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Abstract

This paper analyses and proposes a novel detection strategy for the ‘Chameleon’ WiFi AP-AP virus. Previous
research has considered virus construction, likely virus behaviour and propagation methods. The research here
describes development of an objective measure of virus success, the impact of product susceptibility, the
acceleration of infection and the growth of the physical area covered by the virus. An important conclusion of this
investigation is that the connectivity between devices in the victim population is a more significant influence on
virus propagation than any other factor. The work then proposes and experimentally verifies the application of a
detection method for the virus. This method utilises layer 2 management frame information which can detect the
attack while maintaining user privacy and user confidentiality, a key requirement in many security solutions.
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1 Introduction
The increased availability of WiFi has occurred in spite
of well-documented security vulnerabilities [1], such as
denial of service (DoS) and rogue access point (rogue
AP)a attacks. The consequence of this is that as demand
drives up the availability and use of WiFi, the geograph-
ical area that an attack can exploit increases exponen-
tially. It is pertinent to note however that currently the
largest barrier to eradicating the threats to users and
owners of WiFi networks is system and device miscon-
figuration, rather than inherent technology flaws [2].
This is revealed in the continued use of open and wired
equivalent privacy (WEP) encryption in home and enter-
prise environments [3].
The primary means of defence against rogue APs in

many cases is deployment of an IDSb (intrusion detec-
tion system), which alerts a human operator to the pres-
ence of an attack. The typical IDS method of detecting
rogue APs is to track the location of the device, usually
using received signal strength indicator (RSSI) values.
In order to evade this detection, the attacker can at-
tempt to copy the expected RSSI values by either pla-
cing the rogue AP within similar radius to the detector
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as the victim or editing the RSSI output to match the
victim's RSSI values. In this case the legitimate AP and the
fraudulent AP are resident in the network at the same
time, which provides a mixed set of normal and abnormal
traffic for detectors. Separating these two traffic streams
then becomes the challenge in rogue AP detection.
Tactics exist for defeating rogue APs which masquer-

ade either AP location or credentials. However, if the le-
gitimate AP is not turned on or not broadcasting, then
there is no normal traffic to compare to. Consider an in-
stance where a legitimate AP is taken down and then a
false AP comes up, with neither existing at the same
time. Due to the prevailing assumption that two devices
exist at the same time in a rogue AP attack, the current
IDS systems have not been designed to detect this type
of attack where the legitimate AP is taken over by the at-
tacker. Hence, it is unlikely that current systems are able
to detect this type of attack.
A new form of compromised AP attack has been dem-

onstrated and analysed in [4], called the ‘Chameleon’ at-
tack, perpetrated by the Chameleon virus. This attack
replaces the firmware of an existing AP and masquer-
ades the outward facing credentials. Thus, all visible and
physical attributes are copied and there is no significant
change in traffic volume or location information. Hence,
this attack is considered advanced and difficult to detect,
as IDS rogue AP detection methods typically rely on a
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change in credentials, location or traffic levels. This
work provides analysis of the Chameleon virus and dem-
onstrates a method of detecting the propagation of the
virus, as it constitutes an advanced rogue AP.

1.1 Background
Some works in the area [5-7] have considered a theoret-
ical virus which has not been practically demonstrated.
In [5] the authors analyse the spread of a theoretical
virus via simulation. Results suggest that infection of a
small number of routers can lead to thousands of
infected devices within 24 h. Further work assesses the
likely times users will be busy to avoid detection [6],
showing that evading detection is a key principle of a
WiFi virus. The work in [7] outlines the potential threats
of a WiFi virus as traffic eavesdropping, destruction of
traffic, disruption of infected host normal operations or
even killing the device itself. As attacks and defences in
network security tend to evolve together, the first step
in devising effective countermeasures is to anticipate
the malware hazards that could present themselves [7].
WiFi routers in particular have been identified as valu-
able targets for attack for malware, as no software cur-
rently exists to protect devices from such an infection
[5], unlike in modern PCs where antivirus programs
are well utilised.
Research in has investigated the behaviour of a practic-

ally demonstrated malware virus called Chameleon propa-
gating over WiFi networks. This addressed aspects of
virus propagation, structure, modelling and limits of suc-
cessive propagation. The results show that the Chameleon
virus can self-propagate via WiFi from AP-AP in a la-
boratory environment, but no method for successfully
detecting the attack was available at that time. Al-
though propagation was much less rapid than the re-
sults of simulations [5], the virus demonstrably evaded
detection by a widely available open source IDS, consti-
tuting a zero-day attack.
This virus propagation can be considered an advanced

form of rogue AP attack, which propagates directly be-
tween WiFi AP-AP embedded devices. Research into
detecting rogue AP attacks is currently lacking [8], al-
though they are considered a more technically difficult
but growing threat in [9]. It is even estimated that as
many as 20% of all enterprise locations already have a
rogue AP connected to their systems and hence are par-
ticularly at risk from these attacks [8,10]. Users of
WLANs in public environments are also considered vul-
nerable [11].
One of the most common metrics used to detect the

presence of rogue APs in modern research is packet
RSSI. The authors in [12] and [13] suggest that using a
distributed set of sensors' sufficient RSSI information
can be gathered to provide identification. This relies on
different physical locations allowing for variations in
traffic patterns; however, this is only applied to clients
and not APs.
There is disagreement on the usefulness of RSSI in

practical experiments. The authors in [13] and [10] con-
clude that use of RSSI as a WLAN location indicator is
flawed as multipath effects and AP-specific processing of
RSSI frame values severely impact results and make
them unreliable. Furthermore, in [14] it is suggested that
attackers, knowing RSSI is a detection metric, can alter
their transmission power in frequent intervals in order
to defeat the detection algorithm. Thus, the usefulness
of RSSI as a metric for identification of location in rogue
AP detection algorithms is uncertain.
The authors have previously shown that device iden-

tity can be attributed using layer 2 management frame
information, rather than RSSI [15]. This method utilises
packet inter-arrival times for beacon and probe frame
exchanges to distinguish WiFi AP traffic. Developing a
rogue AP detection method based on the prescribed
identity would present a much more advanced and ro-
bust system for detection of rogue APs than current
RSSI approaches.
This research extends the work undertaken in and [15]

to identify new insights into the application, threat and
detection of the Chameleon AP virus. Authors in outline
the practical operation of the virus and show that a typ-
ical IDS cannot detect the attack. However, it does not
consider in-depth analysis into the infectiousness of the
virus or the impact of changing environmental variables
and conditions, such as change in device susceptibility.
Furthermore, it does not address a method of assessing
the performance of such a WiFi virus. The work in [15]
establishes that it is theoretically possible to detect
rogue AP attacks using layer 2 management frames. It
does not consider, however, the practical application
against an attack. As the Chameleon virus represents
an advanced rogue AP attack, evaluation of the layer 2
detection method against this threat demonstrates its
effectiveness when practically implemented. This work
presents two contributions: furthering the analysis of
the propagation of the Chameleon virus and demon-
strating the rogue AP detection ability of layer 2 traffic
metrics through detection of the virus.

2 The Chameleon attack
The Chameleon virus employs a WLAN attack tech-
nique which independently infects and propagates
amongst WiFi AP embedded systems. The propagation
of the virus effectively constitutes an advanced rogue AP
attack which is unique in that it occupies the exact loca-
tion of the victim device. This contrasts with an evil twin
attack, where an additional device appears which mas-
querades the credentials and broadcast information of
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the victim. In this attack the traffic volume significantly in-
creases and conflicting RSSI measurements are observed
for packets, which can be used by an IDS for detection
purposes. As the Chameleon attack commandeers the
existing hardware, it does not impact on either of these
metrics. The principal steps of the Chameleon virus are
as follows:

1. Establish a list of susceptible APs within the current
location.

2. Bypass any encryption security on the AP.
3. Bypass the administrative interface on the AP.
4. Identify and store AP system settings.
5. Replace the AP firmware on vulnerable APs with the

virus-loaded firmware.
6. Reload the victim AP system settings.
7. Propagate virus (return to 1).

Propagation of a virus over the wireless interface, ra-
ther than via wired backbone, presents several benefits
for propagation. Firstly, the propagation of the virus
would continue despite upgrades to backbone internet
virus security methods, such as deep packet inspection.
Without significant changes to AP operations, the at-
tack can only be detected using WiFi frames. Secondly,
the presence and volume of infected devices could not
be assessed using existing forensic methods such as
connection to suspicious IPs or known malicious do-
mains. Thirdly, the virus can infect nodes which are
not connected to the backbone internet. Finally, this
virus is uniquely able to target APs within a specific re-
gion as propagation is based on proximity. Each of
these factors presents additional challenges with detec-
tion of the virus if it is restricted to propagating over
the wireless medium.

2.1 Infection model and epidemiology
The virus has been designed and practically demon-
strated in a laboratory setting. This information was
then used to inform an infection model to test the appli-
cation of the virus in two urban environments: Belfast,
Northern Ireland and London, England, with data
extracted from Wigle.net. The region of Belfast under
analysis contains approximately 14,553 APs, of which
22% are open, 61% are WiFi protected access (WPA) 2-
encrypted and 14% are WEP-encrypted. The section of
London under analysis contains approximately 96,433
APs, of which 24% are open, 48% are WPA/WPA 2-
encrypted and 19% are WEP.
APs are considered to be connectable if their separ-

ation lies within a certain radius, varied between 10 and
50 m in the model. The model initiates the virus by
infecting an AP at random to act as a seed and then cal-
culates how many days would be required to either
infect or blacklist all APs in the area. The blacklist con-
tains all APs in the population for which virus infection
has been unsuccessful, excluding them from subsequent
attacks from other infected APs.
For every 2 days where there is no activity, the model

randomly selects another reseed point. If the virus is
able to self-propagate, then reseeding is not performed;
however, if the virus cannot continue to propagate then
it is restarted on another randomly chosen node to
simulate the attacker instigating the virus again. The
goal of this mechanism is to maintain a reseeding value
as low as possible for continual propagation of the virus
and assess how reliant it is on a human intervention. So
reseeding is non-zero where virus propagation activity
has halted, but returns to zero for every day where
propagation is ongoing. Thus, we would expect that a
lower reseed value implies a more potent virus, while a
higher value indicates that the virus is terminating much
more frequently and requires human intervention to be
restarted. Each infected node attempts to infect all con-
nectable APs within the vicinity for that day. When all
APs have been processed, the infected node must wait
until the following day to operate again. After 1 day of
non-operation the node is blacklisted. A summary of the
model results is presented in Table 1.

2.2 Virus analysis metrics
The difference in values for almost every comparison be-
tween Belfast and London and for each discrete value of
radius within and between locations is shown in Table 1.
The geographical density of APs is calculated as 454
APs/km2 for Belfast and 3,013 APs/km2 for London;
however, these figures represent the density of physical
APs. Connectivity density on the other hand rises as ra-
dius increases, as shown by rise in AP-AP connections
in Table 1. As the radius grows, more potential victims
are available and the observable density of victim APs
from the viewpoint of the attacker rises. It is proposed
here that the determining factor in this difference in ra-
dius and location results is primarily attributed to con-
nectivity density. This impact calls into question the use
of any one of the factors in Table 1 as an objective meas-
ure of successful WiFi virus propagation.
Analysis of the results in Table 1 indicates that the two

important measures that have previously been used to
quantify the virus spread are in fact not the most suit-
able criteria. The first metric that has been used is the
time taken to infect a population (days to completion).
Table 1 shows that for propagation of a practically
constrained virus, the time becomes impractically large
and is highly dependent on the connection radius of the
APs. In many cases the time frame for selecting and
infecting or blacklisting all of the nodes is in the region
of tens of years and exhibits a range between locations



Table 1 Results of APV propagation depending on connection radius of AP for Belfast, Northern Ireland (NI) and
London, England

Virus model results for Belfast, NI Virus model results for London, England

Radii (m) Days to
completion

Total AP-AP
connections

Total infected
(n (%))

Reseeds Days to
completion

Total AP-AP
connections

Total infected
(n (%))

Reseeds

10 6,281 44,769 639 (4.5) 3,014 30,890 2,611,799 5,437 (5.6) 14,039

20 4,868 79,526 736 (5.1) 2,247 15,936 3,537,234 6,236 (6.5) 6,466

30 3,779 117,204 835 (5.7) 1,687 9,607 459,120 6,484 (6.7) 3,461

40 2,973 160,241 848 (5.8) 1,289 6,306 5,779,016 6,589 (6.8) 2,051

50 2,499 212,602 890 (6.1) 988 4,288 7,039,544 6,637 (6.9) 1,294

Figure 1 WiFi virus reseeding value versus total infected nodes
for all radii (Belfast).

Milliken et al. EURASIP Journal on Information Security 2013, 2013:2 Page 4 of 14
http://jis.eurasipjournals.com/content/2013/1/2
and radii of between 6.8 and 84.6 years. The same large
deviation in time frames is observed for proportions of
the total population, for example after 400 nodes
infected, which is discussed in more detail in Section
2.4. Dependence on the time to infect a fixed number of
nodes, whether that is the total population or a propor-
tion of it, produces too much reliance on density to be
indicative of objective virus performance. Although
propagation is slow (and will also be addressed in
Section 2.4), it constitutes a zero-day attack and presents
an attractive attack vector for potential attackers. None-
theless, this huge difference in the total infection time
frames implies that it is a poor objective measure of WiFi
virus performance as it is significantly affected by radius
and density.
A second commonly used metric is the total number

of infected APs in the population, signified as ‘Total
infected’ in Table 1 (note that this value excludes APs
infected solely for the purposes of reseeding). This num-
ber is demonstrably low for Belfast and London, ap-
proximately 5% and 6% of the total, respectively. While
there would appear to be some similarity in the percent-
age infected across radii (e.g. 4.5% to 6.1% for the Belfast
trial), the variance between both sets of trials (i.e. Belfast
4.5% for 10 m and London 6.9% for 50 m) is relatively
large, implying that the increase in propagation perform-
ance is more related to the AP density than the infec-
tiousness of the virus. Infectiousness here refers to the
capability of the virus to automatically propagate itself
amongst vulnerable hosts. In practice this quantity is
highly dependent on density, i.e., the denser the APs, the
more APs will become infected and the better the virus
may appear to perform, even though the virus behaviour
has not been improved. This makes it very difficult to
differentiate the performance of the virus from the en-
vironment over which it operates. Therefore, the total
number of infected APs by itself is not a clear indicator
of how well the virus can spread.
As shown in Figures 1 and 2, the percentage increase

in Total infected also compares unfavourably with the
reseed value, as an almost 10-fold decrease in reseeds
produces a mere 10% increase in Total Infected. A
reduction in the number of reseeds would imply that the
virus is more independent of human intervention and
should be utilising node infections to propagate. This
should equate to a proportionally larger number in Total
Infected, but this is not the behaviour observed. A high
reseeding value is a strong indicator that the ability of
the virus to successfully propagate without constant hu-
man intervention is poor, theoretically making the im-
pact of the virus less severe. The reseed values also
exhibit a large variance across radii and locations, ex-
cluding it as a measurement.
The effect of the increase in AP-to-AP connections is

not as would be expected, since in both trials this in-
crease is much higher than the increase in Total
infected. The reasons for this result are unclear, although
it may be attributable to the effect of diminishing
returns; for example, the trebling of the number of con-
nections between radius 10 m and radius 50 m for
London may be curtailed by the low infection rate of the
virus. Clearly, none of the available traits alone in Table 1
are suitable. A more effective measure of viral perform-
ance is needed.

2.3 Independence ratio
In search of an appropriate objective measure of viral
performance, multiple combinations of the metrics
in Table 1 were considered. The combination which



Figure 2 WiFi virus reseeding value versus total infected nodes
for all radii (London).
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presented the largest stability across radii and density is
the ratio between days to completion and reseed value
defined here as the independence ratio:

RatioInd ¼ Days to completion=Reseeds ð1Þ

As seen in Figures 3 and 4, this ratio exhibits a similar
range across all measurement iterations, falling between
2.1 and 2.5 in Belfast and between 2.1 and 3.3 for
London. The ratio expresses the reliance of the virus on
reseeds for infection speed, which takes into account
several propagation factors. For example, were days to
completion to remain constant, if the reseed value falls
then a higher independence ratio results, indicating that
less human interaction is required to propagate the
virus. As the reseed value rises, then the ratio reduces,
indicating poorer performance and reduced threat.
Alternatively, if reseeding remains constant, then an

increase in days to completion increases the independ-
ence ratio and the virus can be considered less reliant
on human intervention to propagate. If the days to com-
pletion reduce relative to the reseed value, then the virus
Figure 3 Independence ratio between completion time and reseeding
is less independent and thus there is less implied threat.
While this may appear to be counter-intuitive, the rea-
son that an increase in days to completion is not consid-
ered an indicator of poor virus propagation is only
under the condition that it increases relative to the re-
seed value.
One of the most important factors for the continued

success of the malware is the ability to evade detection.
For this reason the virus does not attempt to propagate
if a client is currently connected, which would appear to
waste time. However, secrecy is considered more im-
portant than speedy propagation. Thus, an increase in
days to completion is not a negative occurrence if other
factors are taken into account. For a set reseed value, an
increase in time means that the virus has been able to
survive without being detected for a longer period with-
out human intervention.
Note that an increase in days to completion is a posi-

tive attribute only if this is achieved with respect to re-
seeds. It is still the case that waiting 6 to 85 years, as in
Table 1, is disproportionately long to be used in itself as
an indicator and that an increase in this value in isola-
tion implies poorer performance.

2.4 Infection acceleration
For infection of the entire population, there is a large
variance in time frames which does not increase linearly,
as in Figures 5 and 6. Note that for a subset of the total
population infected, after 400 infected nodes for ex-
ample, there is a large deviation (approximately 700%) in
the total time required to infect between the maximum
and minimum radii for Belfast. This deviation then
increases further between Belfast and London. This
provides further evidence that using an absolute value of
infected nodes, or a value proportional to the total
population, is not an appropriate virus analysis metric as
it is significantly impacted by density.
value for Belfast.



Figure 4 Independence ratio between completion time and reseeding value for London.
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As the population is either blacklisted or infected, the
rate of activity slows down. The switching point between
acceleration and deceleration can be determined by ana-
lysing the gradient of the curves in the figures. Once the
gradient tends towards flattening out, the acceleration is
deemed to have stopped. The first 5 years are recognised
as exhibiting the most successful infection activities. In
this sense the time for infection behaviour of the virus is
analogous to the principle of a ‘biological half-life’.
Focusing on the lowest density curve, in radius of 10

m for Belfast, after 5 years the total infected value is
greater than 50% of maximum, after which the virus
requires another 12.3 years to assess (i.e. infect or black-
list) the final 50%. For London approximately 17 years
are required for the number of the total infected to pass
50% and the virus requires another 67.6 years to infect
the remainder.
For a radius of 50 m after only 3 years, the number of

totally infected is greater than 70% in both locations. In
particular, for Belfast, the virus needs another 3.7 years
to assess the last 30% in order to complete the propaga-
tion, while for London another 8.7 years is needed to as-
sess the final 30%.
Figure 5 Infected node population (Belfast).
This effect is explained as an indication of the isolation
of the APs in each location. The virus accelerates in a
totally virgin environment but decelerates as other
infected or blacklisted nodes present barriers. The con-
clusion drawn is that the risk of an epidemic occurs
much earlier than as would otherwise be indicated by
the days to completion results.

2.5 Impact of manufacturer susceptibility
The next investigation of viral performance concerns
quantifying the impact of increasing AP product suscep-
tibility. The value of product susceptibility expresses
how many APs in the vicinity are vulnerable to the virus,
as governed by Equation 2.

PInf ¼ PProd susX 1−PEnc nosusð Þ X PAdmin sus ð2Þ

where PProd_sus is the probability of the product being
susceptible to the attack, PEnc_nosus is the probability of
the encryption key being resistant to bypassing (0% if
not present) and PAdmin_sus is the probability that the
admin credentials are susceptible to a word combination
in a 1-M word dictionary.
Figure 6 Infected node population (London).



Figure 8 Effect of product susceptibility on infection rate
(London, radius = 30).
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This can also be considered an investigation into the
effect of device heterogeneity in the population on viral
propagation, as higher susceptibility is analogous to
lower heterogeneity. In order to assess this effect within
the population, the proportion of products susceptible to
the virus in Equation 2 (PProd_sus) has been varied from
10%, the value used in all previous calculations, to 60%.
Curves for susceptibility values outside of this range can
be extrapolated from the data. This effect produces a
proportional change in the total number of infected de-
vices, as seen in Figures 7 and 8; however, this still re-
lates to a small percentage of the total available APs.
Restrictions on the influence of PProd_sus may be

caused by the relative distance between APs and the dif-
ficulty in connecting between them over a large area.
Thus, the susceptible APs are still sufficiently separated
and at the mercy of geography such that increasing the
vulnerable firmwares has limited influence on perform-
ance. We deduce from this result that AP connectivity
density is a more significant factor for virus propagation
than product susceptibility.

2.6 Spread of infected area
The current implementation assumes that AP-AP infec-
tion is the only viable route and does not take into ac-
count the possibility of clients becoming infected.
Breaching the AP-client link is the only major barrier to
true virus mobility. While this aspect has not been con-
sidered here, possibilities may be presented through
phishing or URL redirection techniques. Should this
hurdle be surmounted, then the current restriction to
virus propagation (i.e. the AP connection radii) is re-
moved and the attack becomes much more dangerous.
The attack area would no longer be fixed, and the virus
carrying clients (virus carriers) could spread the virus
amongst APs they come into contact with.
Considering this, a major factor in the spread of the

virus may not be the number of APs infected, but the
physical area over which these infected APs can connect
Figure 7 Effect of product susceptibility on infection rate (Belfast, rad
to clients. Thus, any client which resides even temporar-
ily within this infected area and connects to the infected
AP could find itself susceptible to infection. Figures 9
and 10 show the spread of infected area, as increasing
numbers of APs are infected for each radius and site.
The maximum limit of infected area is given as ap-

proximately 9 km2 for a radius of 50 m in Belfast and
approximately 72 km2 for 50 m radius in London. This
equates to 25% and 225% of the total area under
consideration, respectively. For Belfast this is a signifi-
cant portion of the area under consideration, and a
large geographical area, which allows APs in the vicin-
ity to connect to a large volume of mobile clients. For
London the value of 225% indicates that over twice
the geographical area is covered by the APs. This re-
sult is a consequence of the method used to generate
overlap information.
The area is calculated in the model as the total area

covered by two overlapping radii, the attacking device
and the victim. This process does not take into account
overlaps of more than two APs, as this was deemed to
add too much complexity. In locations of sparse infec-
tion and connectivity, this is deemed to be an acceptable
estimate, as the likelihood of a significant amount of
multiple infected APs covering the same area is remote.
ius = 30).



Figure 9 Spread of infected area due to AP radius (Belfast).
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This is not necessarily the case for high-density envi-
ronments, as indicated by the 225% infection area
coverage attributed to London. What this result does
show, however, is that for London the area is suffi-
ciently dense that multiple APs are covering the same
geographical area, so a smaller percentage of APs are
required to infect the maximum coverage area, showing
that connectivity density is a determining factor in the
success of the virus.

3 Attack detection
The Chameleon attack is a significant threat to WiFi se-
curity with implications including data theft and device
malfunction. It has been shown in [4] that the current
layer 2 wireless intrusion detection systems (WIDS), Kismet,
has a low probability of detecting this attack or the
propagation of the virus through an environment.
This is principally due to the lack of both attacker and
victim traffic existing on the network at the same time. The
result is a highly dangerous and pervasive WLAN threat
that has not been defended against in previous work.
Due to the nature of the attack, it can only be tested

in a laboratory environment, outlined in Figure 11, ra-
ther than in a live testing environment. During the test-
ing carried out in [4], layer 2 wireless traffic was
collected by the Kismet IDS which failed to detect the
Figure 10 Spread of infected area due to AP radius (London).
presence of the attack. This same data can be employed
here, through offline processing, to design a method of
detecting this attack.
The use of layer 2 management frame traffic from

WiFi networks has many positive attributes for research
applications. As this management header traffic is
broadcast in plaintext and devoid of any encryption, it
can be collected with fewer privacy or confidentiality
concerns. These concerns are often a major barrier to
performing practical WiFi network research in live
environments.
The distributions of beacon inter-arrival times before

and after an attack indicate that a subtle, potentially de-
tectable change has occurred. Figures 12 and 13 show
the difference in the pre-attack and post-attack distribu-
tions for APV-P1 in Figure 11. Comparison of these
graphs demonstrates that while the modal peak remains
in both distributions, the distribution of higher interval
values are different. The modal peak, which resides
around 0.1024 s, represents the ability of the device to
produce beacons at a rate of 10/s. The higher interval
values are expected to represent firmware and device op-
erational nuances (e.g. frame processing or transceiver
response time), so the change in these ranges represents
the best detection potential for a device identity system.
It is important to note that none of the APs under

consideration here was in operational use and thus
have no uncontrolled traffic on them other than that
produced by the client generators indicated as ‘C’ in
Figure 11. Thus, deviations can be said to be caused
entirely by external entities such as people, networks
and network behaviour. In the presence of these inter-
ference sources, the perpetration of the attack can be
observed visually. These findings are typical of the ma-
jority of instances where the attack was observed in the
laboratory tests.

3.1 Detection method
Figures 14 and 15 demonstrate the beacon intervals
over the course of a Chameleon infection of an AP, as
observed from the IDS location in Figure 11. It can be
seen in Figure 14 that the attack clearly changes the
interval values; however, the change is less evident in
Figure 15. It is difficult to determine where the attack
has taken place, although an algorithmic approach
could improve this.
The overlay of an exponentially weighted mean (run-

ning average) on the dataset produces a good indicator
of the expected average values over time, as demon-
strated in Figures 14 and 15. This average is fairly resist-
ant to large deviations in the data; however, it is too
insensitive to significant changes in average deviation to
be useful as a detection technique by itself. Figures 14
and 15 also contain an overlay of a windowed average



Figure 11 Laboratory setup.
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(size 20 frames). In each of these cases the windowed
average is sensitive to the change in average interval
where the running average is not. This indicates that a
combination of the two averages can be employed to act
as the identification algorithm.
The addition of a windowed average which is more sen-

sitive to change raises the question of outlier removal. A
strict and adaptive outlier detection method ensures dy-
namic selection of outliers based on current averages. This
dynamic outlier threshold algorithm operates as follows,
where the algorithm is independently applied for win-
dowed and running averages:

1. Wait until settling has been observed for the average
following the method presented [15].
Figure 12 Pre-attack distribution of beacon intervals.
2. Create outlier detection bounds above and below
the average based on the standard deviation
multiplied by an outlier standard deviation range
(initialised as 4).

3. If an outlier is detected as lying outside of these
bounds it is excluded from further average
calculations, but the number of outliers is
incremented in a variable.

4. If the number of outliers detected represents larger
than 0.03% of the total observations, then the outlier
standard deviation range is increased by 3% of the
current value.

5. If an observation is not detected as an outlier, then
the outlier standard deviation range is decreased by
1% of the current value (the absolute limits of



Figure 13 Post-attack distribution of beacon intervals.

Milliken et al. EURASIP Journal on Information Security 2013, 2013:2 Page 10 of 14
http://jis.eurasipjournals.com/content/2013/1/2
outlier standard deviation bound are restricted to
between 3 and 5).

This process is described as pseudo-code in Figure 16.
This outlier detection system has been employed to re-
move impulse outliers, i.e. those which are created by
temporary interferers rather than a general change in
the trend of the traffic. The bound increases slowly
once outliers are detected but will return to the original
value if the outliers then disappear. However, if many
outliers are detected, then they may be considered a
permanent change in the average value and are then
allowed to influence the average as the bound increases
to include them.
The choice of increase percentage, decrease percent-

age and absolute limits is based on the expected level of
outliers in a standard normal deviation. In the case of a
normal distribution, 99.7% of all traffic should be found
within three standard deviation bounds. Thus, outliers
should make up 0.3% of the traffic. Should the outliers
Figure 14 Demonstration of the difference between running average
be deemed to represent more than 0.3% of the total traf-
fic, then the algorithm considers that there may be a
change in the average and increases the outlier bounds
to accommodate this new traffic. If this new traffic con-
tinues to exhibit values outside of the bounds, then the
average changes accordingly (3%) and the standard devi-
ation bound can reduce again once the new average has
been altered; however, it reduces more slowly (1%) since
values within the bounds are more common. The
bounds are restricted to between 3 and 5 to enforce sta-
bility and still exclude major outliers, while taking into
account the possibility of slow change to the average.
This outlier removal algorithm excludes many of the

impulse outliers and allows the remaining data to be
used to estimate suspicious changes in the interval aver-
age value. The algorithm used to detect this illegitimate
change operates as follows:

1. Wait until settling has been observed for the beacon
frames, following the method in [15].
and windowed average (20 frames) for APV-P1.



Figure 15 Demonstration of the difference between running average and windowed average (20 frames) for APV-E1.
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2. Set upper and lower bounds to 10% of the
windowed standard deviation for the running
average and the windowed average, as presented
in [15].

3. Compare the lower bound of the windowed average
to the upper bound of the running average and
vice versa.
Figure 16 Outlier detection pseudo-code.
4. If the windowed bounds violate either of these
conditions, these are attributed a value of +1,
otherwise attributed a value of −1.

5. Maintain a running sum of the previous 20
numerical values stated in step 4.

6. If this sum exceeds the 0 threshold point then the
Chameleon attack has been detected.



Figure 17 Attack detection pseudo-code.
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This process is described as pseudo-code in Figure 17.
The algorithm estimates how similar the current (win-
dowed) average is to what the expected (running) aver-
age should be for a specific access point. If this
windowed average is statistically different, based on the
standard deviation, from the running average for a sig-
nificant length of time (20 frames in this case), then an
attack can be registered.
Figures 18 and 19 plot the behaviour of the beacon sum-

mation algorithm for APV-P1 and APV-E1. The dashed
Figure 18 Performance of the summation algorithm for APV-P1.
green line, entitled ‘SUM of 20 Previous deviations’, dem-
onstrates the observation at which the attack was detected
according to the attack detection pseudo-code. Once the 0
SUM threshold has been breached, the attack has been
detected, regardless of whether the SUM subsequently
drops below the threshold again. Both of these images in-
dicate that this system is able to accurately detect the pres-
ence of the Chameleon rogue AP attack. The results from
applying this algorithm to the test dataset are given in
Table 2, which show that the attack can be detected



Figure 19 Performance of the summation algorithm for APV-E1.
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between approximately 23 and 97 s after the completion
of the attack. Within this time, approximately 30 to 60
beacon observations were required to come to this conclu-
sion. These values represent low requirements on time
and observations for attack detection.

4 Conclusions
To aid analysis of WiFi viral performance, this work has
proposed a new metric for virus propagation perform-
ance. The results presented indicate that the use of total
numbers infected, infectiousness, reseeding or infection
time frame alone are poor barometers of success of this
type of virus. This is due to the large influence of either
location or connection radius size on all of the factors.
Rather, it is shown that the ratio between the time frame
for total infection (days to completion) and the level of
reseed required (independence ratio) is a more objective
measure of success, as it indicates the level of human
interaction required in order to maintain a level of self-
sustaining propagation.
This work demonstrates that AP connectivity density

is a more important factor for virus propagation than
product susceptibility. Furthermore, the virus accelerates
in a totally virgin environment, but decelerates as nodes
Table 2 Results of summation algorithm for each AP in
the laboratory experiment

AP Observed
number of
attack

Observed
number of
detection

Running
average

interval (s)

Time until
detection

O1 1,091 1,122 3.13 97.03 s

O2 994 1,025 0.75 23.25 s

E1 36,876 36,942 1.13 74.58 s

P1 1,298 1,329 3.03 93.93 s

P2 16,899 N/A 0.75 N/A
are infected, showing that the risk of an epidemic occurs
much earlier than as would otherwise be indicated by
the days to completion results. The geographical area
which an infected network of APs can cover is estimated
as falling between 25% and 225% of the total area under
consideration. This shows that even for small numbers
of infected APs, the coverage area of an urban area can
be significant, presenting danger to clients in the vicin-
ity who may connect to infected APs and indicating
that an AP-client infection method could greatly in-
crease the threat of the virus. Hence, connectivity dens-
ity is currently the defining factor in success of the
virus, but this may not be the case if AP-client infec-
tions are employed.
The example locations chosen represent high- (London)

and medium (Belfast)-sized urban environments, based on
the density of APs. Density of APs then impacts quite sig-
nificantly on the infection ability of the virus, or any com-
puter virus which relies on physical proximity. While only
two cities have been investigated, the effects presented
here demonstrate that as population density increases, the
effects and threat posed by such a virus increase.
Finally, this work presents a method of detecting the

Chameleon virus using WiFi layer 2 packet average in-
tervals for beacon frames. The virus constitutes an
advanced rogue AP attack which copies both device cre-
dentials and location and does not require increased
traffic levels to operate. This renders it outside of the de-
tection ability of current detection systems and has until
now not been shown to be experimentally detectable.
Two algorithms have been developed to facilitate this:
dynamic outlier detection and AP traffic identity detec-
tion. This can be used to attribute identity to a specific
AP from that collection location. Application of this
identity attribution system has been shown to detect the
Chameleon attack in a laboratory environment within a
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time frame of 23 to 97 s or 30 to 60 observations of
beacon intervals.

Endnotes
ahttp://www.giac.org/paper/gsec/4060/rogue-wireless-

access-point-detection-remediation/106460
bhttp://www.sans.org/reading-room/whitepapers/

detection/understanding-intrusion-detection-systems-337
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