
Rass et al. EURASIP Journal on Information Security (2015) 2015:7
DOI 10.1186/s13635-015-0025-9

RESEARCH Open Access

Private function evaluation by local
two-party computation
Stefan Rass* , Peter Schartner and Monika Brodbeck

Abstract
Information processing services are becoming increasingly pervasive, such as is demonstrated by the Internet of
Things or smart grids. Given the importance that these services have reached in our daily life, the demand for security
and privacy in the data processing appears equally large. Preserving the privacy of data during its processing is a
challenging issue that has led to ingenious new cryptographic solutions, such as fully homomorphic encryption (to
name only one). An optimal cryptographic support for private data processing must in any case be scalable and
lightweight. To this end, we discuss the application of standard (off-the-shelf) cryptography to enable the computation
of any function under permanent disguise (encryption). Using a local form of multiparty computation (essentially in a
non-distributed fashion), we show how to execute any data processing algorithm in complete privacy. Our solution
can, for example, be used with smart grid equipment, when small hardware security modules are locally available
(such as in smart meters).

Keywords: Private function evaluation, Security, Homomorphic encryption, Multiparty computation, Secure function
evaluation

1 Introduction
Smart metering, Internet of Things, and Internet appli-
cations increasingly require data distribution over a very
large scale—often spanning across nations and in some
cases continents. In many of these applications, the dis-
semination of data could be made more efficient and
effective by ensuring that only relevant data is delivered to
interested consumers by taking into account the informa-
tion content of some of its meta-information, such as the
location. Other applications like smart grids may do data
concentration at several (remote) points in the network
(data concentrators) to compile data in a fully encrypted
form for further processing (and decryption) at the head-
end system. However, for applications that are not willing
to reveal information or meta-information to “un-trusted”
services (clouds, etc.), the infrastructure has no alternative
but to rely on functional (e.g., homomorphic) encryp-
tion for secure data aggregation or dissemination without
disclosure.
In this work, we discuss an application of standard

(homomorphic) encryption to the problem of data pro-
cessing in privacy. Especially, we shall avoid the use of

*Correspondence: stefan.rass@aau.at
Universität Klagenfurt, Universitätsstrasse 65-67, Klagenfurt, AT, Austria

non-standard (and perhaps heavy-weight) primitives such
as fully homomorphic encryption or similar. Instead, we
are after a generic approach to secure function evalua-
tion that works on entirely classical building blocks that
are already widely available and implemented. Before that,
however, let us briefly fit our proposal into the existing
related scientific landscape.

2 Secure function evaluation: the three
cryptographic ways

Encryption is normally designed to prevent any mean-
ingful processing of data. A few systems, like RSA or
ElGamal encryption (that both work on groups), allow
a single operation to be applied to the ciphertext but
propagate through to the plaintext. We call this a group-
homomorphic encryption, and it is the simplest form
of data processing under disguise. Fully homomorphic
encryption (FHE) advances over such group homomor-
phism in allowing ≥ 2 different operations to be applied
to ciphertext so as to effectively modify the hidden plain-
text. Originating from Gentry’s seminal first FHE scheme
[1], most subsequent schemes (e.g., [2–5] to name a few)
allow for an unlimited number of additions and multipli-
cations on the ciphertext. In any case, the goal is to have

© 2015 Rass et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-015-0025-9-x&domain=pdf
http://orcid.org/0000-0003-2821-2489
mailto: stefan.rass@aau.at
http://creativecommons.org/licenses/by/4.0/

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 2 of 11

a (reasonably powerful) set of basic operations that enable
us to construct arbitrarily complex functions that work
on ciphertexts and rely on homomorphy to let the exter-
nally applied action penetrate the encryption to modify
the plaintext accordingly.
The computational model to describe the function-

ality is in most cases a boolean or arithmetic circuit
family (Cn)n∈N, where Cn is a circuit composed from
boolean or arithmetic gates that processes inputs of a
fixed length n (usually n bits). For every such circuit Cn
describing a function f : {0, 1}n → {0, 1}m, a respec-
tive evaluation circuit can be compiled that processes
an encrypted input x of length n into a ciphertext con-
taining f (x) by virtue of FHE. An alternative and older
concept due to A. Yao [6] proposes to represent signals
in the circuit by ciphertexts and to emulate the function-
ality of a (logical or arithmetic) gate by a “lookup table.”
These garbled circuits (GC) require a secure specification
of signal representations and the transformation from the
plain circuit functionality to the garbled circuit that works
on the encrypted signal representations. In any case, and
unlike FHE, GC thus involve at least two parties in every
computation. It has nevertheless been recognized as a
powerful and promising alternative, withmany theoretical
and practical achievements [7], and powerful experimen-
tal implementations [8–11]. The last reference here is
most closely related to our work, since it also presents
a scheme to execute assembly code, based on garbled
circuits.
The idea of involving multiple instances towards secure

computation of functions is itself a third branch of
research related to private function evaluation, known
as multiparty computation (MPC) [12]. We leave this
third alternative aside here for space reasons and for
the sake of describing a fourth and entirely generic
construction, which is based on standard encryption
(unlike FHE) and works without interaction over dis-
tributed entities (as would be the case for GC [13] and
MPC), which imposes overhead by additional network
traffic.

3 A fourth route
Going away from circuits to represent a functionality,
Turing machines offer another very handy model for
an(y) algorithm. Unlike the basic operations in arith-
metic/logical circuits (additions, multiplications, etc. that
call for the respective homomorphy in the encryption),
Turing machines can accomplish their basic operations
much simpler and by exploiting group homomorphy
only. This observation has led to the proposal of run-
ning Turing machines on encrypted data [14, 15]. The
latter reference—theoretically—proves that running Tur-
ing machines on encrypted data does not even call for
enhanced encryption and can be done using a generic

extension to a standard homomorphic encryption func-
tion. Alas, Turing machines are not suitable for practical
purposes, and putting the concept to practice by switch-
ing to a more convenient representation like assembly
code induces severe vulnerabilities in the overall concept.
These will be in the center of interest in the following,
along with respective solutions.
The upcoming description of problems will be based

on the following condensed description of how to exe-
cute encrypted assembly code. For that matter, let E :
(Gm, ∗) → (Gc, ·) be a probabilistic encryption that con-
verts a plaintextm ∈ Gm into a ciphertext c ∈ Gc. Assume
that E is homomorphic in the sense that under a key k, we
have E(m1∗m2, k) = E(m1, k)·E(m2, k), and that E is prob-
abilistic in the sense that E(m1, k) is not distinguishable
from E(m2, k) whenever m1 �= m2 and both plaintexts
have equal length, denoted as |m1| = |m2|.
The main tool to prove the computability of any func-

tion by a Turing machine, whose tape is encrypted,
is a homomorphic public-key encryption with plaintext
equality testing (HPKEET). Ad hoc constructions have
been given in [16], and a generic construction is found
in [15]. In general, a HPKEET scheme adds two algo-
rithms Aut (to authorize comparisons) and Com (to per-
form comparisons) to a conventional encryption scheme
composed from key generation, encryption, and decryp-
tion algorithms. Invoking kcom ← Aut(sk) upon input
of a secret key sk creates a comparison key kcom. This
one can be used to compare two ciphertexts c1, c2 for
equality of the inner plaintexts. That is, letting D(·, sk)
denote the decryption of the input under the secret key
sk, equality is indicated upon Com(c1, c2, kcom) = 1 ⇐⇒
D(c1, sk) = D(c2, sk). The crucial point here is that the
comparison key cannot be used to disclose any plaintext as
such.
Given a HPKEET scheme, it is a simple matter to

define the actions of a Turingmachine on an encrypted
tape. Essentially, its actions are a matter of manipulat-
ing encrypted tape symbols (by exploiting the encryption’s
homomorphy) and looking up the proper state transition
by virtue of the plaintext comparison facility (Aut,Com).
Likewise, it is equally simple to use (Aut,Com) to build
a lookup table in which the result of an arithmetic or
logical operation can be obtained from two encrypted
operands c1 = E(op1, pk), c2 = E(op2, pk). Note that
these operands are both encrypted under the same pub-
lic key pk, as they both originate from the data pro-
vided by Alice. The public key pk can thus be either
Alice’s own key (if she simply outsources a computation
to use the results for her own purposes) or the public
key of another end-user, e.g., this would be the head-
end in a smart metering application, where “Alice” is
the smart meter that sends the measurements. In any
case, the user Alice can authorize an external party, say

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 3 of 11

a distrusted processor, to compute something on Alice’s
behalf, given only encrypted data and the comparison key
kcom ← Aut(sk) that enables manipulations on encrypted
operands E(op1, pk),E(op2, pk). We stress, however, that
the computing entity (as being regarded not trustworthy)
is never the party that generates any keys. Its purpose is
exclusively the processing of data, which—at the bottom
and per instruction—is simply a lookup of (op1, op2) in
some operation’s lookup table by calling the comparison
algorithm Com to locate the row (marked by op1) and col-
umn (marked by op2). Thanks to the HPKEET scheme, we
can avoid decrypting the operands and obtain the result
of the secret operation directly from the table. Indeed, the
HPKEET in that sense re-creates the lookup tables that
are at the core of GC, with the important difference that
HPKEET-based lookup tables are reusable for all opera-
tions of the same type (a property that has only recently
been studied for garbled circuits [17]).
The appeal of this construction lies in the easy pos-

sibility to realize any operation (addition, multiplica-
tion, Boolean operators, etc.) simply by constructing the
proper lookup table. Such flexibility is rarely found in
other schemes. However, on the downside, it also defeats
the security of the underlying encryption, as we discuss
next.

3.1 Encrypt-and-compare attacks: vulnerabilities against
passive adversaries

A careless use of HPKEET is generally insecure in various
ways: first, plaintext comparisons enable the processor to
recognize identical plaintexts that reoccur during a longer
computation. Ultimately, e.g., if the computation is on
single bits (such as is the case for many FHE schemes),
the processor would be left only two possibilities for the
hidden plaintext. This is because all equal bits are recog-
nizable as being identical, and the remaining uncertainty
is only about which is the “zero” and which is the “one” bit.
This problem is not existing in GC, since all gates use dif-
ferent representations.1 For similar reasons, the problem
is also not relevant for FHE, since the evaluation there is
based on circuits and does not require equality checks on
plaintexts.
More generally, if a plaintext is encrypted under a

HPKEET scheme and the plaintext space is feasibly
small, then a brute-force search by trial encryption-and-
comparison is possible: the adversary can simply encrypt
a candidate plaintext under the known public key and
compare it to the unknown plaintext by invoking Com.
Normally, this attack can be thwarted by either imposing
the requirement of high min-entropy of the plaintext [18]
or by prescribing a secret encoding of the (few) plaintexts,
so that the adversary no longer knows which plaintexts to
test [15]. The latter fix basically concerts the public-key
scheme into a symmetric one.

3.2 The chosen instruction attack: vulnerabilities against
active adversaries

Imagine a computing platform that supports a real-life
assembly language interpretation, say MIPS assembly
code [19]. Furthermore, let the assembly interpreter exe-
cute an instruction, say add r1, r2, r3 (with the
semantic that r1 ← r2 + r3) by a lookup table based
on any encryption (e.g., HPKEET) scheme. Finally, assume
that the instruction set contains operations for arithmetic
manipulations, especially including subtractions and
divisions.
Under these hypotheses, the previously described trial

encryption-and-comparison discovery of an unknown
plaintext is again possible, irrespectively of high min-
entropy or any secret encoding of the plaintexts (thus,
any transformation to increase the uncertainty would be
non-effective).
The attack works as follows: let the register r0 contain

an(y) unknown value. The attacker first encryptedly com-
putes the zero value 0 = r0 − r0 by submitting sub
r1, r0, r0. Then, the HPKEET equality testing can be
used to locate any register with a nonzero content, let us
call it r2 (note that this requires the comparison ability,
which the attacker has gained by receiving the authoriza-
tion token kcom, and from the fact that all operands are
encrypted with the same public key (thus, kcom allows to
compare any pair of operands; cf. also Fig. 3). From r2, we
can compute (an encrypted and possibly encoded version
of) the values 1 and 0 by doing a division with remain-
der. InMIPS assembler, the command would be div r2,
r2, which leaves the quotient 1 = r2/r2 and remain-
der 0 = r2 MOD r2 in some special-purpose registers.
Once this is accomplished, it is a simple matter to enu-
merate the values 2, 3, 4, . . . by repeated execution of add-
instructions. The so-constructed dictionary of candidate
plaintexts can then be used with the HPKEET plaintext
comparison facility to disclose all encrypted unknown
plaintexts. The dictionary (i.e., plaintext space) is neces-
sarily very small, since processing �-bit words requires
lookup tables of size O(2�) × O(2�) = O(22�) bits.2 Thus,
to remain feasible, we are bound to processing chunks
of up to 8 bits (and hardly more). While this is a good
advantage over other schemes that work on single bit
level (as do some FHE schemes and garbled circuits), it
nevertheless enables a quick brute-force test for equality
of a given encrypted plaintext against the so-constructed
dictionary.
The crucial point here is all this being doable without

knowledge of any secret key or secret encoding. Thus,
we may intermediately conclude that private function
evaluation using homomorphic encryption with equal-
ity checking (i.e., HPKEET) is inevitably insecure in the
single-party setting. Our next step is fixing these problems
by switching to a local two-party setting.

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 4 of 11

4 Secure function evaluation in a local two-party
setting

Both of the previous attacks make frequent use of the
plaintext comparison facility that the HPKEET scheme
supplies. Since this is equally important to construct the
lookup tables, we must somehow remove the comparison
ability from the attacker, while retaining the ability to do
the lookups. A simple solution is to put the lookup into
a particularly secured hardware environment which then
acts as a local but separated second party in the computa-
tion.3 The concrete implementation of the secured hard-
ware environment depends on two factors: the required
security level (which in turn depends on the security level
of the processed data) and the amount of data (and hence
the number of operations per second) that has to be pro-
cessed. So in some application scenarios, a crypto-smart
card would perfectly fit the requirements and in oth-
ers, a “full” hardware security module (HSM) is needed.
Obviously, this influences the costs for such a device as
well. Throughout this article, we will use the term HSM,
whenever referring to a specifically secured hardware
environment. For security, we assume that secrets being
stored in the HSM are neither physically nor logically
accessible (either directly or indirectly, say through side-
channels). Note that the functionality assumed within the
HSM covers access control (to prevent the HSM from
misuse as a comparison oracle) and doing table lookups
(which amounts to only simple cryptographic operations).
Thus, the HSM itself can be quite lightweight (thus cheap,
e.g., a crypto-smart card).
That is, each instruction of the form opcode r1,

r2, r3 is submitted to the HSM, which performs
the operation using the lookup table addressed by the
opcode. Additionally, if the encryption is probabilistic,
the HSM can easily re-randomize the output to make
identical outputs indistinguishable (a simple technique for
ElGamal encryption is multiplying a ciphertext with an
encryption of the unit element, which changes the ran-
domizer in the ciphertext but leaves the inner plaintext
unchanged). Figure 1 illustrates the process, with par-
ticular indication of points in the flow when the data
becomes distinguishable; these are the times when the
chosen instruction attack could be mounted, so this is
where the HSM’s protection becomes crucial.
The expressive power of the register machine (equiva-

lently the Turing machine) model is retained, while nei-
ther of the above attacks work anymore. Moreover, if the
HPKEET is constructed from a conventional semantically
secure cipher, say ElGamal encryption (such as described
in [15]), then the distrusted processor sees only a sequence
of ciphertexts, from which nothing useful can be obtained
(based on the intractability assumption that underlies
the encryption) by standard arguments [20]. More pre-
cisely, the security of our generic construction (in terms

of data item indistinguishability) follows directly from
the semantic security of the underlying encryption, since
the aforementioned chosen instruction attack no longer
applies by virtue of the HSM. Thus, we can conclude that
this kind of local two-party computation is flexible in the
sense of admitting the execution of arbitrary assembler
instructions and inherits its security from the underly-
ing encryption (which by use of the HSM is no longer a
HPKEET but a normal public-key encryption).

4.1 Security problems by code execution patterns
It must be stressed that the above security argument
applies only to arithmetic and logical instructions but does
not cover memory addressing or branching. Both of these,
unfortunately, may leak lots of information through obser-
vations of the program execution patterns. To illustrate
the problem, imagine a division being done (encryptedly)
by repeated subtractions. In that case, counting the num-
ber of iterations of the loop immediately reveals the result
(even if the plaintext comparison facility is concealed
within the HSM). Likewise, memory addressing needs
(probabilistically) encrypted addresses to be translated
back to (deterministic) physical memory addresses. A
plain conversion is not advisable, as in this case, we could
compare two encrypted values simply by converting their
contents to memory addresses for checking their equality.
Similarly, conditional branching may be exploited to con-
struct a plaintext comparison function as follows: MIPS
assembler, for example, supports branching upon equal-
ity (beq). Observing which case is being taken (“then”
or “else”) then immediately tells the observer if the reg-
ister contents have been equal or not. At this point, the
attacker can mount a trial encrypt-and-compare attack
again by a chosen instruction attack involving a sequence
of beq-instructions.

4.2 Fixing memory access and branching leakages
Protection from information leakage frommemory access
patterns is a long recognized issue that is solved by cryp-
tographic techniques like oblivious RAM [21–25] and
private information retrieval (PIR) [26–29]. Both can be
used in a black-boxmanner to resolve the above issues, yet
the concrete selection of a scheme and analysis of secu-
rity and complexity impacts is beyond the scope of this
article (subject of future research). Perhaps even more
difficult is the protection against misuse of branching
instructions. Here, proper code obfuscation, in particular
the hiding of the “then” and “else” branches of instruc-
tions appears necessary. Note that this intentional security
from code obscurity is in this particular case a necessity to
thwart chosen instruction attacks by stripping the seman-
tics from the instructions (much like encryption removes
the meaning from a plaintext by casting it into a cipher-
text). This is perhaps the most challenging issue and an

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 5 of 11

ORAM
PIR

reg 1

reg 2

reg n

cr
yp

to
gr

ap
hi

ca
lly

in

di
st

in
gu

is
ha

bl
e

...

mem cell 1

mem cell 2
...

code

instruction +
operands

HSM

Lookup
table

operand
commit-
ments

re-
random.

operands
distinguishable

„de-randomization“
of ciphertexts

program
counter

unencrypted

result
indistinguishable
again

plain data exchange
(data items are only
ciphertexts anyway)

Fig. 1 Execution flow of a single instruction

interesting direction of future research, as a deeper treat-
ment is beyond the scope of this article. We close the
discussion by remarking that this attack is not specific
for our proposal or any encryption and must be care-
fully analyzed for other computing platforms or general
approaches, such as [11], as well.
Summarizing our proposal so far, it appears as a not

too difficult matter of combining secure hardware with
standard cryptographic primitives into a platform that
supports the execution of assembly code on encrypted
data. The crux here is simply to execute assembly code
by lookup tables, while preventing the potentially hos-
tile execution environment from constructing a plaintext
comparison functionality on its own to do a trial encrypt-
and-compare ciphertext disclosure. The hardware secu-
rity module in that case must only handle table lookups; it
can be implemented as its own module or also integrated
into an existing hardware protected module or area (thus
adding only little additional computational burden to the
HSM already in use for other purposes). Especially, this
makes it much more lightweight than a general-purpose
processor that decrypts operands, executes the instruc-
tions, and re-encrypts the result again (the operations
for a plaintext comparison are much more efficient than
this approach and allow for a much thinner HSM archi-
tecture). A hypothetical such architecture is sketched in
Fig. 2. Implementing and testing it is another aspect of
future work to be done.

5 Application in the smart meter networks
Coming to the concluding application, smart grid and
smart meter networks appear as natural candidates for the
implementation of our proposed computing architecture.

Herein, let us assume that a smartmeter (or general sensor
network) is composed from sensors (smart meters, etc.)
and data concentrators in a ring/tree (mixed) network
topology. Within the data concentrator, it appears as not
too restrictive to make a HSM available to do secure local
two-party computation such as sketched above. Under
this hypothesis, the data concentrator can go ahead and
process encrypted data retrieved from the smart meters
(sensors) without decrypting anything and, more impor-
tantly, without privacy breaches and under end-to-end
encryption spanning much wider ranges than the smart
meter network. Figure 3 displays an example snapshot
of such a possible application. Here, the entire process
depicted in Fig. 1, and the computing platform (Fig. 2) is
entirely encapsulated within the data concentrator (DC),
that is, the DC hosts a HSM and memory to execute
the instructions for the data aggregation algorithm, as
described before.
To be more concrete on the privacy issue here, first

recall that the entire construction is generic and as such
inherits its cryptographic assumptions from the underly-
ing encryption (e.g., it is based on discrete logarithms if
ElGamal encryption is used or based on factorization or
quadratic residues if Paillier encryption is employed). As
for privacy in light of collusions among the computational
parties in the system (say, the head-end collaborating
with the data concentrator), the locality of our two-party
approach comes into play: notice that, unlike the term
“two-party” would indicate, no collaboration between any
two computing instances in the system will reveal any-
thing, since the actual two-party computation involves a
computing instance and its local HSM as the two play-
ers. Thus, unless the data concentrator, for example, can

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 6 of 11

memory
(encrypted)

processor
(standard
architecture)

program
(encrypted

& obfuscated)

standard
compiler

standard
encryption

branching

PIR/ORAM

computing platform

standard tools

HSM
(instruction

lookup tables)

2-party computation (local)

generic extension

Fig. 2 Computing platform sketch

smart meter #1

encrypt

data concentrator

smart meter #n

encrypt

(our) computing
platform
(running

„encrypted
software“)

data aggregation

atadatad

ciphertextciphertext

head end

decrypt

ciphertext

results

...

pu
bl

ic
 e

nc
ry

pt
io

n
ke

y

pu
bl

ic
 e

nc
ry

pt
io

n
ke

y

ev
al

ua
tio

n
ke

y
(a

ut
h.

 to
ke

n
+

 lo
ok

up
 ta

bl
es

)

Fig. 3 Application in smart meter networks

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 7 of 11

“collude” with its HSM (which is ruled out by the def-
inition of a HSM, which acts autonomously and should
resist any compromission attempts), no privacy breach
can occur. Conversely, if the DC and the head-end join
forces, then neither can gain anything beyond what is
known already, since there is no multiparty computation
done between these instances.

6 Implementation and evaluation
The system has been implemented in a Java prototype,
in which the HSM has been emulated by a designated
class with the proper visibility modifiers (i.e., private
data within the HSM is not accessible from outside).
The prototype understands a dialect of MIPS assem-
bly code [19] and can emulate operations on 8, 16, 32
bit . . .words by processing chunks of 4 bits using its
internal lookup tables. The lookup tables themselves are
organized as conventional hashtables that are keyed on
the “derandomized” versions of the input ciphertexts.4
The complexity of a single lookup is thus approximately
O(1) (up to probing inside the hashing). Code obfusca-
tion has been implemented in a very simple fashion by
choosing a random set of pseudonyms for the branching
instructions, so that branches upon equality or less than
or greater than relations are indistinguishable between
different encryptions of the same code. The memory
access has been left deterministic (adding oblivious RAM
or PIR is a matter of future work), so the timing esti-
mates following in Table 1 exclusively relate to arithmetic
instructions.5

6.1 Benchmarks
A practical limitation arises from the exponential growth
of lookup tables in terms of the block size that we can pro-
cess per operation. That is, if the processor is supposed
to work in b bit words, then the lookup table would con-
sist of 2b × 2b = 22b ciphertexts. To keep things practical,
we must thus emulate larger register sizes by operations
on smaller blocks, say 4-bit chunks. For example, an addi-
tion of two 64-bit registers would thus be done by adding
16 blocks within the register individually. This keeps the
evaluation key at a reasonable size (16× 16 = 256 cipher-
texts per instruction and about 10 different instructions
in our dialect6), at the cost of taking more time to execute

Table 1 Benchmark figures for Java prototype implementation
(some arithmetic/logical instructions; average execution time (in
seconds) for 1000 repetitions of the instruction on random
operands)

Register size And Add Sub Mult

16 bit 0,942 2,592 3,666 48,924

32 bit 2,406 7,122 10,224 ≈ 216

the assembly instruction. Table 1 shows some benchmark
results7 for our Java prototype. The given benchmarks
are the average time estimates (in seconds) taken over
1000 repetitions of each operation using random operand
values. The times exclude the overheads for encryption
and decryption of inputs and results and also do not
include the time for loading the virtual machine or the
respective keys. The platform has been an Ubuntu 14.04
LTS (64 bit), running on an AMD A8-4500M APU with
Radeon HD Graphics at 1.9 GHz, and with 8 GB RAM.
The cryptographic keys used in the experiment had 2048
bit (adhering to nowadays recommendations for modular
arithmetic).
As the execution times indicate, there is a strong need

for optimization,8 especially in terms of parallelization. A
closer inspection of the scheme in [15], however, shows
that using parallelization, the overall effort for processing
a single block, i.e., a table lookup, can be done using 1
modular exponentiation + 2 modular multiplications + 1
modular inversion + O(1) for the hashtable query.
It may be well the case that these execution times are

outperformed by specially designed aggregation proto-
cols, which work much more efficiently at the cost of
computing only a fixed aggregation function. In smart
grid appplications, however, the data concentrators may
require muchmore intelligence beyond simple data aggre-
gation, especially in cases where decentralized load bal-
ancing is required. In general, the logic of the utility
network control layer (the supervisory control and data
acquisition (SCADA) system) can, using our platform,
be integrated in a way that respects the client’s privacy,
while still being able to do all the necessary processing
to effectively manage the smart grid. In such future util-
ity network architectures, hand-crafting fast aggregation
and control algorithms may quickly become infeasible in
practice. This is where a general-purpose computing plat-
form, in combination with a standard compilation chain
may unleash its power.

6.2 Computational complexity
Going into that direction, we can reconsider our approach
relative to other cryptographic techniques like FHE.
While a qualitative comparison to FHE is not entirely
meaningful (since the latter is not a multiparty primitive
unlike our proposal), a comparison in terms of com-
plexity indeed provides some insights. Let us consider
some fast FHE and GC platforms for our comparative
discussion. Assuming that all the operations (related to
FHE, GC, or our scheme) are implemented under the
same optimizations and on the same platform, we may
restrict our comparison to the (asymptotic) complexi-
ties9 that count how many bit-operations are required to
homomorphically evaluate a given function, represented
as an arithmetic circuit (in case of FHE and GC) or an

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 8 of 11

assembly program (for our scheme). For the cryptographic
operations, let t ∈ N denote the security parameter. Ref-
erence [30] notes Õ(t3.5) operations per arithmetic gate,
contrary to [2], who achieve Õ(t) operations for multi-
plication (and hence also addition) gates. The downside
of the latter scheme is, however, the encryption taking
Õ(t10) many steps. Let us compare this to our setting now
in terms of complexity: since our scheme is generically
based on standard encryption, its bit-complexity is pro-
portional to that of the underlying scheme; thus Õ(t) if we
use ElGamal encryption, for example. As for homomor-
phic evaluation, parallelization reduces the overhead for
a single lookup operation to Õ(t) bit-operations (assum-
ing that exponentiation is the most expensive task herein).
Processing two registers (e.g., multiplying them) of fixed
size n bits, then takes Õ(c(n) · t) bit-operations, if the
operation on the registers takes c(n) steps (for a mul-
tiplication, this would be c(n) ∈ O(n2) using a non-
optimized standard pen-and-paper method). In terms of
our complexities, since n is constant, the complexity of
an instruction execution is thus still Õ(t) bit-operations
(with the value of n scaling the constant implied by the
Õ). The concrete effort of course depends on the particu-
lar operation, with multiplication and division being quite
expensive examples. However, FHE and GC both require
circuits to do the arithmetic; therefore, their complexity
is as well given by c(n) · Õ(tα), where c(n) is the size of
the circuit to process n-bit inputs, and α depends on the
chosen scheme (α = 3.5 for [30] or α = 1 for [2]). In
fact, since our scheme can process more than single bits
in one blow, the complexity Õ(c(n) · t) must further be
cut down by a factor of 4, if we work on 4-bit chunks
per lookup, for example (this is another difference and
advantage over circuit based evaluation as done in FHE
or GC). In any case, it is equally efficient as [2] on homo-
morphic evaluation but much faster than this scheme
on encryption and decryption. Thus, despite the tim-
ing results being somewhat blurred by overheads induced
from Java’s virtual machine, and the inefficient imple-
mentation, a designated and optimized platform (like the
ones that exist for GC [7] and FHE) may redraw the
picture.
Another qualitative comparison relates to the ability to

process inputs of arbitrary size: both FHE and GC require
freshly compiled circuits to process inputs of growing
lengths. MPC, on the other hand, can work with any
length but needs to compile the function evaluation into
an interactive protocol, which induces network traffic. By
keeping the interaction local in our scheme, we reduce the
communication overhead to a local communication on
the motherboard, thus gaining efficiency from good hard-
ware implementations. Using a hardware security module
herein addresses some (but not all) of the security issues,
and enhancing the proposed computing architecture by

ORAM/PIR and code obfuscation to gain further security,
is a matter of future research.

6.3 Security
Semantic security (i.e., the inability of a polynomial time-
bounded adversary to extract any useful information from
a given ciphertext), follows easily for passive adversaries:
observe that thanks to the HSM, the adversary cannot
do any plaintext equality checks along a cryptanalysis,
so everything that can be harvested from outside the
HSM is essentially a bunch of ciphertexts. Since semantic
security of a single public-key encryption extends to poly-
nomially many such encryptions (multi-message security
[31]), our scheme is semantically secure against passive
attackers, provided that (1) the adversary is polynomially
time-bounded (in the security parameter that the encryp-
tion uses) and (2) the time-complexity of the algorithm
being executed is at most polynomial (to retain the known
proofs of multi-message semantic security applicable).
The latter requirement induces a subtle issue in the choice
of the security parameter of the encryption, namely that
the problem size (that determines the time-complexity of
the algorithm) must be polynomially related to the secu-
rity parameter (that limits how many ciphertexts can be
emitted before the scheme becomes insecure). Roughly
speaking, the security parameter of the encryption should
be set at least proportional (or larger, say quadratically
dependent) on the problem size. For example, if n data
items are expected to be processed, then the security
parameter should be set to t ≈ n; the point here is that this
parameter usually determines the bitsize of the encryption
keys and the size of the underlying algebraic structures.
In case of ElGamal encryption, the parameter t is the bit-
size of the finite group that we work in. If this is bitsize
t and we are working in standard modular arithmetic,
then the group is roughly of size 2t .10 So, if t is depen-
dent on the problem size n and the time-complexity is
polynomial, say p(n) steps to process n items, then the
execution emits only p(n) ≈ p(t) many ciphertexts, i.e.,
polynomially many in the security parameter t. Under
this setting, the scheme remains secure. Practically, if we
expect, say n = 109 measurements to be processed within
a data concentrator, then the security parameter, i.e., bit-
size, can be set to t ≥ log2(n) = log2(109) ≥ 60 bit.
That is, for processing a billion measurements, nowadays
recommended key sizes (at least 320 bit for elliptic curve
cryptography) are more than sufficient to keep our data
secure.
The aforementioned vulnerabilities against active

attacks were originally discovered along experiments with
the prototype, which led to continuous improvements of
the theory and the prototype as such. Details and further
findings will be reported in a follow-up work. An obser-
vation from these experiments is the potential relevance

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 9 of 11

of the aforementioned attacks in other contexts such as
FHE, GC, or computing platforms (e.g., [11]). Indeed, it is
a prescribed standard procedure to construct circuits in
FHE or GC so that each data flow path is equally likely,
in order to avoid the attacker learning the data from the
data flow; thus FHE and GC suffer from similar (yet not
entirely identical) issues as our scheme. Therefore, it does
not seem that attacks like the described ones are per se
absent in alternative schemes. While FHE or GC evalu-
ation circuits do not offer the attacker the flexibility of
submitting instructions of her/his own choice (thus, the
CIA-attack is not immediately relevant in FHE or GC),
the structure of a circuit (whether garbled or not), may
nevertheless leak information about the underlying data,
since it is compiled from it (the notion of circuit privacy is
known, yet a conventional garbling procedure primarily
hides the functionality of gates but not the structure of
the circuit itself).
Note that all this applies only under the (initial) assump-

tion that the HSM is entirely tamper-proof. If it somehow
leaks out its secret, i.e., the comparison token kcom, then
the previously described vulnerabilities are fully applica-
ble again.
The appeal of a computational platform that admits the

processing of encrypted data and code lies in its compat-
ibility with standard compilation chains. That is, taking
MIPS assembly a last time as our example, the code itself
needs no change except for the fact that its registers con-
tain ciphertexts rather than plain integers (changes to the
code mostly apply to constants encoded therein, which
must be encrypted for compatibility with encryptedmem-
ory and register contents). In any case, however, we can
use a standard compiler to create the processing soft-
ware and can “directly” run this code on encrypted data.
Note that this is an essential difference to alternative
approaches (like GC or FHE), which require special-
purpose compilers [32–34] and designated code/circuit
generation [35] that is specific for a particular function.
Unlike this, the computing platform sketched here is
“general purpose”.

7 Conclusions
This work presents a general-purpose framework and
computing architecture for data aggregation, with pos-
sible applications in smart grids or sensor networks
(although the scheme is not restricted to any of these
areas). Our proposal is meant for use in situations where
data aggregation cannot be tied or tailored to the spe-
cific application, and future extensions of the aggregation
are somewhat foreseeable. In practical implementations,
a general-purpose data processor may be outperformed
by special-purpose aggregation protocols, which can be
tailored to the specific aggregation function. This perfor-
mance gain is bought at the cost of fixed functionality

(i.e., the aggregation can deliver exactly a defined output).
Thus, when future new requirements or extensions to the
aggregation are foreseeable, a more powerful computing
platform may become necessary.
The main idea presented in this work is that of using a

lightweight hardware protection for simple table lookups,
to implement a simple secure processor for conventional
assembly code (the entire platform is not lightweight in
computational terms, but no entirely cryptographic solu-
tion would be). To this end, we sketched an architecture
to implement a fully functional data processing utility
that executes arbitrary programs under permanent dis-
guise of an encryption. Our scheme is generic, in the sense
of being usable with standard encryption like ElGamal’s
scheme. Along practical experiments with an implemen-
tation of the idea, we identified several vulnerabilities
to break the encryption (despite the encryption’s proven
security against the standard attack patterns), by which
what we call a chosen instruction attack. We described
various potential countermeasures related to this attack
and demonstrated the diversity of the required protec-
tion beyond pure cryptography (such as code obfuscation,
branch protection, and secure memory access being nec-
essary). Nevertheless, the general possibility of arbitrary
data processing in privacy (under encryption) has been
verified experimentally in software simulations, and prac-
tical experiments on physical hardware are a natural next
step.

Endnotes
1The circuit description has a size proportional to the

number of gates, with the factor being a multiple of the
cipher’s blocklength.

2Each table entry being an HPKEET ciphertext. For the
generic construction in [15], for example, the ciphertext
size is proportional to the size of the underlying ElGamal
ciphertext.

3A purely cryptographic approach to lookups without
comparisons is described in [36], but this technique
applies only to one-dimensional tables so far.

4Roughly speaking, the authorization (comparison)
token kcom lets us strip the randomizer from the
ciphertext, so that the scheme becomes deterministic.
Thus, identical derandomized ciphertexts imply identical
inner plaintexts (see [15] for full details).

5In a real-life implementation, the timing is expectedly
dominated by the communication with the HSM, which
may be the bottleneck point for performance.

6Remember that MIPS is a RISC architecture.
7Notice that a comparison with other schemes for

private function evaluation is not very expressive yet,
since the total overhead including additional (and yet
unclear) precautions to protect the flow control and
memory access pattern leakages would add an unknown

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 10 of 11

lot to the overhead. Nevertheless, a comparison of the
efficiency of blind Turingmachines relative to competing
approaches has been done by [37].

8For example, the Java prototype uses a humble and
wasteful textual encoding of numbers, thus induces a
huge lot of potentially avoidable string parsing overhead.

9Here denoted in terms of Õ(f), which is a shorthand
for O(f (log f)k) for some fixed integer k (implied by Õ in
addition to the other constants).

10The story is far more involved for elliptic curve
groups, but let us keep the example simple here.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SR proposed the original concept of a blind Turing machine that motivated
this work and built the first prototype version with security against passive
adversaries. PS recognized the information leakage from the branching
instructions and contributed the solution by hardware security support. MB
identified weaknesses against active attacks during her further development
of the prototype and pointed out some of the solutions mentioned here. All
authors read and approved the final manuscript.

Acknowledgements
We wish to thank the anonymous reviewers for the valuable suggestions,
which provided much of an improvement for the text and also delivered
interesting ideas for subsequent research.

Received: 2 July 2015 Accepted: 27 November 2015

References
1. C Gentry, in Proceedings of the 41st Annual ACM Symposium on Theory of

Computing. STOC ’09. Fully homomorphic encryption using ideal lattices
(ACM, New York, NY, USA, 2009), pp. 169–178.
doi:10.1145/1536414.1536440

2. M van Dijk, C Gentry, S Halevi, V Vaikuntanathan, in EUROCRYPT. LNCS.
Fully homomorphic encryption over the integers, vol. 6110
(Springer, Berlin Heidelberg, 2010), pp. 24–43

3. NP Smart, F Vercauteren, in PKC. LNCS. Fully homomorphic encryption
with relatively small key and ciphertext sizes, vol. 6056 (Springer, Berlin
Heidelberg, 2010), pp. 420–443

4. Z Brakerski, V Vaikuntanathan, in FOCS 2011. Efficient fully homomorphic
encryption from s LWE (IEEE, Berlin Heidelberg, 2011), pp. 97–106

5. Z Brakerski, C Gentry, V Vaikuntanathan, in ITCS. (Leveled) Fully
homomorphic encryption without bootstrapping (ACM, Berlin
Heidelberg, 2012), pp. 309–325

6. AC-C Yao, in FOCS. How to generate and exchange secrets (extended
abstract) (IEEE, Berlin Heidelberg, 1986), pp. 162–167

7. Y Huang, D Evans, J Katz, L Malka, in 20th USENIX Security Symposium.
Faster secure two-party computation using garbled circuits (USENIX
Association, Berlin Heidelberg, 2011)

8. K Järvinen, V Kolesnikov, A-R Sadeghi, T Schneider, in Cryptographic
Hardware and Embedded Systems, CHES 2010. Lecture Notes in Computer
Science, ed. by S Mangard, F-X Standaert. Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time
programs, vol. 6225 (Springer, 2010), pp. 383–397.
doi:10.1007/978-3-642-15031-9_26

9. S Zahur, D Evans, in Proceedings of the 2013 IEEE Symposium on Security
and Privacy. SP ’13. Circuit structures for improving efficiency of security
and privacy tools (IEEE Computer Society, Washington, DC, USA, 2013),
pp. 493–507. doi:10.1109/SP.2013.40

10. EM Songhori, SU Hussain, A-R Sadeghi, T Schneider, F Koushanfar, in 36th
IEEE Symposium on Security and Privacy. Tinygarble: Highly compressed
and scalable sequential garbled circuits (Oakland, San Jose, California,
2015)

11. XS Wang, C Liu, K Nayak, Y Huang, E Shi, in IEEE Symposium on Security and
Privacy (S & P). Oblivm: A programming framework for secure
computation, (2015). http://www.cs.umd.edu/~elaine/docs/oblivm.pdf,
accessed 07 December 2015

12. M Hirt, U Maurer, Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13, 31–60 (2000).
doi:10.1007/s001459910003

13. T Schneider, M Zohner, in Financial Cryptography and Data Security.
Lecture Notes in Computer Science, ed. by A-R Sadeghi. Gmw vs. yao?
efficient secure two-party computation with low depth circuits, vol. 7859
(Springer, 2013), pp. 275–292. doi:10.1007/978-3-642-39884-1_23

14. S Goldwasser, Y Kalai, RA Popa, V Vaikuntanathan, N Zeldovich, How to
run Turing machines on encrypted data. Cryptology ePrint Archive,
Report 2013/229 (2013). http://eprint.iacr.org/, Accessed 07 Dec 2015

15. S Rass, Blind Turing-machines: Arbitrary private computations from group
homomorphic encryption. Int. J. Adv. Comput. Sci. Appl.
4(11), 47–56 (2013)

16. Q Tang, in ACISP. LNCS. Towards public key encryption schemes
supporting equality tests with fine-grained authorization, vol. 6812
(Springer, Berlin Heidelberg, 2011), pp. 389–406

17. S Goldwasser, Y Kalai, RA Popa, V Vaikuntanathan, N Zeldovich, in
Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing. STOC ’13. Reusable garbled circuits and succinct functional
encryption (ACM, New York, NY, USA, 2013), pp. 555–564.
doi:10.1145/2488608.2488678

18. M Bellare, A Boldyreva, A O’Neill, in CRYPTO. LNCS. Deterministic and
efficiently searchable encryption, vol. 4622 (Springer, Berlin Heidelberg,
2007), pp. 535–552

19. Imagination: MIPS32 Architecture. http://www.imgtec.com/mips/
architectures/mips32.asp. last accessed: 07 December 2015 (2015)

20. O Goldreich, Foundations of Cryptography 1, 2. (Cambridge University
Press, Cambridge/UK, 2003)

21. O Goldreich, R Ostrovsky, Software protection and simulation on
oblivious RAMs. J. ACM. 43(3), 431–473 (1996)

22. B Pinkas, T Reinman, in CRYPTO. LNCS. Oblivious RAM revisited, vol. 6223
(Springer, Berlin Heidelberg, 2010), pp. 502–519

23. E Stefanov, E Shi, D Song, in NDSS. Towards practical oblivious RAM
(arxiv.org, Cornell University, 2012)

24. E Stefanovy, M van Dijk, E Shi, C Fletcher, L Ren, X Yu, S Devadas, in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. Path O-RAM: an extremely simple oblivious
RAM protocol (ACM, Berlin, Germany, 2013), pp. 299–310.
doi:10.1145/2508859.2516660

25. M Maas, E Love, E Stefanov, M Tiwari, E Shi, K Asanovic, J Kubiatowicz, D
Song, in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. CCS ’13. PHANTOM: practical oblivious
computation in a secure processor (ACM, New York, NY, USA, 2013),
pp. 311–324. doi:10.1145/2508859.2516692

26. B Chor, O Goldreich, E Kushilevitz, M Sudan, in FOCS. Private information
retrieval (IEEE, 1995), pp. 41–50

27. W Gasarch, A survey on private information retrieval. Bull. EATCS. 82,
72–107 (2004)

28. C Gentry, Z Ramzan, in ICALP. LNCS. Single-database private information
retrieval with constant communication rate, vol. 3580 (Springer, Berlin
Heidelberg, 2005), pp. 803–815

29. R Ostrovsky, WEI Skeith, in Public Key Cryptography (PKC). LNCS. A survey of
single-database private information retrieval: techniques and
applications, vol. 4450 (Springer, Berlin Heidelberg, 2007), pp. 393–411

30. D Stehlé, R Steinfeld, in ASIACRYPT. LNCS. Faster fully homomorphic
encryption, vol. 6477 (Springer, Berlin Heidelberg, 2010), pp. 377–394

31. O Goldreich, Foundations of cryptography 2: basic applications. (Cambridge
University Press, Cambridge/UK, 2003)

32. S Carpov, P Dubrulle, R Sirdey, Armadillo: a compilation chain for privacy
preserving applications. Cryptology ePrint Archive, Report 2014/988
(2014). http://eprint.iacr.org/. Accessed 07 Dec 2015

33. C Aguilar-Melchor, S Fau, C Fontaine, G Gogniat, R Sirdey, Recent
advances in homomorphic encryption: A possible future for signal
processing in the encrypted domain. Signal Process. Mag. IEEE. 30(2),
108–117 (2013). doi:10.1109/MSP.2012.2230219

34. NG Tsoutsos, M Maniatakos, in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014. Heroic: homomorphically

http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-15031-9_26
http://dx.doi.org/10.1109/SP.2013.40
http://www.cs.umd.edu/~elaine/docs/oblivm.pdf
http://dx.doi.org/10.1007/s001459910003
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://eprint.iacr.org/
http://dx.doi.org/10.1145/2488608.2488678
http://www.imgtec.com/mips/architectures/mips32.asp
http://www.imgtec.com/mips/architectures/mips32.asp
http://doi.acm.org/10.1145/2508859.2516660
http://dx.doi.org/10.1145/2508859.2516692
http://eprint.iacr.org/
http://dx.doi.org/10.1109/MSP.2012.2230219

Rass et al. EURASIP Journal on Information Security (2015) 2015:7 Page 11 of 11

encrypted one instruction computer (IEEE, 2014), pp. 1–6.
doi:10.7873/DATE2014.259

35. W Melicher, S Zahur, D Evans, in Poster at IEEE Symposium on Security and
Privacy. An intermediate language for garbled circuits, (San Francisco,
2012)

36. S Rass, P Schartner, M Wamser, Oblivious lookup tables. (accepted at the
15th Central European Conference on Cryptology (CECC), available at
http://arxiv.org/abs/1505.00605, accessed 07 December 2015 (2015)

37. R Dutra, B Mehne, J Patel, BlindTM—a Turing machine system for secure
function evaluation. https://www.cs.berkeley.edu/~kubitron/courses/
cs262a-F14/projects/reports/project9_report_ver2.pdf. last accessed: 07
December 2015 (2015)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.7873/DATE2014.259
http://arxiv.org/abs/1505.00605
https://www.cs.berkeley.edu/~kubitron/courses/cs262a-F14/projects/reports/project9_report_ver2.pdf
https://www.cs.berkeley.edu/~kubitron/courses/cs262a-F14/projects/reports/project9_report_ver2.pdf

	Abstract
	Keywords

	1 Introduction
	2 Secure function evaluation: the three cryptographic ways
	3 A fourth route
	3.1 Encrypt-and-compare attacks: vulnerabilities against passive adversaries
	3.2 The chosen instruction attack: vulnerabilities against active adversaries

	4 Secure function evaluation in a local two-party setting
	4.1 Security problems by code execution patterns
	4.2 Fixing memory access and branching leakages

	5 Application in the smart meter networks
	6 Implementation and evaluation
	6.1 Benchmarks
	6.2 Computational complexity
	6.3 Security

	7 Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

