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1. Introduction

Video Surveillance has become a part of our daily lives.
Closed-circuit cameras are mounted in countless shopping
malls for deterring crimes, at toll booths for assessing tolls,
and at traffic intersections for catching speeding drivers.
Since the 9-11 terrorist attack, there have been much
research efforts directed at applying advanced pattern recog-
nition algorithms to video surveillance. While the objective
is to turn the labor intensive surveillance monitoring process
into a powerful automated system for counter-terrorism,
there is a growing concern that the new technologies
can severely undermine individual’s rights of privacy. The
combination of ubiquitous cameras, wireless connectivity,
and powerful recognition algorithms makes it easier than
ever to monitor every aspect of our daily activities.

M. W. Hail has conducted a recent survey assessing
citizens across demographic groups to see if they were com-
fortable with the expansion of government video surveillance

if it protected privacy rights. (The survey was a cooperative
effort through the University of Kentucky annual Kentucky
Survey and the research was sponsored by a grant from the
US Department of Homeland Security through the National
Institute for Hometown Security.) The survey research
was conducted utilizing a modified list-assisted Waksberg-
Mitofsky random-digit dialing procedure for sampling and
the population surveyed was noninstitutionalized Kentuck-
ians eighteen years of age and older. The margin of error
is £3.3% at the 95% confidence interval. The respondents
were asked, “Do you have a video security system that is
used routinely?” The results reflected that 55% of employed
Kentuckians have an operative video surveillance system at
their workplace. We then asked of those employed, “Would
you be interested in a video surveillance system at work
if you knew it could protect an individual’s privacy?” The
solid majority of 60% expressed that they were interested
in privacy protecting video surveillance. Urban residents,
those in higher income levels, and those with advanced



education attainment all were more disposed to privacy
protecting video technology. Additionally, focus groups of
law enforcement, first responders, hospitals, and public
infrastructure managers have all reflected strong interest in
privacy protecting video technology.

To mitigate public’s concern on privacy violation, it
is thus imperative to make privacy protection a priority
in developing new surveillance technologies. There have
been many recent work in enhancing privacy protection in
surveillance systems [1-8]. Many of them share the common
theme of identifying sensitive information and applying
image processing schemes for obfuscating that sensitive
information. However, the security flaw overlooked in most
of these current systems is that they fail to consider the
security impact of modifying the surveillance videos. There
are a number of security measures that must be incorporated
before such modifications can be deployed. Firstly, mech-
anisms must be in place to authenticate modified videos
so that no one can falsify a different modified video by
adding and deleting images of objects or individuals. We
call this measure privacy data authentication. The second
measure is that the original video must be preserved and
can only be retrieved under proper authorization. This is of
paramount importance to any privacy protection schemes as
all schemes are selective in the sense that the sensitive content
are intended to a certain group for a certain purpose. No
content should be permanently erased. For example, in a
corporation, the security camera officer may have access to
video contents of all visitors but not the employees; the chief
privacy officer will have access to video contents of visitors
and all employees except for the executive team but the law
enforcement, with a proper order from the court, will have
access to the true original footage. It has been postulated that
such a static privacy policy would not be sufficient in more
sophisticated environments or other sharing applications like
teleconference where each participant might need to control
the accessibility capability of each consumer of the content as
in [9]. We call this measure privacy data preservation.

As explained earlier, except for the simplest organization,
merely keeping the original video in encrypted form will
not be sufficient in addressing these needs. On the other
hand, it is advantageous to reuse the infrastructure of
existing standard based video surveillance systems as much
as possible. In this work, we propose using video data hiding
for preserving the privacy information in the modified
video itself in a seamless fashion. Using data hiding, the
video bit stream will be accessible for both regular and
authorized decoders but only the later can retrieve the hidden
privacy information. The use of data hiding for privacy
data preservation makes it completely independent from the
obfuscation step unlike in some other work [10, 11]. Also,
the presence of a single bit stream makes the process of video
authentication much simpler to handle. Digitally signing the
data hidden bit stream will authenticate the original video as
well as all levels of privacy protected data.

From copyright protection to error concealment, video
data hiding has found usage in a great number of appli-
cations. However, the application of using data hiding
for privacy data preservation is unique in the sense it
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requires huge amount of information to be embedded in
the video without disturbing the compression bit syntax.
Since data hiding disturbs the underlying statistical patterns
of the source data, it adversely affects the performance of
compression which are designed based on the statistical
properties of the data. As such, it is imperative to design a
data hiding scheme that is compatible with the compression
algorithm and at the same time, introduces as little
perceptual distortion as possible. In this paper, we propose
a novel compression-domain video data-hiding algorithm
that determines the optimal embedding strategy to minimize
both the output perceptual distortion and the output bit
rate. The hidden data is embedded into selective Discrete
Cosine Transform (DCT) coefficients which are found in
most video compression standards. The coefficients are
selected based on minimizing a cost function that combines
both distortion and bit rate via a user-controlled weighting.
Two methods are proposed—exhaustive search and fast
Lagrangian approximation. While the former produces
optimal results, the latter approach is significantly faster and
amenable to real-time implementation. Also two different
embedding approaches are discussed. The first approach
produces better compression performance but causes ir-
reversible changes even for the authorized decoder while
the second approach is both imperceptible to the regular
decoder as well as completely reversible to the authorized
decoder. However, this additional reversibility comes only at
the cost of compression performance as the motion feedback
loop can no longer be used and hence this technique can be
applied only to intracoded frames or enhancement layers
in a scalable codec. This reversible embedding is especially
useful in certain applications where the data hiding cannot
change the cover data even at a bit level. We can summarize
the contributions of this paper as follows.

(1) Propose a Privacy-Protected Video Surveillance Sys-
tem which can authenticate and preserve the privacy
information.

(2) Propose a data hiding framework for managing
privacy information which can support any kind of
video modification.

(3) Propose a compression domain data hiding algo-
rithm which offers high level of hiding capacity by
embedding privacy information in selected trans-
form coefficients optimized in terms of distortion
and bit-rate.

The rest of the paper is organized as follows. First in
Section 2, we briefly review the state-of-the-art in privacy
protection and management systems and video data hiding.
In Section 3, we describe the higher level design of our
privacy protection system and its components. Section 4
introduces the data hiding framework for managing
privacy information and various embedding techniques and
perceptual distortion and rate models. Keeping the special
constraints of data hiding for this application in consider-
ation, we propose the optimization framework to find the
embedding locations in Section 5. Experimental results are
presented in Section 6 followed by conclusions in Section 7.
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2. Related Work

In this section, we review existing work on visual pri-
vacy protection technologies followed by video data hiding
techniques. There is a recent surge of interest in selective
protection of visual objects in video surveillance. The
PrivacyCam surveillance system developed at IBM protects
privacy by revealing only the relevant information such as
object tracks or suspicious activities [8]. Such a system is
limited by the types of events it can detect and may have
problems balancing privacy protection with the particular
needs of a security officer. Alternatively, one can modify
the video to obfuscate the appearance of individuals for
privacy protection. In [1], the authors propose a privacy
protecting video surveillance system which utilizes RFID
sensors to identify incoming individuals, ascertains their
privacy preference specified in an XML-based privacy policy
database, and finally uses a simple video masking technique
to selectively conceal authorized individuals and display
unauthorized intruders in the video. While [1] may be the
first to describe a privacy protected video surveillance system,
there are a large body of work that utilize such kinds of video
modification for privacy protection. They range from the use
of black boxes or large pixels in [2, 3] to complete object
removal as in [1]. New techniques have also been proposed
recently to replace a particular face with a generic face [6, 12]
or a body with a stick figure [7] or complete object removal
followed by inpainting of background and other foreground
objects [13, 14].

All the afore-mentioned work target only at the modi-
fication of the video but not at the feasibility of recovering
original video securely. To securely preserve the original
video, selective scrambling of sensitive information using
a private key have been recently proposed in [10, 11, 15].
These schemes differ in terms of the types of informa-
tion scrambled which leads to different complexity and
compression performances—spatial pixels are scrambled
n [10], DCT signs and Wavelet coefficients are used in
[11, 15], respectively. With the appropriate private key,
the scrambling can be undone to retrieve the original
video. These techniques have the advantages of simplicity
with modified regions clearly marked. However, there are
a number of drawbacks. First, similar to pixelation and
blocking, scrambling is unable to fully protect the privacy
of individuals, revealing their routes, motion, shape, and
even intensity levels [6]. Second, as obfuscation is usually the
first step in a complex process chain of a smart surveillance
system, it introduces artifacts that can affect the performance
of subsequent image processing. Lastly, the coupling of
scrambling and data preservation prevents other obfuscation
schemes like object replacement or removal to be used.

Using data hiding for privacy data preservation is more
flexible as it completely isolates preservation from modifica-
tion. Since our introduction of using data hiding for privacy
data preservation in [16], there have been other work like [9,
17-20] that employ a similar approach. Data hiding has been
used in various applications such as copyright protection,
authentication, fingerprinting, and error concealment. Each
application imposes a different set of constraints in terms

of capacity, perceptibility, and robustness [21]. Privacy data
preservation certainly demands a large embedding capacity
as we are hiding an entire video bitstream in the modified
video. Perceptual quality of the embedded video is also of
great importance as it effects the usability of the video for
further processing. Robustness refers to the survivability
of the hidden data under various processing operations.
While it is a key requirement for applications like copyright
protection and authentication, it is of less concern to a
well-managed video surveillance system targeted to serve a
single organization. Thus, we are focusing mainly on high-
capacity fragile data hiding schemes. Another dimension
is the reversibility of the hiding process which dictates if
the embedded video can be fully restored after the hidden
data is removed. While irreversible data hiding usually
produces higher hiding capacity, reversible data hiding may
be important for maintaining the authenticity of the original
video. We shall consider both in this work.

Most irreversible data embedding and extracting appro-
aches can be classified into two classes—spread spectrum
and quantization index modulation (QIM). Spread spectrum
techniques treats the data hiding problem as the transmission
of the hidden information over a communication channel
corrupted by the covered data [22]. QIM techniques use
different quantization code-books to represent the covered
data with the selection of code-books based on the hidden
information [23]. QIM-based techniques usually have higher
capacities than spread-spectrum schemes. The capacity of
any QIM scheme is determined by the design of the quan-
tization schemes. In [24], the authors propose to hide large
volume of information into the nonzero DCT terms after
quantization. This method cannot provide sufficient embed-
ding capacity for our application because surveillance videos
have high temporal correlation with a very large fraction of
DCT coefficients being zero in the intercoded frames. In [25],
the authors propose to implement the embedding in both
zero and non-zero DCT coefficients but only in macro blocks
with low inter frame velocity. This framework deals only
with minimizing perceptual distortion without considering
the increase in bit rate. Our initial scheme in [16] embeds
the watermark bits at the high-frequency DCT coefficients
during the compression process. Similar to [25], this method
works well in terms of maintaining the output video quality
but at an expense of much higher output bit rate.

Reversible data embedding can be broadly classified into
three categories. The first class of methods like [26, 27] basi-
cally use lossless compression to create space for data hiding.
The key idea is to embed the recovery information along with
the hidden data to enable the reversibility at the decoder. This
method is not suitable for our application because of its low
capacity and that the information to be embedded is already
a compressed bit stream. The second class of methods like
[28, 29] work on residual expansion between pairs of coeffi-
cients in various transform domains. These methods assume
high correlation between coefficients, hence most of the pairs
would not overflow even after expanding the difference. The
drawback of these schemes is the higher perceptual distortion
caused due to significant changes in coefficient values. The
third category of algorithms like [30] work on the concept



of histogram bin shifting. This is suitable for our application
because the histogram of DCT residue is Laplacian so that
we can hide information at small-magnitude coefficients
without imposing significant perceptual distortion.

In Section 5, we describe a new approach of optimally
placing hidden information in the DCT domain that
simultaneously minimizes both the perceptual distortion
and output bitrate. Our algorithm considers both rate and
distortion and produces an optimal distribution of hidden
bits among various DCT blocks. Our main contribution
in the data hiding algorithm is an optimization framework
to combine both the distortion and rate together as a
single cost function and to use it in identifying the optimal
locations to hide data. This allows a significant amount of
information to be embedded into compressed bitstreams
without disproportional increase in either output bit rate
or perceptual distortion. This algorithm works for both
irreversible and reversible embedding approaches.

3. Privacy Protected Video Surveillance

In order to appreciate the role of privacy data preservation,
it is imperative to understand how it fits into the overall
architecture of a privacy protected video surveillance system.
A high level description of our proposed system is shown
in Figure 1 and more details about this system can be found
in [31]. The system contains a subject identification module
unit which uses RFID tags to identify and discriminate an
authorized user from others. The input video from the
camera units is processed to identify and extract out the
privacy information and the empty regions left behind by the
removal of objects are perceptually filled in the Obfuscation
Unit using video in-painting as proposed in [14]. The
privacy object information is sent to the Secure Data Hiding
unit to be encrypted and embedded inside the modified
video. This entire process is done within the secure camera
system, which is a trusted environment within which raw
privacy data or decryption keys are used. All the processing
units are connected through an open local area network,
and as such, all privacy information must be encrypted
before transmission and the identities of all involved units
must be validated. The Privacy Data Management System
provides the necessary key distribution and privacy policy
management so as to support selective and secure recovery
of original video based on the status and policy specified by
an individual user.

In this paper, we limit our discussion to the data hiding
unit used for integrating the privacy information with
the modified video. The privacy information contains
the image objects of the individuals carrying the RFID
tags, each padded with a black background to make a
rectangular frame and compressed using a H.263 version 2
video encoder [32]. The embedding process is performed
at frame level so that the decoder can reconstruct the
privacy information as soon as the compressed bitstream
of the same frame has arrived. Before the embedding, the
compressed bitstream for each object is encrypted using
the Advanced Encryption Standard (AES) with a 128-bit
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key and appended with a small fixed-size header. Details
of the encryption process, key management and the header
format can be found in [31]. It is this encrypted data stream
that is embedded into the modified video. The data hiding
scheme is combined with the video encoder and produces
a H.263-compliant bitstream of the protected video to be
stored in the database. The privacy protected video can be
accessed without any restriction with a standard decoder as
all the privacy information are encrypted and hidden in the
bitstream. With a special decoder, the hidden data can be
retrieved and the authorized user can decrypt the privacy
information corresponding to his access level.

4. Hiding Privacy Information

In this section, we describe the various components in our
proposed data hiding unit. Figure 2 shows the overall design
of the data hiding unit and its interaction with the video
compression algorithm. Our data hiding is integrated with a
typical motion-compensated DCT video compression algo-
rithm such as H.263. In Figure 2, the purple area contains the
components of the data hiding module while the green area
contains those of the compression module. There are two
inputs to this combined unit: the first one is the Privacy Pro-
tected Video with the sensitive information already redacted.
The second input is the compressed video bitstreams of
the privacy information, encrypted based on the approach
described in Section 3. The goal is to hide the second input in
the first input in a joint data-hiding compression framework.
After the motion compensation process, the residue of the
privacy protected video is converted into the DCT domain.
The embedding step is introduced between the final step of
entropy coding and the DCT. This ensures that the decoder
gets the same reference frame to prevent any drifting errors.
The encrypted video stream is hidden, using a modified
parity embedding scheme, in the luminance DCT blocks
which occupy the largest portion of the bit stream. The posi-
tions of embedding are obtained using an R-D optimization
framework to minimize the distortion and rate increase for
a target embedding requirement. The distortion is based on
human visual system and a perceptual mask in DCT domain
is used to facilitate the calculation. The distortion and rate
calculations for the R-D block and the embedding techniques
are explained in the following subsections. The full details
of the optimization algorithm is given in Section 5. Note
that while the proposed data hiding algorithm is general
enough to be used in any video codec, the distortion and rate
calculations are specific to an H.263 codec.

4.1. Perceptual Distortion. To identify the embedding loca-
tions that cause the minimal disturbance to visual quality,
we need a distortion metric to input into our optimization
framework. Mean square distortion does not work for our
goal of finding the optimal DCT coefficients to embed data
bits—as DCT is an orthogonal transform, the mean square
distortion for the same number of embedded bits will always
be the same regardless of which DCT coefficients are used.
Instead, we adopt the DCT perceptual model proposed by
Watson [33], which has been shown to better correlate
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FIGURE 2: Schematic diagram of the data hiding and video compression system.

with the human visual system than standard mean square
distortion. While there are other more sophisticated video-
based perceptual models such as the one in [34], we adopt
the Watson model for its simplicity to be included in our
optimization algorithm.

The Watson model takes into account the overall lumi-
nance, contrast and frequency of a coefficient, and calculates
a perceptual mask s(i, j, k) that indicates the maximum just-
noticeable change to ¢(j, j, k), the (i, j)th coefficient of the
kth 8 x 8 DCT block of an image:

s(i, jyk) = max[t.(i, j, k), | (i, j, )| 4.6, j,K) ], (1)

where

c(O,O,k))O'649 2)

Co

(i k) = 16 )

fori, j € {0,1,...,7}. Also, (i, j) is the frequency sensitivity
threshold, ¢(0,0,k) is the DC term of block k, and c¢q is

the average luminance of the image [21]. The higher the
mask value, the less distortion the corresponding coefficient
will cost by embedding hidden data. As the embedding
is performed in the quantized coefficient domain, it is
convenient to normalize with the quantization step-size and
use the following distortion value instead:

QP

D@ik) = G ey

(3)

where QP is the quantization parameter and s(i, j, k) is the
perceptual mask value as calculated in (1). As a few highly
distorted coefficients account for more distortion than many
mildly distorted ones [21], an Ly norm pooling is employed
for calculating the total distortion over the entire frame:

1/4
D= (Z |D(i,j,k)|4) : (4)

i,j,k



4.2. Irreversible Embedding Process. To embed data in the
compressed bitstream, we follow the QIM approach in which
quantization is altered based on the hidden data. Let c(i, j, k)
and q(j, j, k) be the (i, j)-th coefficient of the kth DCT block
before and after quantization, respectively. They are related
as in (5) where QP is the chosen quantization parameter at
the codec:

c(i, j k) +QPJ' 5)

NI EOTE
The maximum error due to the quantization will be QP as
reconstruction values are centered in the quantization bins
of width 2 - QP. To enable the data hiding, the quantization
is made coarser with the finer levels reserved to represent the
embedded bits. To embed an L-bit number V in a coefficient,
the quantized coefficient can be altered in two different ways:

N i, k) + 25 - QP
G, j.k) = lc(l JZH)IJTQP Q J P4V, (6)
or
o i, k) + 2L - QP
q(i, j,k) = [C(l ]2L+)1—'.—QP 2 —‘ 2h+ (V_ZL)' (7)

The choice of embedding with (6) or (7) depends on which
method produces a reconstructed value closer to the real
c(i, j, k). Hidden data extraction is straightforward—for an
L-bit embedding in a particular coefficient, it is given as in

(8):
x = §(i, j,k) mod 2, (8)

This embedding, however, is not invertible. Since the
quantization is altered to a coarser level as part of data
embedding, it causes irrecoverable loss of data. For a
single bit embedding, the maximum quantization noise
doubles compared to that of without embedding. Beside the
irreversible changes to the coefficient, the modified reference
frame in the motion loop propagates the effect of data hiding
into future frames, making the changes permanent. This
implies that the reconstructed video will be slightly different
from the originally compressed version. Such an irreversible
embedding method is not suitable for certain applications
that demand the original video to be unaltered by the data
hiding process.

4.3. Reversible Embedding Process. Using the previous em-
bedding technique, the decoder has no way to remove the
distortion introduced by the embedding process. In this
subsection, we explain a reversible embedding algorithm
whose effect can be reversed on the decoder side after data
extraction. A key requirement for our application is that the
output bit-stream with hidden data must be decodable with
good quality by a standard-compliant decoder unaware of
the embedding. This implies that we need to avoid any error
caused by drifting and as such, the decoded frame with the
hidden data must be used in the feedback path in the motion
loop. As the motion compensation does not respect the

EURASIP Journal on Information Security

DCT block boundary, the effect of hiding one bit in a DCT
coefficient may spread to different spatial areas after many
frames. It is an open question on how to make this temporal
spreading reversible. In our current implementation, we
focus on making the DCT embedding process reversible and
prevent temporal spreading by restricting our attention to
either intracoded frames or intracoded-enhanced frames in
a two-layer scalable codec.

The reversible embedding algorithm exploits the fact that
DCT coefficients follow a Laplacian distribution concen-
trated around zero with empty bins towards either ends of
the distribution [30]. Due to the high concentration at the
zero bin, we can embed high-volume of hidden data at the
zero coefficients by shifting the bins right (or left) of zero to
the right (or left). At the encoder side, the embedding process
is as follows: let My be the number of bits to be hidden in the
kth quantized DCT block. Let L = [ My/Zk 1, where Zj is the
number of zero coefficients in this DCT block. In a dynamic
order specified by optimization algorithm, we modify each
DCT coefficients q(i, j, k) into q(i, j, k) using the following
procedure until all the M bits of privacy data are embedded.
Notice that we have i = 0,1,...,7and j = 0,1,...,7,and k is
the DCT block index.

(1) If q(i, j, k) is zero, extract L bits from the privacy data
buffer and set §(i, j, k) = q(i, j, k) + 21~' — V, where
V is the decimal value of these L privacy data bits.

(2) If q(3, j, k) is negative, no embedding is done and
‘7(1>],k) = Q(1>]>k) - 2L71 - L

(3) If q(i, j, k) is positive, no embedding is done and
qG, j,k) = q(, j, k) + 2171,

The embedding is done only at zero coefficients while all
the other coefficients visited in the scan order are displaced
in either positive or negative direction. Compared with the
irreversible embedding, the capacity here is smaller as data
can only be embedded to zero coefficients. Also reversible
embedding induces higher distortion as even some nonzero
coefficients must be altered by (2F + 1) - QP without actually
embedding at that position.

On the decoder side, it needs to extract the hidden bits
and retrieve the original quantized coefficient q(i, j, k) from
q(i, j, k). The decoder also knows the number of hidden bits
M by running the same rate distortion algorithm. To find
the number of coefficients that contain the hiddNen data, the
decoder determines the minimum Z; such that Zj - L > My,
where Z; is the number of DCT coefficients satisfying the
condition —257! < §(i, j,k) < 2L71. Following the block
specific pattern given by the optimization algorithm, the
privacy data and the original DCT coefficient can be obtained
as follows.

(1) If =217 < §(i,j,k) < 271, L hidden bits can
be obtained as the binary equivalent of the decimal
number 28! — 4(i, j, k) and q(i, j, k) = 0.

(2) If 4(i, j,k) < =251, no bit is hidden in this coe-
fficient and q(i, j, k) = q(i, j, k) + 21 — 1.

(3) If g4, j, k) > 2171, no bit is hidden in this coefficient
and q(i, j, k) = 4(i, j, k) — 2171
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4.4. Rate Model. Data hiding effects the compression per-
formance—simply choosing the distortion-optimal loca-
tions based on the perceptual model may increase the
output bit-rate manyfold. As surveillance video is typically
quite static, many DCT blocks do not have any non-
zero coefficients. Hiding bits into these zero blocks, while
perceptual optimal, may significantly increase the bit-rate.
This is caused by the fragmentation of the long run-length
patterns which are assumed to be frequent by the entropy
coder. One possible approach to mitigate this problem is to
limit the number of blocks to be modified [16]. However,
the fewer blocks used for embedding, the more spatially
concentrated the embedding becomes which will make the
distortion more visible. As such, we need to measure the
increase in rate by different embedding strategies so as
to produce the optimal tradeoff with the distortion. The
rate increase for a particular embedding is calculated using
the actual entropy coder used for compression. As both
the encoder and the decoder need to compute the rate
function so as to derive the optimal data hiding positions,
the actual privacy data cannot be used as it is not available
at the decoder. Instead, we approximate the embedding by
assuming the “worst-case” embedding, that is, we choose the
hidden bit value that causes the higher increase in bit-rate.

5. Rate-Distortion-Optimized Data Hiding

In our joint data hiding and compression framework, we
aim at minimizing the output bit rate R and the perceptual
distortion D caused by embedding M bits into the DCT
coefficients. By using a user-specified control parameter §, we
combine the rate and distortion into a single cost function as
follows:

C=(1-8)-Ng-D+5-R, 9)

where N is a constant used to equalize the dynamic ranges of
D and R so that varying § translates to trading-off between D
and R. As such, N is not a free parameter and is determined
based on the particular compression mechanism. On the
other hand, the choice of § depends on applications—it is
selected based on the particular application which may favor
the least amount of distortion by setting § close to zero,
or the least amount of bit rate increase by setting § close
to one. In order to avoid any overhead in communicating
the embedding positions to the decoder, both of these
approaches compute the optimal positions based on the
previously decoded DCT frame so that the process can be
repeated at the decoder. In our data hiding framework, the
constrained optimization can be formulated as follows:

mrin C(T) subjected to M = N, (10)

where M is the variable that denotes the number of coeffi-
cients to be modified, N is the target number of bits to be
embedded, C is the cost function as described in (9), and I is
any selection of M DCT coefficients for embedding the data.
We assume that a constant number of bits are embedded at
each DCT coefficient and focus the optimization on choosing

the coefficients for embedding (with the exception of the last
DCT coefficient for embedding which may contain less than
the target number). While it is entirely feasible to explore
the dimension of embedding different numbers of bits to
different coefficients, our preliminary experiments indicate
that the gain is too small to justify the significant expansion
of the search space for the optimization.

Lagrangian method turns a constrained optimization
problem like (10) into an unconstrained one, and is com-
monly used in rate-distortion optimized video compression.
Using a Lagrange Multiplier A = 0, the constrained
optimization problem introduced in (10) can be turned into
an unconstrained version:

min®(r,A) with ©(T,1) = D +AM=N). (1)

If the unconstrained problem (11) for a particular A > 0 has
an optimal solution that gives rise to M = N, this will also
be a solution to the original constrained problem [35]. We
can further simplify (11) by decomposing it into the sum of
similar quantities from each DCT block k:

O(T, 1) = > C(Tk) +A<2Mk — N), (12)
k k

= %(Ck(l‘k) +/\(Mk - %)) (13)

where I'x denotes the particular selection of My coefficient in
the kth DCT block and L is the total number of DCT blocks
in a frame. The minimization can now be performed for each
block at different values of A so as to make >’ My = N. There
are two subproblems here. First, while the second term on the
right side in (13) is constant for a particular value of A, the
minimization of the first term is not trivial. In other words,
we need to find an optimal subset of My coefficients in the
kth DCT block to minimize the cost:

Cf (Mi) = min Cr(Tk). (14)

The second problem is an efficient way to search for A that
provides an optimal allocation of embedded bits to each
block. The following two subsections describe our approach
in tackling these problems.

5.1. Cost Function Computation for DCT Blocks. There are
two components to the cost function introduced in (9):
distortion and rate increase due to data hiding. Our dis-
tortion function as described in (4) is additive with each
coefficient having an independent contribution. The rate
increase due to the modification of a coefficient is far more
complex. It depends on neighboring coefficients as consec-
utive coefficients along the zigzag scan are encoded together
as a single run-length pattern. In the H.263 standard, a run-
length pattern is defined as a run of zero coefficients followed
by a nonzero coefficient. The length of the run and the
nonzero coefficient determine the length of the codeword,
and the longer the run-length, the shorter the codeword in
the Huffman table becomes. Embedding a bit in any zero
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coefficients will break the run-length pattern into two and
the bit-rate increase will depend on the original and the
resulting run-length patterns.

At first glance, the interdependency created by the run-
length coding seems to evade any structural exploitation
of the optimization problem. Exhaustive search of (ﬁ)
patterns, where K is the number of candidate coefficients
and M is the number of embedded bits, seems inevitable.
For a 8 X 8 DCT block, such an exhaustive search will need
to encode more than 10'° patterns in order to determine
all the optimal positions for embedding M = 1,2,...,64
bits. This is clearly impossible in practice. Fortunately, the
“worst-case” embedding assumption in our rate model as
described in Section 4.4 provides a Dynamic-Programming-
(DP-) based solution to the optimization problem. In the
actual embedding procedure as described in (6) and (7),
embedding a specific bit may turn a nonzero DCT coefficient
into zero and actually reduces the bit-rate by making a run-
length pattern longer. The “worst-case” embedding, which is
employed without the knowledge of the hidden bit, assumes
the worst case and never makes a nonzero coefficient zero.
This simple observation enables us to develop a recursive
solution to the optimization problem based on the position
of the last embedded bit.

Let f(s, M) denotes the minimum cost of embedding M
bits into a DCT block with the last bit embedded at the sth
DCT coefficient along the zigzag scan. Clearly, the optimal cost
C*(M) of embedding M bits in this block can be found by
the following equation:

C*(M) = S:‘Ri.,‘,lﬂf(s’M) (15)

(since the approach of computing the cost function is
the same for each block, we drop the block index k in
representing the block cost function C;f (My)).

Here we assume all 64 coefficients are available for
embedding which is the case for irreversible embedding. For
reversible embedding, we can simply limit our candidates
to the zero coefficients. With the worst-case embedding, the
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embedding pattern that realizes f(s, M) must have a non-
zero sth DCT coefficient. Denote t < s to be the embedding
position of the M — 1st embedded bit. Since the tth DCT
coefficient must also be non-zero, the run-length patterns
before and after the tth coefficients are independently coded.
Let d(t,s) be the cost induced by the run-length patterns
between the tth and sth coefficients. We can now compute
f (s, M) using the following recursion:

f(s M) = min[f(t, M = 1) +d(t,5)]. (16)

This is precisely the Bellman principle that leads to a dynamic
programming formulation to solve for f(s,M) [36]. Now
we can state the full algorithm to compute C* (M) for M =
1,2,...,64 as follows.

(1) There are 64 stages with each stage representing
the embedding of one bit. At stage M where M =
1,2,...,64, there are 65 — M states representing all
possible DCT coefficients in the zigzag order that
can store the Mth embedded bit. The minimum
cost function f(s,M) will be computed at stage M
and state s. The trellis depicting this construction is
shown in Figure 3.

(2) The calculation starts from stage one. At stage M, we
compute the cost function at state s by first worst-
case embedding a bit at the sth coefficient and then
identifying the minimum combined cost among all
the states up to s — 1 in stage M — 1 plus the extra cost
incurred by the embedding at the sth coefficient.

(3) Finally, the minimum cost of embedding M bits can
be calculated by minimizing over all the states in stage
M.

To compute the complexity of this DP algorithm, we
note that 64 DCT coding patterns are examined in the first
stage, 1 +2 + - - - + 63 = 2016 in the second stage, 1 + 2 +
-+ -+ 62 = 1953 in the third and so forth. Altogether one
needs to examine 43 744 different DCT encoding patterns
to determine the minimum cost embedding. While this is
a significant reduction from the naive exhaustive search,
encoding one single DCT blocks so many times is still
formidable in practice. In our experiments, we have also
investigated two more strategies in computing the block cost
function: the greedy approximation and a fixed heuristic
order within a DCT block. Greedy embedding calculates
one optimal embedding location at a time ignoring the
complex rate dependencies while heuristic approach takes a
fixed reverse zig-zag scan order from the end of the DCT
block. Table 1 summarizes the differences in the number
DCT patterns examined among all the approaches.

5.2. Bit Allocation by Lagrangian Approximation. Sweeping
through A from 0 to co will examine the convex hull of all
the block cost functions C; (Mg). While there exist efficient
tree pruning techniques to search for the optimal value
A, the large number of DCT blocks in a frame can still
render such techniques computationally intensive. As we will
demonstrate in Section 6, the block cost functions in most
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TaBLE 1: Number of DCT patterns examined by different algo-
rithms in computing C*(M).

Approach Number of DCT patterns examined
Exhaustive search >10%

Dynamic programming 43,744

Greedy 2,080

Fixed pattern 64

cases can be well approximated by a second order curve. This
allows us to devise a simple search strategy to quickly identify
the appropriate value of A.

If one can approximate C; (M) function as a differ-
entiable function in the continuous domain My, then the
optimal solution to (13) must satisfy the so-called “equal-
slope” criteria:

dacy

M, A (17)
for all k. However, (17) implies that the optimal solution
exists at a constant equal slope of —A for all block cost func-
tions. At an equal slope on all the individual cost funcions,
the rate of increase or decrease in cost with respect to the
bits embedded will be the same. Hence, we need to search
for such constant slope over all the curves which satisfy
the total target embedding requirement. Approximating each
cost function as a second-order polynomial yields

Cf (M) ~ ax - Mg + b - My + cx. (18)

The optimal slope that satisfies our embedding constraint
can thus be obtained as follows:
dC;: (My)
dM;.
To meet the minimum embedding constraint, the total

number of bits embedded from each DCT block must be
equal to N:

Voo S-SR

Thus, A can be determined as follows:

N+ X [bi/(2 - ak)]
2 k[1/(2 - ax)]

Since the actual problem is a discrete one, we can only use
A from (21) as an initial slope and search for the exact
slope in its neighborhood to match our target embedding
requirement. At this optimal slope on each curve, we can
identify the number of embedding locations My for each
DCT block. These M; embedding locations within each
block are chosen from the same optimal order which are
already calculated during the cost cuve generation process.

=2-ar - My+b.=-A\ (19)

A=

(21)

6. Experiments

We have tested our proposed schemes on six sequences using
a variety of video obfuscation techniques. These sequences
include the following.

Minnesota [37]. Two persons walk towards and cross
each other while the camera is slowly panning (39
frames).

Board. One person walk across the scene, briefly
occluded by a partition board (101 frames).

Two-persons. Two persons walk towards and cross
each other (89 frames).

Three-persons. Two persons walk towards the right
and one to the left, occluding each other briefly (73
frames).

Conference. Five persons sit around a conference
table with two leaving one after the other (356
frames).

Hall. A standard sequence used in video compression
(299 frames).

All sequences are in CIF (352 x 288) format in YCbCr color
space with 4 : 2 : 0 sub-sampling. The first four sequences
are captured at 15Hz and the hall monitor is at 30 Hz.
For each sequence, privacy objects are extracted according
to a separate segmentation mask. The segmentation mask
of Minnesota is provided by the authors of [37] and
that of Board is manually obtained. The remainders are
calculated using the background subtraction and object
segmentation schemes described in [14]. The experiments
assume all the privacy objects are compressed together in
the same privacy bitstream. In practice, multiple persons
in the scene would result in multiple bitstreams which
will add complexity and payload to the whole process.
Using MPEG-4 object-based coding can certainly reduce
this payload requirement. Complexity can be reduced by
parallelizing the compression of different objects. Three
video obfuscation techniques are then applied after the
privacy objects are removed. They are (a) silhouette in which
the holes are replaced by black pixels, (b) scrambled in which
the pixel values are exclusive-OR with a pseudo-random
sequence, and (c) in-painted using an object-based video
in-painting scheme from [14]. The original sequences,
privacy objects and obfuscated sequences are shown in
Figure 4 and are available for download at the authors’
website (http://www.vis.uky.edu/~cheung/datahiding/).

The data hiding algorithm is implemented based on
the TMN Coder Version 3.0 of the ITU-T H.263 version
2 by University of British Columbia. All sequences are
compressed using a constant quantization parameter with
the first frame intracoded and the remaining intercoded.
Despite the differences in the original frame-rates among the
sequences, the compression frame rate has been set to 30 Hz.
The encoding performance is measured based on running
the program on a Windows XP Professional machine with
Intel Xeon Processor at 2 GHz with 4 GB memory.

6.1. Selection of DCT Coefficients for Embedding. In the first
experiment, we consider the performances among different
schemes in selecting DCT coefficients to embed hidden data.
The three tested schemes are the DP-based optimal scheme,
the greedy scheme and the fixed reversed zigzag patterns as
described in Section 5.
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Ficure 4: Different privacy protected sequences used in experiments: the first column shows the privacy information; the second column
shows the sensitive areas replaced by silhouette; the third column shows the sensitive areas scrambled and the last column shows the sensitive

areas in-painted.

Figure 5 shows a typical graph of the cost function versus
the number of bits embedded within a single DCT block
for each of the three schemes. (The graphs show the results
of the 100th DCT block from the Minnesota in-painted
sequence but the trend is typical among all sequences we
have tested.) The cost function is computed according to
(9) with § = 0.5 and N = 25. For a fixed number
of hidden bits, the zigzag scheme clearly produces worse
results than both the greedy and the DP-based schemes.
The greedy and the DP-based schemes however produce

very similar results. The corresponding curves are almost
convex which strongly suggests the optimality in using the
discrete Lagrangian optimization for allocating hidden bits
among different blocks. In addition, the curves can be well
approximated by a quadratic curve as shown in the Figure 5,
hence justifying the approximation we have introduced in
Section 5.2.

To further demonstrate the differences among these
schemes, we have run them on four different in-painted
sequences to their entirety, focusing only on the irreversible
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TaBLE 2: Comparing the performances among DP-optimal, Greedy, and Zigzag on four different in-painted sequences.

In-painted sequences Minnesota Board Two-persons Three-persons
DP optimal 927.3 96.9 344.8 4723
Bitrate (kbps) Greedy 933.5 96.1 345.8 473.1
Zigzag 937.2 97.0 340.0 463.2
DP optimal 31.83 37.73 35.37 34.30
PSNR-Y (dB) Greedy 31.84 37.80 35.36 34.31
Zigzag 31.62 37.73 35.33 34.28
DP optimal 30.69 18.50 22.88 30.61
Distortion Greedy 30.84 18.83 22.95 30.46
Zigzag 42.96 22.43 29.67 38.55
DP optimal 731.7 252.5 438.4 591.6
Cost (Nr = 25) Greedy 736.7 256.3 439.7 590.2
Zigzag 889.9 301.7 520.8 686.3
DP optimal 904.3 890.1 892.0 892.9
Speed (sec/frame) Greedy 35.5 35.2 34.8 35.1
Zigzag 1.6 1.5 1.5 1.5

TaBLE 3: Comparing the performances between Lagrangian and Equal distribution of hidden data among DCT blocks.

In-painted sequences Minnesota Board Two-persons Three-persons
Bitrate (kbps) Lagrangian 945.81 97.84 361.64 511.06
Equal 1696.04 127.71 1018.67 1208.75
PSNR-Y (dB) Lagrangian 31.84 37.69 35.41 34.16
Equal 31.34 37.68 34.28 33.45
Distortion Lagrangian 27.72 15.48 20.15 26.52
Equal 18.86 14.80 16.65 16.26

embedding with the quantization parameter fixed at QP =
10. For all the DP-based, greedy, and zigzag schemes, we
use the discrete Lagrangian-based bit allocation method as
described in Section 5.2. Table 2 summarizes the compar-
isons in terms of the resulting bitrate after compression with
embedding, the average luma PSNR after compression and
embedding, the perceptual distortion as defined in (4), the
average cost over the entire sequence, and the encoding speed
in seconds per frame. There are relatively little differences
among the three schemes in bitrate and PSNR. The zigzag
scheme produces higher distortion and cost while the DP-
based and the greedy schemes produce very similar results
as expected. On the other hand, the encoding speeds are
exactly the opposite—the DP-based scheme needs around
895 seconds per frame, the greedy scheme needs 35 seconds,
and the zigzag needs only 1.5 second. Due to the high
computational complexity of the DP-based scheme, we focus
on using the greedy scheme rather than the DP-based
approach for the remaining experiments.

We should point out that the computational speeds
provided in Table 2 are based on a nonoptimized imple-
mentation of the algorithms and also include the entire

compression process, which amounts to roughly 0.6 sec-
ond. Significant speedup can be achieved, for example,
by updating only those blocks that are different from the
previous frames as indicated by the macroblock modes.
In fact, as the motion in typical surveillance videos is
scarce, it is conceivable to update the cost function only
occasionally rather than at every frame without losing much
optimality. Furthermore, the complexity is mainly due to the
computation of the cost functions for different DCT blocks
which are certainly amenable to parallel implementation.
While it is not the focus of this paper on the real-time
implementation of the data hiding process, we believe that
significant improvement in computational speed is indeed
possible.

6.2. Bit Allocation for DCT Blocks. Our optimization process
is a combination of two steps—bit allocation between
blocks and choosing optimal the positions within blocks
as explained in Sections 5.2 and 5.1, respectively. While
the first experiment focuses on different approaches of
embedding within a single block, we consider in the
second experiment the effect of different approaches in
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TaBLE 4: Comparing the performances among different video obfuscation schemes.
In-painted sequences Minnesota Board Two-persons Three-persons Conference Hall
Silhouette 34.87 38.47 38.13 37.54 35.72 35.15
PSNR-Y (dB) Scrambled 31.58 35.74 34.65 33.77 34.61 33.49
In-painted 31.84 37.80 35.36 34.31 34.96 33.43
Silhouette 9.7 1.8 8.4 9.7 2.4 3.8
PSNR-Y drop % Scrambled 8.3 1.2 5.0 5.5 2.0 3.2
In-painted 9.7 1.3 9.7 11.2 2.5 3.6
Silhouette 28.14 18.29 22.71 28.84 27.11 28.97
Distortion Scrambled 25.47 14.72 17.76 17.96 19.30 20.35
In-painted 30.85 18.83 22.95 30.46 27.29 28.53
Silhouette 1087.0 92.4 387.5 587.2 145.2 315.0
Bitrate (kbps) Scrambled 1301.2 822.9 798.4 1124.3 359.8 1113.0
In-painted 933.5 96.1 345.8 473.1 127.7 285.2
Silhouette 61.9 29.2 91.6 78.9 31.1 45.5
Bitrate increase % Scrambled 27.1 1.4 ~1.4 -0.8 -3.0 —4.1
In-painted 87.0 26.2 115.8 111.2 44.6 59.6
Silhouette 0.66 0.44 1.46 1.07 0.53 0.60
Mark-to-work bitrate  gcrampled 0.35 0.02 0.17 0.18 0.12 0.08
In-painted 1.16 0.40 3.00 3.13 0.77 0.83
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FiGUre 5: Cost function versus number of bits embedded in a DCT
block for different embedding scheme.

allocating bits among different blocks. To minimize the
impact of data hiding on visual quality, [16] divides hidden
data equally among all the blocks in the residual frame.
We compare this scheme with the proposed Lagrangian
approach and the results are shown in Table 3. To ensure a
fair comparison, we fix the greedy approach with A = 0 to
enforce a full emphasis on minimizing the visual distortion.

when switching from equal distribution to the Lagrangian
approach.

6.3. Different Privacy Protection Schemes. In the third exper-
iment, we contrast the performances of the greedy scheme
over different privacy protection schemes. As one of the key
advantages of data hiding for privacy data preservation is its
universal applicability to different obfuscation schemes, it is
of interest to consider their performances. We have run the
greedy irreversible scheme with QP = 10 for all 6 videos at
three different obfuscation schemes. Table 4 summarizes the
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TaBLE 5: Rate and Distortion for irreversible embedding Hall-Monitor at varying QP and & values.

QP R, (kbps) R, (kbps) é R, (kbps) Rate increase % PSNR-Y (dB) PSNR-Y drop % Distortion

0 754.5 44.79 36.77 3.29 15.76
5 359.72 161.38 0.5 698.04 33.96 36.76 331 21.06

1 690.54 32.52 36.73 3.39 58.61

0 314.32 75.97 33.45 3.57 22.59
10 97.36 81.26 0.5 285.15 59.64 33.43 3.63 28.53

1 267.50 49.76 33.42 3.66 98.76

0 202.98 78.22 31.37 3.77 28.64
15 59.12 54.77 0.5 186.38 63.65 31.42 3.62 34.95

1 170.50 49.71 31.30 3.99 138.77

0 152.87 74.27 29.93 3.64 35.39
20 44.9 42.82 0.5 141.9 61.76 29.97 3.51 41.92

1 129.1 47.17 29.82 3.99 178.27

results. The first row shows the luma PSNR of the sequences
after the embedding and compression. While using a con-
stant quantizer would have produced constant quality in a
normal video encoder, the presence of hidden data degrades
the quality and affects the overall PSNR. The variations
in PSNR can be better interpreted using the percentage
drop as compared with those of the encoded sequences
without hidden data. Also the percentage drop allows us
to compare the impact of data embedding across different
obfuscation techniques which produce very different video
sequences. These numbers are shown in the second row—
the large drop in PSNR in Minnesota, Two-persons, and
Three-persons is due to the large amount of hidden data
caused by the dynamically moving foreground objects. The
lower PSNR drop in the scrambled versions compared with
the other two is due to the concentration of the hidden
data among the high spatial-temporal frequency scrambled
areas. In a typical residual frame, most DCT coefficients are
close to zero and those coefficients enjoy little distortion
due to quantization. Hiding data in these zero coefficients
statistically causes a higher relative decrease in PSNR when
compared with nonzero coefficients. The scrambling process
introduces many non-zero high frequency coefficients that
attract hidden data, thus reducing the amount of loss in
PSNR as compared to the silhouette and in-painted schemes.
These high-frequency coefficients are chosen because they
introduce less perceptual distortion, as indicated in the
measurements in the third row. On the other hand, these
high-frequency coefficients are very difficult to compress.
The resulting bitrates after data hiding as shown in the
fourth row clearly demonstrate this phenomenon. Similar
to PSNR, we also consider the relative increase in bitrates
as compared with those of compressing the modified videos
and privacy data separately. While it is expected that the
hidden data introduces minor or even negative bitrate
increase in scrambled videos, there are significant increases

in bitrate among silhouette and in-painted sequences—
they range from 26% to more than 100%. These increases
are more significant among the in-painted sequences than
the silhouette sequences. To understand these increases, we
calculate the ratio of bitrates of the mark (hidden data)
to the cover work (obfuscated video without hidden data)
in the last row. It is observed that the bitrate increase
correlates well with this ratio. The highest three increases
in bitrate correspond to the bitrate ratios larger than one,
that is, the hidden data is in fact larger in size than the
obfuscated video. This violates a typical assumption used in
most data hiding schemes and it is quite conceivable that our
scheme operates less than efficient in such an extraordinary
condition.

6.4. Different Operating Parameters. In the fourth experi-
ment, we ran our data hiding algorithm under varying design
parameters like QP and §. This is carried out on the two
longer sequences: “Hall” and “Conference” using inpaint-
ing as the obfuscation scheme. Irreversible embedding is
examined in this section and reversible embedding in the
following section. Four QP parameters are used: 5, 10, 15,
and 20 and three & values are used: 0, 0.5, and 1. QP defines
the quantization parameter of the codec for compressing
both the modified video and privacy information while &
is the control parameter between rate and distortion during
the optimization. However, § = 0 gives the distortion based
optimization ignoring rate increase while § = 1 minimizes
only the rate increase during the selection of embedding
coefficients. Tables 5 and 6 summarize the results for both
sequences. The notations R,, Ry, and R, denote the rates
of obfuscated (inpainted) bit stream, privacy bit stream
and embedded bit stream, respectively. From the tables,
we can observe, as expected, that the rate increase reduces
while the perceptual distortion increases with an increase
in the control parameter §. Despite the increase in the
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TABLE 6: Rate and distortion for irreversible embedding for Conference at varying QP and § values.

QP R, (kbps) R, (kbps) 1) R, (kbps) Rate increase % PSNR-Y (dB) PSNR-Y drop % Distortion
0 309.27 55.73 38.29 3.28 18.02
5 122.42 76.17 0.5 279.37 40.68 38.34 3.16 28.67
1 275.02 38.49 38.29 3.28 60.38
0 135.50 53.54 34.94 2.57 28.16
10 49.81 38.44 0.5 123.63 40.09 34.95 2.54 39.58
1 120.93 37.03 34.84 2.84 94.18
0 94.12 44.64 33.19 2.35 39.99
15 36.41 28.66 0.5 87.97 35.19 33.22 2.27 47.93
1 85.87 31.97 33.05 2.77 134.61
0 74.23 36.73 31.89 2.39 51.33
20 30.33 23.96 0.5 70.66 30.15 31.86 2.48 58.95
1 68.41 26.01 31.85 2.51 161.62

TaBLE 7: Rate and distortion for reversible embedding using either intracoded frames (I) or enhanced intraframes (EI) at varying QP and
values.

Qp s R, (kbps) Rate increase Distortion
I El I El I El
Hall monitor
0 6357.18 2952.49 34.54 11.86 448.80 137.89
5 0.5 6225.73 2895.05 31.76 9.69 449.70 149.19
6171.53 2877.52 30.61 9.02 791.91 186.96
0 4486.32 1460.35 42.65 6.86 177.87 157.18
10 0.5 4236.80 1441.40 34.72 5.47 205.28 170.34
4227.27 1439.44 11.94 5.33 216.24 182.05
0 3734.78 1025.34 48.02 5.54 235.81 140.01
15 0.5 3548.35 1023.92 40.63 5.40 249.32 167.56
3520.27 1016.06 39.52 4.59 263.15 244.73
0 3228.89 822.79 47.82 7.25 290.19 140.45
20 0.5 3154.32 812.12 44.41 5.86 291.26 165.05
1 3104.45 810.54 42.12 5.65 306.59 309.36
Conference

0 4637.92 2190.74 30.90 3.28 104.69 80.79
5 0.5 4624.90 2172.82 30.53 2.44 120.08 82.53
4602.82 2164.65 29.91 2.05 131.70 103.17
0 3292.24 1143.23 41.21 2.19 154.80 118.28
10 0.5 3280.63 1131.16 40.71 1.11 167.42 120.66
3277.95 1128.78 40.60 0.90 248.62 143.75
0 2849.20 868.24 47.19 2.02 187.94 106.50
15 0.5 2845.70 859.10 47.11 0.95 193.69 146.05
2820.19 857.51 45.79 0.76 287.39 195.25
0 2630.75 739.25 51.21 3.25 207.57 125.42
20 0.5 2555.75 735.21 46.90 2.68 210.97 157.84

1 2514.27 729.63 44.52 1.90 362.06 251.81
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FIGURE 7: Sample frame (200th) from Hall-Monitor sequence—irreversible embedding at varying QP and §. Rows from Top to Bottom:
Inpainted Frame, Privacy Frame, Data embedded frames with § = 0,0.5, and 1. Columns from Left to Right: QP =5, 10, 15, and 20.

bitrates of the privacy streams, the percentages of bitrate
increase in the embedded stream stay the same or drop at
higher QP’s due to the presence of more nonzero coefficients
that are more suitable for hiding data. Also, the results
from both the sequences confirm that PSNR is not a good
measure for the cost computation as it does not vary much
with parameter §, while the perceptual distortion measure
better correlates with it. Figure 6 highlights the better visual
correlation of the perceptual distortion measure compared
to PSNR for the embedding of same hidden information at
different locations by using A = 0 versus A = 1. Figure 7
shows a sample frame from Hall-Monitor sequence before
and after irreversible embedding at variable values of QP
and 6.

6.5. Reversible Embedding. The same experiment with vary-
ing QP and ¢ is also repeated for the case of reversible embed-

ding. As introduced in Section 4.3, the reversible embedding
can only be used when there is no interdependency between
the frames. Though the embedding is done in a reversible
fashion, the prediction loop used in intercoded frames
propagate the effect of hidden data to future frames making
the process irreversible. Hence this experiment is conducted
in two special encoder structures. In the first structure, each
frame is coded using intra mode (I frame) only. This setting
is similar to the M-JPEG standard typically found in many
IP cameras. The privacy information is also encoded in the
same fashion as we assume that the system only has access to
a codec which has no capabilities of temporal prediction. In
the second structure, we operate the embedding process over
the enhanced intra frames (EI frames) of a scalable codec. We
use the SNR scalability to derive the enhancement layers. The
base layer is always coded at QP = 20 and the enhancement
layers are generated to achieve the desired quantization
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F1GURE 8: Sample frame (200th) from Conference—reversible embedding at varying QP and §. Rows from Top to Bottom: Inpainted Frame,
Privacy Frame, Data embedded frames with § = 0, 0.5, and 1. Columns from Left to Right: QP =5, 10, 15, and 20.

effect. Table 7 summarizes the encoding performances of
the two structures at different coding parameters for hall
monitor and sequence. As observed from the table, the EI-
frame structure yields better results in terms of percentage
rate increase and perceptual distortion when compared to
embedding in intra frames (I frames). Figure 8 shows a
sample frame from Conference before and after reversible
embedding on intracoded frames at variable values of QP
and 6.

7. Conclusions

In this paper, we have presented a privacy-protecting video
surveillance system which offers multiple levels of secure
privacy information preservation. Novel irreversible and

reversible data hiding methods have been proposed to hide
large amount of privacy information into the host video.
An optimization framework has been proposed to identify
DCT coefficients for hiding information that simultaneously
minimize the perceptual distortion and the rate increase
caused due to embedded information. Extensive experimen-
tal results have been presented to demonstrate the efficient
implementation of our algorithms and their effectiveness in
preserving privacy data.
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