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Watermarking payload is a topic in which the watermarking researchers have a great interest at present. Based on the constraint
of “perceptual invisibility,” this paper makes a study of the maximum watermarking payload of spatial domain image, which is
related to not only embedding intensity, but also to factors such as the size of image, image roughness and visual sensitivity,
and so forth. The correlation among the maximum payload and the embedding intensity and size of an image is theoretically
deduced through the objective estimation indicator of the peak signal to the noise rate (PSNR) while the relationshipmodel among
watermarking payload and image roughness and visual sensitivity is deduced through effective experiments designed on the basis
of subjective estimation indicators. Finally, taking all these relationship models into account, this paper proposes a watermarking
payload estimation method and verifies its effectiveness through experiments.

1. Introduction

The research on technologies of information hiding and
digital watermarking has developed for nearly twenty years.
Information hiding is applied to covert communication,
and digital watermarking is applied to copyright protection.
They share one feature in common: When some data are
embedded into the carrier data, no obvious damage is
caused. Therefore, the key point of information hiding and
digital watermarking is the same and that’s what is called
information hiding in a broad sense [1]. However, differences
in their application environments result in different research
emphases and requirements. Information hiding emphasizes
on the resistance to steganalysis attacks while digital water-
marking stresses the perceptual invisibility.

The existing research literature about information hiding
capacity has established theoretical models for information
hiding and drawn different capacity expressions for different
models. Moulin and O’Sullivan [2] proposed an information
hiding model by abstracting the process of information
hiding and using the communication model to represent
information hiding. The information hiding capacity is
considered as the maximum of reliable transfer rate under

the communication model. However, this abstract model is
not suitable for the still image information hiding model
and cannot be applied to estimate the spatial domain image
steganographic capacity. Supposing that the carrier infor-
mation is state traverse, Cohen and Lapidoth [3] provided
the estimating range for information hiding capacity. But in
reality, not all the image carriers are state traversed. Though
the research of Somekh-Baruch andMerhav [4] is an advance
for theMoulin model, it is still limited to the communication
model. Reference [5] proposed a secure steganographic
method based on the payload and analyzed the correlation
between image complexity and payload, but this research
is confined to the DCT domain and the payload of spatial
domain format is not involved. References [6, 7] made an
analysis of information hiding capacity by introducing the
case theory, but this research can only be made when the
carriers follow the Gaussian distribution.

This paper aims to make a research on the digital
watermarking payload. Digital watermarking manages to
embed secret information into the carrier data without
affecting the use of carrier or arousing visual suspect. Once
the watermarked carrier is suspected to have carried secret
information, watermarking fails. The most direct constraint
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for watermarking is “perceptual invisibility.” When still
images are used as the host image, the perceptibility is
subject to subjective identification. The most direct reason
for changes in perceptibility is the payload of the image.
Given an image which has a certain size, if the watermarking
algorithm is fixed, the maximum payload is also fixed. As a
result, what the watermarking researchers are interested in
recently is the maximum payload of still images under the
constraint of “perceptual invisibility” [7].

Based on the constraint of “perceptual invisibility”, this
paper makes a study of the maximum digital watermarking
payload of the spatial domain grayscale image. Factors
restricting the maximum payload are not only internal but
also external. The external factors are size of an image,
embedding intensity, and so forth. while the internal factors
are image roughness, visual sensitivity, and so forth. As is
evident, just like a reservoir, the larger the image is, the larger
the payload is. On the contrary, the greater the embedding
intensity is, the smaller the payload. For instance is, to
spatial domain embedding with the same embedding rate
of 1 bpp (bits per pixel), higher bits embedding is more
perceptible than lower bits embedding because changes in
higher bits produce far more noise than those in lower
bits embedding do. Different degrees in roughness result in
different perceptibility because while it is difficult for naked
eyes to identify the subtle changes in a highly rough image,
it is easy to identify those changes in a smooth image [8–11].
The sensitivity of naked eyes to change in different images is
varied, which is affected by brightness, image contrast, and so
forth of the images. This paper carries on a research on the
correlation between the payload and these factors, provides
the payload estimation methods and verifies its applicability
through experiments.

This paper is organized as follows. The external factors
influencing the payload are discussed in Section 2. The
internal factors influencing payload are elaborated on in
Section 3. Section 4 introduces the subjective and objec-
tive estimation systems for perceptibility. In Section 5, the
correlation between payload and the internal and external
factors is discussed theoretically. Section 6 is devoted to the
experiments and the testing results. The summary and future
work are provided in Section 7.

2. External Factors Influencing Payload

Under the constraint of “perceptual invisibility,” the external
factors influencing the payload are mainly the size of an
image and the embedding intensity. The size of the image
is in direct proportion to the payload. It is like a reservoir;
the larger the pool is, the larger the payload is. To study the
influence of embedding intensity on watermarking payload,
some knowledge about the digital watermarking embedding
method should be introduced first.

The traditional image information hiding can be divided
into two categories: spatial domain information hiding and
transform domain (such as the DCT transform domain,
the wavelet transform domain, etc.) information hiding
[12]. Most watermarking methods in spatial domain embed
the watermarking information directly into the original

image information, such as embedding the watermarking
information into the least significant bit (LSB) plane [13–15]
of the original image.

Referring to references [4, 5, 16–19], a common spatial
domain image watermarking formula can be summed up as
follows:

f s = f c + β ·w or f s = f c
(
1 + β ·w). (1)

Here, f s and f c refer to pixel values of the watermarked
image and the clean image, respectively; w refers to the secret
information embedded; β refers to the embedding intensity.
In the LSB embedding, the value of β · w in the first part of
formula (1) is−1, 0 or 1.When the value of β is very large, the
embedded information causes great image distortion. Thus,
the perceptibility is changed and embedding fails. To have a
better understanding of the image payload, the definition of
embedding intensity is introduced.

Definition 1 (Embedding intensity). Embedding intensity
means to embed the secret information bit stream from a
certain bit plane of the image, and if the secret information
bit stream is not finished when this bit plane is full, it can be
embedded into the higher bit plane until it is finished.

This paper grades the embedding intensity into eight
levels, namely, β = 1, 2, . . . , 8. When β = 1, the embedding
begins from the first bit plane (also known as the least signif-
icant bits) line by line. If there is more secret information
bit stream to be embedded, it can be embedded into the
higher level until it is finished. While β = 2, the secret
information bit stream is embedded from the 2nd bit plane.
Similarly, it is embedded into the higher level until the secret
information bit stream is finished. By inference, while β = 8,
the watermark bit stream is embedded into the highest bit
plane of the image.

The payload of an image is related to its embedding
intensity. Under the constraint of “perceptual invisibility,”
it is obvious that when β = 1, the image has the largest
payload. The reason why the payloads under different
embedding intensities are researched is that when β =
1, it is actually an LSB watermarking method, for which
the current watermarking analysis method is very effective.
To avoid attacks on LSB, the watermarking researchers
choose different embedding intensities to embed the secret
information.

Generally speaking, improving the embedding inten-
sity can increase the resistance capacity and robustness
of smoothing, slightly recompression, Gaussian low-pass
filtering, and LSB steganlysis attacks. However, the robust-
ness of sharpen; geometric transform attacks cannot be
strengthened. Therefore, robustness is not wholly decided
by embedding intensity. This article is only an embedding
payload reference to the watermarking researchers. Accord-
ing to this purpose, we do the research of the upper limit
of embedding payload. The aim of this paper is to provide
payload reference for watermarking researchers. To achieve
this purpose, this paper studies the maximum payloads
under different intensities.
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3. Internal Factors Influencing Payload

Under the constraint of “perceptual invisibility,” the internal
factors influencing the payload are mainly the two factors of
image roughness and visual sensitivity.

3.1. Image Roughness. Visual perceptibility of changes in
image is not only related to variation but also to roughness
of the image, just like when a smooth surface is stained, it is
easy to identify but when the surface is rough, it is difficult
to identify the stain. Therefore, the maximum payload of an
image is closely related to the image itself.

3.1.1. 2D Histogram. A 2D histogram is based on the
united probability distribution of a pixel pairs [20]. Take
the two pixels f (i, j) and f (m,n) at (i, j) and (m,n) as an
example, the distance between the two pixels is r and the
line connecting the two points forms an angle of θ with the
horizontal line. Suppose an image I with gray level L is given,
then the 2D histogram can be expressed as follows:

Mr,θ(a, b) = P

(

f
(
i, j
) = a, f (m,n) = b

∣∣
∣
∣
∣

m = i + r cos θ

n = j + r sin θ

)

.

(2)

In (2), a and b refer to the gray values of pixel points of
the image. The 2D histogram can be seen as anM×N matrix,
which is called a gray subordinate matrix or empirical matrix
(EM). If the pixel pairs are highly correlated, then the factors
in Mr,θ(a, b) distribute close to the leading diagonal of the
matrix. The approximate estimate of probability distribution
of the EM is

P(a, b) ≈ N(a, b)
M

. (3)

M in formula (3) is the number of image pixels.N(a, b) refers
to the number of times that f ( j, k) = a and f (m,n) = b
appear.

3.1.2. Measurement Indicators of Roughness. Yang et al. [21]
have proposed many distribution indicators for texture
roughness measurement, such as autocorrelation, covari-
ance, moment of inertia, energy and entropy, and so forth.
The histogram of the fine-grained texture than the histogram
of the coarse texture is more evenly distributed in set
{(r, θ)}. The texture roughness can be measured through the
distribution range of the units occupied by the histogram
along the leading diagonal of the histogram. Therefore,
this paper employs moment of inertia as the measurement
indicator of texture roughness. The calculation formula for
moment of inertia is as follows:

S(r, θ) =
L∑

a=0

L∑

b=0
(a− b)2P(a, b). (4)

L refers to the highest gray value of the image. If the
texture area has angular invariance, the moment of inertia

d(r) of various distances r can be worked out through the
measurement angle of a single angle [22]

d(r) =
∑

θ

(S, θ)
Nθ

. (5)

The summation in formula (5) refers to that of the
whole angle and the scale measurement area. Nθ refers to the
number of angles. Since the distribution of image pixels is
disperse to make the calculation easier, the parameter (r, θ)
can be set as specific discrete value, such as r = 1, 2, 3, θ = 0,
π/4, π/2, −π/4. When the parameter (r, θ) is set as specific
discrete values, the calculation formula for image roughness
is

Rgh = E(d(r)) =
∑

r

αrd(r). (6)

E(·) refers to the mean operator, αr refers to the weight-
ing factor of moment of inertia d(r), and

∑
r αr = 1. The

image roughness represents the roughness of neighboring
pixels of the image; thus, in this paper r = 1, 2, 3 and the
weighting factors are 1/2, 1/3, 1/6. Figure 1 is 5 sample images
and the second column of Figure 1 is the roughness value of
sample images. In the sample images, the roughness of image
(b) is the greatest and that of image (d) is the smallest.

3.2. Visual Sensitivity. Perceptibility change is directly related
to the human visual system which is generally called visual
sensitivity. The sensitivities of human visual system towards
low brightness and high brightness are different. However,
the human visual system is a complex biological system
which has three stages of perception: encoding, represen-
tation, and comprehension [23]. There are many factors
restricting the perceptibility of human’s visual system. For
instance, Mach bands phenomenon is a case in which a target
is influenced by its surroundings and produces different
perceptions. This phenomenon shows that brightness is not
the monotonous function of visual sensitivity, that is, visual
sensitivity is not only influenced by brightness but also
by contrast of background. As a result, the perceptibility
change caused by watermarking is closely related to the image
contrast and brightness of the image.

3.2.1. Brightness and Contrast. The target brightness of
illumination distribution I(x, y, λ) is defined as [20, 24]

f
(
x, y

) =
∫∞

0
I
(
x, y, λ

)
V(λ)dv, (7)

where V(λ) is the relative illumination efficiency function of
the visual system. To human eyes, V(λ) is a bell curve, whose
features depend on whether it is scotopic or photopic vision.
For a grayscale image, its brightness is the pixel value of the
image. According to Weber’s law, if a target’s brightness f is
perceived as different from its surroundings, their ratio is

∣∣ fs − f
∣∣

f
= Δc, (8)

where fs is the brightness value of the neighboring pixels.
If fs = f + Δ f , Δ f is very small, and only big enough to
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(a) (b) (c) (d) (e)

Figure 1: Five sample images.

Luminance degree
f (x, y) Cones and rods

response
g()

Contrast degree
con(x, y) Transvers

restraining
H(u, v)

Sensitivity degree
s(x, y)

Figure 2: A simple homophony visual model.

distinguish different brightness. Then, (8) can be rewritten
as

Δ f

f
= d

(
log f

) = Δc, (9)

where d(·) is the differential operator. Formula (9) shows
that the equal increment of the lightness logarithm can
produce the feeling of equal difference, that is, Δ(log f ) is
proportional to Δc, which is the change in contrast; thus, the
following formula is obtained:

con = a + b log f . (10)

Formula (10) is commonly called contrast, where a and
b are constants. In researches on image coding, logarithm
law contrast is the widest choice. Logarithm law contrast is
defined as follows [20]:

con = 106.3027 log
(
f + 1

)
. (11)

3.2.2. Measurement Indicators for Visual Sensitivity. Visual
sensitivity is also called perceptible brightness. The
homophony visual model is introduced before visual
sensitivity is defined. Figure 2 is a simplified homophony
visual model. The light enters to the eyes, and the nonlinear
response of the cone and rod is represented by the point
nonlinear function g(·), producing contrast con(x, y). The
lateral inhibition phenomenon is represented by a linear
system which is spatially invariant and isotropous. Its
response frequency is represented by filter H(u, v)

H(u, v) = H
(
ρ
) = A

(

α +

(
ρ

ρ0

))

exp

(

−
(
ρ

ρ0

)γ)

,

ρ =
√
u2 + v2,

(12)

where A, α, γ, and ρ0 all are constants. ρ0 is the peak value
frequency while α = 0 and γ = 1. In image processing, it
is suitable to choose A = 2.6, α = 0.0192, ρ0 = 8.772, and
γ = 1.1. Figure 3 is the response curve of the linear system
H(ρ). From this curve, it can be seen that human eyes have
inhibiting effect on low and high frequencies and are most
sensitive to changes in medium frequency.

What are transmitted by linear system H(ρ) are neural
signals representing the perceptible lightness on the surface,
that is, the sensitivity of human eyes to objects s(x, y). From
the visual model, the sensitivity s(x, y) can be easily worked
out:

s
(
x, y

) = I−1(con(u, v)H(u, v)),

con(u, v) = I
(
con

(
x, y

))
,

(13)

where I refers to 2D Fourier transform and I−1 refers to the
2D inverse Fourier transforms. To describe quantitatively the
whole sensitivity of human eyes to the single M × N image,
its average value is adopted to represent the image sensitivity
ds

ds = E
(
s
(
x, y

)) = 1
M ×N

M∑

i=1

N∑

j=1

∣
∣s
(
x, y

)∣∣. (14)

The third column in Table 1 lists the sensitivity values of
5 sample images. Human eyes are most sensitive to changes
in sample image (d) but least sensitive to changes in image
(a).

3.3. Relationship between Image Roughness and Visual Sen-
sitivity. It can be concluded from Sections 3.1 and 3.2 that
image roughness is related to visual sensitivity. From the
perspective of visual sensitivity, the visual sensitivity model
(Figure 3) is not only related to the photo response of cone
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Table 1: Image roughness and visual sensitivity of the sample
images.

Images Roughness Sensitivity

(a) 119.1 79.348

(b) 906.51 83.581

(c) 377.23 85.204

(d) 106.78 95.899

(e) 666.28 90.293

and rod, but also related to the image contrast which is
based on the image content. From the perspective of image
roughness, its value is completely dependent on the image
content. Thus, image roughness is related to visual sensitivity.

Three hundred cover images (for source of the images,
see Section 6.1) are collected. Their image roughness Rghi
and visual sensitivity dsi can be worked out by making use
of the image roughness and visual sensitivity, where i =
1, 2, . . . , 300. Then, normalize them according to (15) and
work out the image roughness and visual sensitivity after
their normalization

Nrghi =
Rghi −min

(
Rghi

)

max
(
Rghi

)−min
(
Rghi

) ,

Ndsi =
dsi −min(dsi)

max(dsi)−min(dsi)
.

(15)

The dotted line in diagram 4 is the connected line of dots
(Nrghi ,Ndsi) of the image roughness and visual sensitivity of
300 clean images. When image roughness value is small, the
sensitivity shock is high; when image roughness value is big,
the sensitivity is stable, with its value around 0.4; when the
roughness is in the middle (during the period of [0.4, 0.5]),
the sensitivity reduces sharply. In general, the sensitivity
reduces as the roughness increases. The line in Figure 4 shows
this phenomenon.

4. The Estimation System of
Image Visual Perceptibility

There are two estimation systems for image visual percepti-
bility: one is subjective, and the other is objective. According
to the criteria of digital image processing [12], this paper
adopts the perception rank for the subjective standard and
PSNR for the objective standard to measure the distortion of
the image.

4.1. Subjective Estimation. Ranks are based on the change
rank when an image is compared with an originally clean
image. Referring to a relevant image fidelity criterion [20],
the image perception changes are rated into five ranks
and each rank is quantized: unnoticeable (−2), not evident
(−1), slightly evident (0), evident (1) and very evident
(2). Different individuals have different perceptions and
visual sensitivities. Therefore, subjective estimating is often

H
(ρ
)

ρ

Figure 3: The curve of H(ρ).
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Figure 4: Relation between visual sensitivity and image roughness.

conducted by several image experts in watermarking field.
The average ranks can be represented as (16)

R =
(∑n

i=1 sini∑n
i=1 ni

)

, (16)

where si is the score of rank i, ni refers to the number of
the observers in this gradation, and n refers to the number
of ranks. Figure 5 depicts a subjective decision device, the
smaller the value of R is, the lower the perceptibility of the
watermarked image is; the larger the value of R is, the easier
the watermarked image is perceived. The change in image R
which the observers cannot judge accurately should be less
than –0.1. Suppose that the observer thinks of a tolerance
range as 0.2, when the average rank R is between [−0.1, 0.1],
no judge is made. But when R is larger than 0.1, the observer
can definitely judge that there’s change in perceptibility. This
means the embedding fails. Therefore, R of a watermarked
image not to be perceived by the observers should be between
[−2, 0.1].
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Figure 5: Discrimination classifier based on subjective estimating.

4.2. Objective Estimation. Objective estimation is a quanti-
tative measurement, and PSNR is an effective visual fidelity
indicator. Suppose that a watermarked image fs(x, y) is
obtained after a clean image fc(x, y) is watermarked, then the
mean square error (MSE) σ2e of the watermarked image and
the clean image is

σ2e = E
⌊∣
∣ fs
(
x, y

)− fc
(
x, y

)∣∣2
⌋
. (17)

Then, PSNR using dB as a unit is defined as

PSNR = 10log10(255∗ 255)

σ2e
. (18)

The amount of information of a arbitrary host image is
defined as 255 ∗ 255, which is a fixed value. The variation
of the image is only related to the MSE σ2e . The more data
the watermarking researchers embed, the larger the MSE
σ2e is and the smaller the PSNR is. In such a situation, the
watermarked image can be perceived more easily. On the
contrary, when the data embedded is smaller, the MSE σ2e is
smaller, the PSNR is larger, and the watermarked image is less
likely to be perceived.

Generally, the change in the image is imperceptible [20]
when PSNR ≥ 40. But can it be concluded that when PSNR <
40, the images change is not perceptible? The answer is no
because it is closely related to the internal factors (mainly
the image roughness and visual sensitivity). For example,
suppose that two images have different contents but the same
variation, and then their PSNR values are the same. But it can
happen that the change in one image is perceptible and the
change in the other is not. However, for the same image, its
imperceptible minimum PSNR is fixed. Hence, to the same
image, PSNR is a criterion for both the visual perceptibility
and the payload.

5. Analysis of Payload

Themaximum payload of a given image under the constraint
of perceptual invisibility is one of the main concerns for
the watermarking researchers. From another perspective,
what kind of image should be chosen as the carrier to hide
a certain amount of watermarking is also the concern of

the watermarking researchers. Both these two problems are
related to payload.

Maximum payload refers to the maximum payload of the
carrier under a certain constraint. Based on the constraint
of “perceptual invisibility,” maximum payload refers to the
higher limit of watermarking data embedded into the image.
If exceeding this limit, the watermarked image is perceived
by the observer, that is, the observer discovers the change in
the image quality, which is unbearable for the watermarking
researchers because it means failure of the watermarking
algorithm. But of course, the perception of this kind of
change happens in the situation when the observer has the
original host image.

From the analysis above, it can be concluded that the
payload is not only related to embedding intensity but also
to the factors such as the size of the image, roughness and
visual sensitivity, and so forth.

5.1. Relation between Payload and Embedding Rate. Suppose
that there is a spatial domain grayscale image f (x, y) with
a size of M × N to be embedded, under the constraint of
perceptual invisibility, the arithmetic model for estimating
its maximum payload is

Cf = Re
(
size,β,Rgh,ds

)
, Condition: R ≤ 0.1. (19)

Here, size =M ∗N , β refers to the embedding intensity, Rgh
refers to image roughness, ds refers to visual sensitivity, and
the constraint R refers to subjective estimating rank. Under
most circumstances, the larger the size of the image is, the
greater the payload is. It is like a reservoir. Therefore, formula
(19) can be transferred as:

Cf = size∗ Re
(
β,Rgh,ds

)
. (20)

Suppose that the embedding rate is Re (bits per pixel,
bpp). Then, the relation between the embedding rate and
embedding intensity, roughness, and sensitivity is

Re = Cf

size
= Re

(
β,Rgh,ds

)
. (21)

To obtain the maximum payload of the image, the rela-
tion between the embedding rate and embedding intensity,
roughness and sensitivity should be obtained first. In the next
section, the influence of embedding intensity on embedding
rate is analyzed with the objective estimating system.

5.2. Relation between Embedding Rate and Embedding Inten-
sity. To give a clear description of the relation between
embedding rate and embedding intensity, the concept of
embedding factor is introduced.

Definition 2 (Embedding factor). Embedding factor λmeans
to embed secret information bit stream only into a single bit
plane of the image. For example, if the secret information bit
stream is only embedded into the first bit plane, then λ = 1. If
it is only embedded into the second bit plane, then λ = 2, . . ..

When secret information bit steam is embedded into the
ith bit plane, difference between the watermarked image and
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the clean image only happens on the ith bit plane and the
difference e is 0, −1, or 1. Its probability to appear is [25]

P(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
, e = −1,

1
2
, e = 0,

1
4
, e = 1.

(22)

If embed information with the embedding rate of Reλ=i into
the ith bit plane, its MSE is

E
(
σ2e | λ = i

) = (Reλ=i)∗
1∑

e=−1

(
e ∗ 2i−1

)2 ∗ P(e). (23)

If it is full imbedded on the ith bit plane, that is, when
Reλ=i = 1, the mean square error on this level is

Aeri =
1∑

e=−1

(
e ∗ 2i−1

)2
P(e). (24)

Therefore, it is easy to obtain the relation between the
embedding rate and the mean square error on the ith bit
plane when it is not full imbedding

Reλ=i = σ2e
Aeri

. (25)

Suppose that the maximum MSE of an image when the
images are visually imperceptible is σ2e , when embedding
intensity β = i, the steps of method 1 to calculate the
maximum embedding rate is as follows.

Step 1. Initialization: Re = 0.

Step 2. Making use of (24) to work out the full imbedding
mean square error Aeri on the ith bit plane.

Step 3. If σ2e ≤ Aeri , then Re = Re+(σ2e /Aeri). The end.

Step 4. Re = Re + 1, σ2e = σ2e − Aeri , i = i + 1, go to Step 2.

The method above is used when “the maximum MSE of
visual imperceptibility” is clearly known. But in reality, the
maximum mean square error of visual imperceptibility of
an image is difficult to get beforehand because it is related
to image roughness and visual sensitivity. Therefore, the
relation between the maximum embedding rate and image
roughness and visual sensitivity is deduced through subjec-
tive estimation (the MSE belongs to objective estimation) in
the next section.

6. Experimental Derivation and Verification

To effectively estimate the payload of images under the
constraint of perceptual invisibility in the carriers, this
paper conducts an experiment to find the relation between
payload and image roughness and visual sensitivity. Before
the experiment, we make preparations as follows.

6.1. Data Preparation for Experiments. To deduce the relation
between payload (or embedding rate) and image roughness
and visual sensitivity, 300 various images have been collected,
among which, 150 BMP images are downloaded from an
image database [26] and 150 are classical images taken by the
author with digital cameras which are often used in image
treatment. To make the data models universal and reason-
able, in the experimental images, there are simple images
without any detail and images containing great details; there
are images of mountains, rivers, people, animals, plants, and
so forth. All the images are treated by using the ACDSee
image treatment software, the colorful ones transferred into
gray ones, non-BMP images transferred into BMP ones, and
all of them are cut into sizes of 256 × 256. These images
constitute clean image data. Figure 2 is a cover image of this
specification.

6.2. Determination of Experiment Project. The aim of this
paper is to estimate the maximum payload under the con-
straint of perceptual invisibility in the carriers. The payload
is not only related to the image size and embedding intensity,
but also to image roughness and visual sensitivity. We have
discussed both the relation between the maximum payload
and the image size and that between the embedding rate
and the embedding intensity, and obtained the calculating
formula (21) for maximum the embedding rate. Thus, the
key to studying the payload is to study the relationship
model of the embedding rate and the image roughness, visual
sensitivity, for which the following two steps are of vital
importance.

(1) The watermark method of increasing the payload
dynamically. This watermark method means to
increase the payload constantly in the process that
the observer judges whether any visual perceptibility
has happened. According to (1), we designed a
watermark method which can change the embedding
intensity β. Given a certain β, watermark information
bit steam begins to be embedded from the βth bit
plane. When β is embedded to full, there is no
visual perceptibility happening in the image. Then,
continue to embed from level β + 1, the watermark
embedding will not stop until visual perceptibility
happens in the image. Figure 6 is the watermark-
image of different payload (or embedding rates)
when the embedding intensity β = 1.

(2) Deciding the embedding intensity. When it is full
embedding, the following can be worked out:
E(PSNR | λ = 1) = 51.141, E(PSNR | λ = 2)
= 45.1205, E(PSNR | λ = 3) = 39.099. From
these data we can see that when it is only embedded
into the first bit plane (LSB embedding method), its
PSNR is far higher than 40, which is to say naked
eyes can hardly perceive the changes in the image.
But from the 2nd bit plane, PSNR is lower than
the secure value of 40, and the watermarked image
may be perceived. When first, second, and third
bit plane are all embedded with secret information,
its PSNR is 37.9189, and then the possibility of
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Embedding payload (β − 1) Cover image with a certain embedding payload

60.8 kbits

121.6 kbits

184.2 kbits

Figure 6: The sample images with payload of 60.8 k, 121.6 k, 184.2 k bits using our watermark method while β = 1.

its being perceived is greater. But this is only the
possibility of being perceptible, whether it is really
perceptible is closely related to image roughness and
visual sensitivity. Since when only the first bit plane is
embedded with information, its PSNR is far higher
than the secure value of 40, it can be concluded
that whether the first bit plane is embedded with
information or not exerts little influence on visual
perceptibility of the image. Therefore, this paper
makes a research on the maximum payload (or
maximum embedding rate) from level 2, that is,
when β = 2.

After the embedding intensity is decided, the experiment
plan can be designed as in Figure 7. Choose a host image at
random. First, calculate its roughness and sensitivity. Then,
without causing any visual perceptibility, embed water-
marking information constantly until perceptual visibility
happens to the image. The embedding rate value can be
obtained by dividing the embedding amount until the last
embedding by the size of the image.

6.3. Experiment of Estimating Maximum Payload. From
the analysis above, it can be concluded that under the
constraint of perceptual invisibility, the key to working
out the maximum payload is to work out the maximum
embedding rate. Seven postgraduates, all of whom have
participated in image treatment for a long time, are invited
to be the evaluation experts for perceptible changes, and 200
images are chosen from the image library of 300 at random
to be the host images. In accordance with the experiment

Cover image

Embedding

Temporary
watermarked

image

R ≤ 0.1?
Yes

No

Perceptible
(watermarked

image)
Length of
watermark

β = 2

Embedding
rate

Vote

Watermark
1011100 · · ·

Figure 7: The block diagram of incremental embedding procedure
to determine the embedding rate.
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Figure 8: Relation among the embedding rate, roughness, and
sensitivity of the two hundred images when β = 2.
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Figure 9: Binary relationship model between the embedding rate
and roughness in Figure 8.

plan, the information is embedded from the second bit
plane. If the second bit plane is full, and the average level
mark of the judging team is R < 0.1; the information is
embedded into the next bit plane until R ≥ 0.1, when
this image cannot be embedded with information and the
estimation is over. Then, the estimation of the next image
begins. When β = 2, the maximum payload for this image is
the information altogether until it is embedded into the last
level. The relation between the embedding rate and image
roughness and visual sensitivity of the 200 images is shown in
Figure 8.

From Figure 8, the relationship model between the
embedding rate and image roughness and visual sensitivity
is hard to estimate. As a result, we divide the triadic relation
of the embedding rate and image roughness and visual
sensitivity into two binary relations between the embedding
rate and image roughness and between the embedding rate
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Figure 10: Binary relationship model between the embedding rate
and sensitivity in Figure 8.
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Figure 11: The error rate of 100 images.

and visual sensitivity. As to their relations, respectively, the
readers can refer to the broken lines in Figures 9 and 10.

By observing Figure 9, one can find that though the
embedding rate shocks greatly in the range of low roughness,
the embedding rate, and the image roughness show the
logarithm relation in general. We propose the relationship
model between the embedding rate and image roughness as

Re3 = a + b logc
(
1 + d ∗ Rgh

) (
0 ≤ Rgh ≤ 1

)
, (26)

where a, b, c and d are unknown constants. Observing
the trend in Figure 10, one can find that in general the
embedding rate and visual sensitivity show a inverted U
shape. As a result, we propose their relationship model as

Re4 = e − f ∗ (Sens− 0.6)2 (0 ≤ Sens ≤ 1). (27)
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Table 2: The five images actual and estimated maximum payload in Figure 1.

The sample Actual maximum payload (kilobits) Estimated maximum payload (kilobits)

Images β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

(a) 264.90 201.15 138.15 233.25 169.80 108.35

(b) 235.800 172.80 112.80 265.25 201.85 140.45

(c) 250.42 187.45 127.42 263.75 200.35 138.85

(d) 172 112 64 204.05 142.50 88.50

(e) 206.07 143.07 83.07 256.75 193.50 132.05

Similarly, e and f in formula (27) are unknown con-
stants. Do formulas (26) and (27) by geometric mean, and
the relation of the surface model between the maximum
embedding rate and image roughness when β = 2.

Re|β=2 =
√
a + b logc

(
1 + d ∗ Rgh

)∗
√
e − f (Sens− 0.6)2.

(28)

using the actual embedding rate of the 200 images in
experiments and the minimum mean square error of the
embedding rate estimated in (27) as the constraint, we obtain
that constants a = 0.9430, b = 2.5613, c = 101.7520,
d = 101.4355, e = 3.6930, f = 9.96500. Making use (28), we
can get the maximum embedding rate of the image when the
embedding intensity β = 2. On the basis of this maximum
embedding rate, how to work out the maximum embedding
rate under various embedding intensities?

To work out the maximum embedding rate under
various embedding intensities, the mean square error is
still used as the transition. Suppose that the maximum
embedding rate of an image when the embedding intensity
β = 2 is obtained as k ∈ R+ by using (28), then themaximum
mean square error can be worked out according to method 2,
which is described as follows.

Step 1. Initialization i = β = 2, σ2e = 0.

Step 2. Making use of formula (24) to work out Aeri on the
ith bitplane.

Step 3. If k ≤ 1, then σ2e = σ2e + k ∗ Aeri . The end.

Step 4. σ2e = σ2e + Aeri , i = i + 1, k = k − 1, go to Step 2.

When the maximum mean square error σ2e is obtained,
the method in Section 5.2 can be made use of to work out the
maximum embedding rate Re(β,Rgh, Sens) under various
embedding intensities. Then, the maximum payload can be
worked out by using (20).

6.4. Testing Results. Under the constraint of perceptual
invisibility, this paper proposes the estimation method for
maximum embedding capacity. To evaluate the effectiveness
of the estimation method, the error rate is introduced as
the evaluation indicator. Suppose that the actual maximum

Table 3: The mean and standard deviation of 100 image’s error
rates.

Embedding intensity Mean Standard deviation

β = 1 0.139 0.12261

β = 2 0.13512 0.1171

β = 3 0.12309 0.10291

Average 0.1324 0.1142

capacity of an image is a, the estimated maximum capacity is
b, then the error rate is

Rerror = |a− b|
a

. (29)

Using the 100 images left as the test images, the
experimental evaluation under three kinds of embedding
intensities (β = 1, 2, 3) are carried out. First, according to
the experiment plan in Section 6.2, the actual maximum
payload of 300 images under β = 1, 2, 3 are worked out by
the experts. Then, use our method to work out the estimated
maximum payload, respectively. Table 2 shows the actual
maximum payload and the estimated maximum payload of
the five images in Figure 1 under three kinds of embedding
intensities. From Table 2, one can easily conclude that the
larger embedding intensity is, the smaller the payload is, and
this is in accordance with what we discovered above.

The error rate in (29) reflects the deviation rate
between the image actual payload and the estimated payload.
Figure 11 shows the error rate of the payload of the 100
images tested. From Figure 11, it can be seen that the
estimation of most images are highly accurate. There is little
difference between the actual payload and the estimated
payload. But difference between the actual payload and
the estimated payload for few images is relatively great,
with some approaching 50%. Table 3 shows the mean
value and the standard deviation of the 100 images in the
experiment. Generally, our estimation method is effective in
that the average error rate of images tested under various
intensities is less than 15% and the standard deviation is
within 13%. From Table 3, it can be concluded that the
larger the embedding intensity is, the smaller the difference
between the estimated payload and the actual payload is
and the higher the accuracy is. The reason is that when the
embedding intensity is low, the payload is larger and it is
easier for deviation to appear.
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Table 4: Summarization for previous work and our proposed method.

Works Domain Number of factors Constraint Payload estimated method Estimation error

[3] Time-frequency domain 2 Imperceptible C = n−1 max
Q(X ,U|S,K)

( min
A(Y |X)

J(Q,A)) Unreported

[4] Time-frequency domain 2 Imperceptible C = max
(
1
2
log(1 + S(A;D1,D2, σ2

s )
)

Unreported

[5] Time-frequency domain 2 Imperceptible C = max(min(I(V ;Y)− I(V ; S)))
n

Unreported

[6] DCT domain 1 Secure steganography Unreported Unreported

[7] Time-frequency domain 2 Minimum error rate C = 1
2
log
(
1 +

D1

D2

)
Unreported

This paper Spatial domain 4 Visual imperceptible C = Re(size,β,Rgh,ds) 13.24%

7. Conclusion

In the recent twenty years, the technology of information
hiding has been widely applied to fields of copyright
protection (digital watermarking), communication, and
so forth. At present, most researches focus on how to
embed information without visual distortion and there have
been few researches on the maximum payload, that is,
the maximum payload under the constraint of perceptual
invisibility.

This paper proposes the estimation method for the
maximum payload. The maximum payload is influenced
not only by internal but also external factors. The external
factors are mainly the image size, embedding intensity, and
so forth while the internal factors are mainly the image
roughness, visual sensitivity, and so forth. The size of image
is in direct proportion to the payload while the embedding
intensity is in inversely proportional to the payload because
higher bits embedding generates more noise than lower bits
embedding does and the noise is the normalized indicator
of image distortion. Different degrees in roughness result
in different perceptibility because while it is difficult for
the human eyes to identify the subtle changes in a highly
rough image, it is easy to identify such changes in a smooth
image. The sensitivity of human eyes to changes in different
images is varied, which is affected by image contrast and
brightness. The correlation between the maximum payload
and the embedding intensity and size of image is theoretically
deduced through the objective estimation indicator of the
peak signal to noise rate (PSNR) while the relationship
model between watermarking payload and image rough-
ness and visual sensitivity is deduced through effective
experiments designed on the basis of subjective estimating
indicators. Finally, taking into account of all these relation-
ship models, this paper proposes the watermarking payload
estimation method and verifies its effectiveness through
experiments.

Table 4 summarizes both the estimation methods we
have proposed before and the methods proposed in the
previous literatures, which can be generalized as follows.

(1) Most references [3–5, 7] abstracted information hid-
ing into a Communication Theory Model and draw

different payload expressions from different models.
However, this kind of abstraction of models can only
act as a theoretical guide for hiding information
capacity estimation of the real objective images and
is not very much contributive to the accomplishment
of the project. The estimation method proposed
for hiding capacity estimation of the real objective
images is more contributive to the Engineering
Application.

(2) Reference [6] proposed a secure estimation method
for steganographic capacity based on the DCT
domain. It only proves the influence of image com-
plexity on payload by doing some experiments but
has not worked out the specific capacity estimation
method.

(3) These references have not reported the deviation rate
between the estimated value and the actual value.
But this paper proves the effectiveness of our way of
estimation through experimental tests.

There are still shortcomings in our method and further
research is still needed to improve the estimating accuracy.

(1) The method is rough. This paper makes a study
of the maximum watermarking payload of spatial
domain image under the conditions of invisibility,
in another word, the maximum embedding payload.
Different area has the different payload capacity.
For example, the payload of high roughness and
perceptual invisibility areas is higher than the area of
low roughness and visual sensitive areas. This article
does not do further research of this aspect; it is the
deficiency of this article and also further research
directions of ours, which is closer to the practical
applications.

(2) The experimental plan lacks novelty. Since evaluation
of visual perceptibility in images is needed in the
experiments, it costs much time of the experts. In the
future work, better plans will be designed to save the
experts time and to improve accuracy in estimating.
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