can
find a set C′ of c users which contains at least one colluder.
Basic experiments show that in many cases, the only tuple
with a score exceeding η (and thus the tuple with the high-
est score) is the all-guilty tuple, and so all mixed tuples
have a score below η. Proving that mixed tuples indeed get
a score below η is left as an open problem.

4.4 Asymptotic code lengths
To further motivate why using this joint decoder may be
the right choice, the following proposition shows that at
least the resulting code lengths are optimal. The proof is
analogous to the proof of Theorem 2.

Theorem 6. If γ = o(1), then the code length � of
Theorem 4 scales as

� = log2 n
1
c I(Z;Y |P = p)

[
1 + O(

√
γ )

]
,

thus asymptotically achieving an optimal scaling of the
code length for arbitrary values of p.

Since the asymptotic code length is optimal regardless of
p, these asymptotics are also optimal when p is optimized
to maximize the mutual information in the fully informed
setting.
Finally, although it is hard to estimate the scores of

mixed tuples with this decoder, just like in [37], we expect
that the joint decoder score for a tuple is roughly equal
to the sum of the c individual simple decoder scores. So a
tuple of c users consisting of k colluders and c − k inno-
cent users is expected to have a score roughly a factor k/c
smaller than the expected score for the all-guilty tuple.
So after computing the scores for all tuples of size c, we
can get rough estimates of how many guilty users are con-
tained in each tuple, and for instance, try to find the set
C′ of c users that best matches these estimates. There are
several options for post-processing that may improve the
accuracy of using this joint decoder, which are left for
future work.

4.5 Fingerprinting attacks
Using Theorem 4, we can obtain exact expressions for �

in terms of �θ , p, c, n, ε1, ε2. For the optimal values of p of
[26, Section III.A], we can use Theorem 6 to obtain the
following expressions. Note again that �

(�θmin
)

∼ �
(�θall1

)
.

�
(�θint

)
= 2c2 ln n

[
1 + O

(√
γ + 1

c2

)]
,

�
(�θall1

)
= c log2 n

[
1 + O

(√
γ + 1

c

)]
,

�
(�θmaj

)
= c log2 n

[
1 + O

(√
γ + 1

c

)]
,

�
(�θcoin

)
= c log5/4 n

[
1 + O

(√
γ + 1

c

)]
.

Let us again highlight one resulting decoder in particu-
lar, the one for the interleaving attack. In general, we can
rewrite the ratio inside the logarithm as follows:

fZ,Y |P(z, y|p,H0)

fZ,Y |P(z, y|p,H1)
= fY |Z(y|z)

fY |P(y|p) .

For the interleaving attack, we further have fY |Z(1|z) =
z
c and fY |P(1|p) = p. This leads to the following joint
decoder g.

g(z, y, p) =
{
ln(1 − z

c ) − ln(1 − p) if y = 0;
ln( zc ) − ln(p) if y = 1.

This means that the joint scores are purely based on
the similarities between the tuple tally z and the expected
tuple tally cp for each position i. If a tuple’s tally z is larger
than the expected tally cp, then the score is positive if
y = 1 and negative otherwise, while if z is smaller than
cp, then the score is positive if y = 0 and negative other-
wise. For innocent tuples, this leads to an expected score
of roughly 0, while for the guilty tuple, this leads to a high
(positive) expected score.

4.6 Group testing models
Similar to the above, for group testing models, we can
also use Theorem 4 to obtain exact expressions for � in
terms of �θ , p, c, n, ε1, ε2 with provable error bounds. For
the optimal values of p of [26, Section III.B], we can use
Theorem 6 to obtain the following refined expressions.

�
(�θall1

)
= c log2 n

[
1 + O

(√
γ + 1

c

)]
,

�
(�θadd

)
= c log2 n

1 − 1
2h(r) + O(r2)

[
1 + O

(√
γ + 1

c

)]
,

�
(�θdil

)
= c log2 n

1 − ln 2
2 h(r) + O(r2)

[
1 + O

(√
γ + 1

c

)]
.

Note that as discussed in Theorem 5, the score function
for the classical model is equivalent to simply checking
whether some subset of c items matches the test results,
i.e., whether these would indeed have been the test results,
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had this subset been the set of defectives. With high
probability, only the correct set of defectives passes this
test.

5 Joint universal decoding
Let us now again consider the more common setting
in fingerprinting where the attack strategy �θ is assumed
unknown to the distributor. With the results for sim-
ple decoding in mind, and knowing that the interleaving
attack is also the asymptotically optimal pirate attack in
the joint fingerprinting game, we again turn our attention
to the decoder designed against the interleaving attack.

5.1 The joint interleaving decoder, revisited
Similar to the setting of simple decoding, explicitly prov-
ing that this decoder achieves the uninformed capacity
is not so easy. However, through a series of reductions,
we can prove that this decoder is asymptotically capacity-
achieving, for certain parameters � and η.

Theorem 7. The joint log-likelihood decoder designed
against the interleaving attack, using the score function g
defined by

g(z, y, p) =
{
ln(1 − z

c ) − ln(1 − p) if y = 0;
ln( zc ) − ln(p) if y = 1. (14)

and the arcsine distribution encoder f ∗
P of (9) together

asymptotically achieve the joint capacity for the unin-
formed fingerprinting game.

Proof. First, the simple uninformed capacity is asymp-
totically equivalent to the joint uninformed capacity,
which follows from results of Huang and Moulin [5] and
Oosterwijk et al. [13] (and Section 2). This means that the
simple universal decoder of Theorem 3 already asymp-
totically achieves the joint capacity. We will prove that
asymptotically, the proposed universal joint decoder is
equivalent to the universal simple decoder of Section 3,
thus also achieving the joint uninformed capacity.
Suppose we have a tuple T of size c and suppose in some

segment i there are z users who received a 1 and c−z users
who received a 0. For now, also assume that p ∈[ δ, 1 − δ]
for some δ > 0 that does not depend on c. In case y = 0,
the combined simple decoder score of this tuple T (using
the simple universal decoder g of Section 3) would be:

∑
j∈T

Sj,i = z · g(1, 0, p) + (c − z)g(0, 0, p)

= z ln
(
1 − 1

c

)
+ (c − z) ln

(
1 + p

c(1 − p)

)

∼ −z
c

+ (c − z)p
c(1 − p)

= p − z/c
1 − p

.

On the other hand, if we look at this tuple’s joint score
with the joint universal decoder g of (14), we have

ST ,i = g(z, 0, p) = ln
(
1 + p − z/c

1 − p

)
∼ p − z/c

1 − p
.

Note that the last step follows from the fact that for large
c, with overwhelming probability we have z = cp+O(

√cp)
(since Z is binomially distributed with mean cp and vari-
ance cp(1 − p)), in which case (p − z/c)/(1 − p) = o(1).
Combining the above, we have that ST ,i ∼ ∑

j∈T Sj,i. So the
joint universal decoder score for a tuple T is asymptoti-
cally equivalent to the sum of the simple universal decoder
scores for the members in this tuple, if p ∈[ δ, 1 − δ].
Since as argued before the distribution tails [ 0, δ] and

[ 1− δ, 1] are negligible for the performance of the scheme
for sufficiently small δ, and since the same result holds for
y = 1, the simple and joint decoders are asymptotically
equivalent.

Note that for the uninformed setting, the simple
and joint capacities are asymptotically equivalent, which
allowed us to prove the result. For finite c, the joint capac-
ity may be slightly higher than the simple capacity, but the
fact that they are asymptotically the same does show that
there is not as much to gain with joint decoders as there
is with, e.g., joint group testing decoders, where the joint
capacity is asymptotically a factor log2(e) ≈ 1.44 higher
than the simple capacity. And since assigning joint scores
to all tuples of size c for each position i is computation-
ally very involved (and since the resulting joint scores are
very similar to the sum of simple universal scores any-
way), a more practical choice seems to be to use the simple
universal decoder of Section 3 instead.

6 Discussion
Let us now briefly discuss the main results in this paper
and their consequences.

6.1 Simple informed decoding
For the setting of simple decoders with known collusion
channels �θ , we have shown how to choose the score func-
tions g in the score-based framework, as well as how to
choose the threshold η and code length � to guarantee that
certain bounds on the error probabilities are met. With
log-likelihood decoders, we showed that these decoders
achieve capacity regardless of p and regardless of �θ . This
means that no matter which pirate strategy �θ and bias
p you plug in, this construction will always achieve the
capacity corresponding to those choices for �θ and p. A
trivial consequence is that for the optimal values of p
derived in [26], one also achieves the optimal code length
for arbitrary p.
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6.2 Simple universal decoding
Since in fingerprinting it is usually more common to
assume that �θ is unknown, we then turned our attention
to the uninformed setting. We showed that the decoder
designed against the interleaving attack, with the score
function g given by

g(x, y, p) =

⎧⎪⎪⎨
⎪⎪⎩
ln

(
1 + p

c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c
)

if x �= y;
ln

(
1 + 1−p

cp

)
if x = y = 1,

is actually a universal decoder and achieves the unin-
formed fingerprinting capacity. We also showed how
the proposed universal decoder is very similar to both
Oosterwijk et al.’s decoder h and an approximation of
Moulin’s empirical mutual information decoderm for 0 �
p � 1 by

c · g(x, y, p) ∼ h(x, y, p) ∼ n · m(x, y, p),

and we highlighted the differences between these
decoders for p ≈ 0, 1. We argued that the proposed
decoder g is the most natural choice for a universal
decoder (motivated from the Neyman-Pearson lemma)
and that it has some practical advantages compared to
Oosterwijk et al.’s decoder h, such as finally being able to
get rid of the cut-offs δ on the density function fP.

6.3 Joint informed decoding
In Sections 4 and 5, we then turned our attention to
joint decoders, which have the potential to significantly
decrease the required code length � at the cost of a higher
decoding complexity. We considered a natural generaliza-
tion of the simple decoders to joint decoders and argued
that our choice for the joint score functions g seems to
be optimal. There are still some gaps to fill here, since we
were not able to prove how scores of mixed tuples (tuples
containing some innocent and some guilty users) behave
and whether their scores also stay below η with high prob-
ability. On the other hand, for deterministic attacks, it is
quite easy to analyze the behavior of these decoders, and
for arbitrary attacks, we did show that the code lengths
have the optimal asymptotic scaling.

6.4 Joint universal decoding
Finally, for the uninformed setting with joint decoders,
we proved that the joint interleaving decoder achieves
the joint uninformed capacity. Since the joint uninformed
capacity is asymptotically the same as the simple unin-
formed capacity, and since joint decoding generally has
a much higher computational complexity than simple
decoding, this decoder may not be as practical as the
proposed simple universal decoder.

7 Conclusions
Finally, let us finish by mentioning some open problems
which are left for future work.

7.1 Analyzing the simple universal decoder
While in Section 3 we showed that the new simple univer-
sal decoder achieves capacity and how one should roughly
choose the code length � and threshold η, we did not
provide any provable bounds on the error probabilities
for the uninformed setting. For earlier versions of Tardos’
scheme various papers analyzed such provable bounds
[6, 7, 9, 13, 29] and a similar analysis could be done for
the log-likelihood decoder designed against the interleav-
ing attack. Perhaps such an analysis may once and for all
establish the best way to choose the scheme parameters in
universal fingerprinting for large parameters c and n.

7.2 Dynamic fingerprinting and adaptive group testing
Although this paper focused on applications to the “static”
fingerprinting game, in some settings, the feedback Y may
be obtained in real time. For instance, in pay-tv, pirates
may try to duplicate a fingerprinted broadcast in real time,
while in group testing, it may sometimes be possible to
do several rounds of group testing sequentially. The con-
struction of [40] can trivially be applied to the decoders in
this paper as well to build efficient dynamic fingerprinting
schemes with the same asymptotics for the code lengths
but where (i) the order terms in � are significantly smaller;
(ii) one can provably catch all pirates regardless of the
(asymmetric) pirate strategy; and (iii) one does not nec-
essarily need to know (a good estimate of) c in advance
[40, Section V]. An important open problem remains to
determine the dynamic uninformed fingerprinting capac-
ity, which may prove or disprove that the construction of
[40] combined with the universal decoder g of Section 3 is
asymptotically optimal.

7.3 Non-binary codes in fingerprinting
In this work, we focused on the binary case of q = 2
different symbols for generating the code X , but in (uni-
versal) fingerprinting, it may be advantageous to work
with larger alphabet sizes q > 2, since the code length
decreases linearly with q [38, 39]. This generalization to
q-ary alphabets was considered in, e.g., [9, 13, 37–39].
For the results in this paper, we did not really use that
we were working with a binary alphabet, so it seems a
straightforward exercise to prove that the q-ary versions of
the log-likelihood decoders also achieve the q-ary capac-
ities. A harder problem seems to be to actually compute
these capacities in the various informed settings, since
the maximization problem involved in computing these
capacities then transforms from a one-dimensional opti-
mization problem to a (q − 1)-dimensional optimization
problem.
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Endnotes
1In fingerprinting, a common generalization is to

assume that the entries of the code words come from an
alphabet of size q ≥ 2, but in this paper, we restrict our
attention to the binary case q = 2.

2In those cases, attacks exist guaranteeing you will not
catch more than one colluder, such as the “scapegoat”
strategy [40].

3To be precise, for convenience, we have scaled g by a
factor (c ln 2), and so also η should be scaled by a factor
(c ln 2).

4When pi is not fixed and is drawn from a continuous
distribution function fP, the empirical probabilities
considered below do not make much sense, as each value
of pi only occurs once. In that case, one could, e.g., build
a histogram for the values of p and compute empirical
probabilities for each bin or discretize the distribution
function for p [8, 10].
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Oosterwijk, Boris Škorić, and Benne de Weger for the valuable discussions and
comments regarding earlier versions of this manuscript.

Received: 21 July 2015 Accepted: 16 December 2015

References
1. R Dorfman, The detection of defective members of large populations.

Ann. Math. Stat. 14(4), 436–440 (1943)
2. D Boneh, J Shaw, Collusion-secure fingerprinting for digital data. IEEE

Trans. Inf. Theory. 44(5), 1897–1905 (1998). doi:10.1109/18.705568
3. G Tardos, in STOC. Optimal probabilistic fingerprint codes, (2003),

pp. 116–125. doi:10.1145/780542.780561
4. E Amiri, G Tardos, in SODA. High rate fingerprinting codes and the

fingerprinting capacity (SIAM, Philadelphia, PA, USA, 2009), pp. 336–345
5. Y-W Huang, P Moulin, On the saddle-point solution and the

large-coalition asymptotics of fingerprinting games. IEEE Trans. Inf.
Forensics Secur. 7(1), 160–175 (2012). doi:10.1109/TIFS.2011.2168212

6. O Blayer, T Tassa, Improved versions of Tardos’ fingerprinting scheme.
Designs Codes Crypt. 48(1), 79–103 (2008). doi:10.1007/
s10623-008-9200-z

7. T Laarhoven, B de Weger, Optimal symmetric Tardos traitor tracing
schemes. Designs Codes Crypt. 71(1), 83–103 (2014). doi:10.1007/
s10623-012-9718-y

8. K Nuida, S Fujitsu, M Hagiwara, T Kitagawa, H Watanabe, K Ogawa, H Imai,
An improvement of discrete Tardos fingerprinting codes. Designs Codes
Crypt. 52(3), 339–362 (2009). doi:10.1007/s10623-009-9285-z

9. B Skoric, S Katzenbeisser, MU Celik, Symmetric Tardos fingerprinting
codes for arbitrary alphabet sizes. Designs Codes Crypt. 46(2), 137–166
(2008). doi:10.1007/s10623-007-9142-x

10. T Laarhoven, B de Weger, in IH&MMSec. Discrete distributions in the
Tardos scheme, revisited, (2013), pp. 13–18. doi:10.1145/2482513.2482533

11. E Abbe, L Zheng, Linear universal decoding for compound channels. IEEE
Trans. Inf. Theory. 56(12), 5999–6013 (2010). doi:10.1109/TIT.2010.2080910

12. P Meerwald, T Furon, Toward practical joint decoding of binary Tardos
fingerprinting codes. IEEE Trans. Inf. Forensics and Secur. 7(4), 1168–1180
(2012). doi:10.1109/TIFS.2012.2195655

13. B Oosterwijk, J-J Skoric, J Doumen, A capacity-achieving simple decoder
for bias-based traitor tracing schemes. IEEE Trans. Inf. Theory. 61(7),
3882–3900 (2015). doi:10.1109/TIT.2015.2428250

14. A Charpentier, F Xie, C Fontaine, T Furon, in SPIE Media Forensics and
Security. Expectation maximization decoding of Tardos probabilistic
fingerprinting code, (2009), pp. 1–15. doi:10.1117/12.806034

15. T Furon, L Pérez-Freire, inMMSec. EM decoding of Tardos traitor tracing
codes, (2009), pp. 99–106. doi:10.1145/1597817.1597835

16. T Laarhoven, inWIFS. Dynamic traitor tracing schemes, revisited, (2013),
pp. 191–196. doi:10.1109/WIFS.2013.6707817

17. P Meerwald, T Furon, in ICASSP. Group testing meets traitor tracing,
(2011), pp. 4204–4207. doi:10.1109/ICASSP.2011.5947280
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