Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2007, Article ID 64521, 10 pages
doi:10.1155/2007/64521

Research Article

A Workbench for the BOWS Contest

Andreas Westfeld

Instititute for System Architecture, Department of Computer Science, Technische Universitit Dresden, 01062 Dresden, Germany

Correspondence should be addressed to Andreas Westfeld, westfeld@inf.tu-dresden.de

Received 8 May 2007; Revised 24 August 2007; Accepted 22 October 2007

Recommended by A. Piva

The first break our watermarking system (BOWS) contest challenged researchers to remove the watermark from three given images.
Participants could submit altered versions of the images to an online detector. For a successful attack, the watermark had to
be unreadable to this detector with a quality above 30 dB peak signal-to-noise ratio. We implemented our experiments in R, a
language for statistical computing. This paper presents the BOWS package, an extension for R, along with examples for using this
experimental environment. The BOWS package provides an offline detector for several platforms. Furthermore, the particular
watermarking algorithm used in the contest is analysed. We show how to find single coefficient attacks and derive high-quality

images (62.6 dB PSNR) with full knowledge of the key.

Copyright © 2007 Andreas Westfeld. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The first break our watermarking system (BOWS) contest
challenged researchers to remove the invisible watermark
from three given greyscale images (of a strawberry, a land-
scape, and a church). The Watermarking Virtual Lab of the
European Network of Excellence ECRYPT announced this
contest in the middle of December 2005 [1]. Participants
could submit altered versions of the images to an online de-
tector through a web interface [2]. For a successful attack, the
watermark had to be unreadable to the BOWS detector with
a quality above 30 dB peak signal-to-noise ratio (PSNR).

PSNR is a simple and widely used quality metric based on
the mean squared error (MSE), which is computed by aver-
aging the squared intensity differences between the distorted
image a with w X h pixels and its reference b:

255%-w-h
p— 5. (D)
Zx:lZy:] (ax,y - bx,y)

The PSNR measure suggests that geometric attacks are
ruled out or are at least at a disadvantage. We were somewhat
surprised when we noticed that in particular the geometric
attacks yielded the higher PSNR values compared to pixel-
oriented attacks after just a few detector requests. Section 2
confirms this with a couple of simple examples. Section 3
presents the sensitivity attack, which was used during the sec-

PSNR(a, b) = 10-1g (

ond phase of the contest. In Section 4, we introduce a matrix
notation for the decoding procedure, which is used for the
description of the single coefficient attack (cf. Section 5) and
single step attack (cf. Section 6). Section 7 summarises the
results and concludes the paper.

2. GETTING STARTED
2.1. Domain of the watermark

A careful examination of the images revealed that there ex-
ist several squares of 8 X 8 pixels with decreased or increased
contrast (cf. Figure 1). Apart from these visible artefacts, the
8 8 block discrete cosine transform (DCT) is widely used in
watermarking. Experiments have shown that the watermark
resides in 12 low-frequency subbands of the DCT domain.
These subbands have been determined by global replacement
with zeros: there is no individual subband that can remove
the watermark; however, we discovered 12 DCT subbands
(cf. Figure 2(a)) that affect the watermark when nullified in
pairs, triples, and so forth. (There are single coefficients that
remove the watermark (cf. Section 5). This is no contradic-
tion. A single coefficient attack saturates one particular coef-
ficient there, while all coefficients of whole subbands are set
to zero here.)

Knowing the responsible subbands, we can create a
bandpass filter that is virtually invariant to the watermark.

EURASIP Journal on Information Security

(a) (b)

FiGURE 1: Visible 8 x 8 block distortions. Original image (a) and
detail of it (b).

The filtered image combines the 12 low-frequency subbands
from the attacked image (cf. Figure 2(a)) with the 52 other
subbands from the marked original (cf. Figure 2(b)). In ear-
lier workshop contributions [3, 4], we reported that, for
many simple attacks, the PSNR will be increased to just above
the required 30 dB by such a filter.

2.2. Additive white Gaussian noise attack

The watermarking system used in the BOWS contest is very
robust against additive noise. Figure 3(b) shows annoying
distortions in the strawberry. The watermark is still detected
with only 19.69 dB PSNR.

To mount this attack, we need one normal distributed
pseudorandom value for each pixel. For reproducible results,
we set the seed for the random generator using set.seed. We
use the R function rnorm to instantiate 262 144 standard
normal random numbers and scale it by 26.73 to just remove
the watermark.!

> require(bows)
> set.seed(123)
> noisevector <- rnorm(length(strawberry))*26.73
> noisyimage <- as.gscale(noisevector + strawberry)
> bows(noisyimage, 1)
The watermark has been removed.
The PSNR of the image after your attack is 19.69 dB.

The function as.gscale clips values below 0 and above 255
and rounds all pixels to integer values as required by the de-
tector function BOWS. The detector function has one more
parameter (besides the image to test), which determines the
reference image for the PSNR calculation (1 for strawberry, 2
for woodpath, and 3 for the church).

To determine the scale ¢ at the detection boundary, we
implement a detector function addwgn, based on bows(),
which takes ¢ as a parameter and returns a positive value if
the watermark has been removed, otherwise a negative value.
This is easily achieved by subtracting 0.5 from the logical
value, since TRUE = 1 and FALSE = 0. The root of this

! We repeated the experiment about 20 000 times with other instances of
the noise yielding an average scale of 28.56.

(a) (b)

Ficure 2: DCT subbands used for the watermark (a) and subbands
the watermark is invariant to (b).

F1GURE 3: The bug on the strawberry before and after adding noise.
The distorted image still contains the watermark.

function is the detection boundary. We use the standard R
function uniroot to find the corresponding ¢ (sigma).

addwgn<-function(sigma, noisevector, image,
imagenumber) {
noisyimage <- as.gscale(sigmasnoisevector +
image)
res <- bows(noisyimage, imagenumber)
res$removed — 0.5
}
set.seed(123)
init.cache()
uniroot(addwgn, interval=c(0,100),
noisevector=rnorm(length(strawberry)),
image=strawberry, imagenumber=1)$root

The bandpass filter mentioned earlier can be applied to
the best image in the cache to improve the PSNR:

> bows(bandpass(strawberry, get.cimg(strawberry)), 1)
The watermark has been removed.
The PSNR of the image after your attack is 27.01 dB.

2.3. Valumetric attack

The watermarking system used in the BOWS contest is also
very robust against valumetric attacks. Figure 4 shows a black
image that still contains the watermark with only 6.09 dB
PSNR.

Andreas Westfeld

(e) ()

FIGURE 4: The watermark is very robust against valumetric scaling
(a)—(d). The contrast can be reduced to 0.8% (e) while the water-
marKk is still readable. There are only 3 levels of grey in the image
(85 times amplified, (f)).

To determine the contrast level at the detection bound-
ary, we write again a detector function that takes the param-
eter of interest and has its root at the detection boundary.

contrast <- function(level, image, imagenumber)
bows(as.gscale(levelkimage), imagenumber
)$removed — 0.5
init.cache()
uniroot(contrast, interval=c(0,1),
image=strawberry, imagenumber=1)$root

Even with the bandpass, the required quality level is
missed:

> bows(bandpass(strawberry, get.cimg(strawberry)), 1)
The watermark has been removed.
The PSNR of the image after your attack is 26.69 dB.

2.4. Cropping attack

In an earlier report [3], we filled margins of the images with
grey to demonstrate that the watermark has different power
in different regions. If a small stripe on the right in the church
image (65 pixels wide) is replaced by neutral grey, the wa-
termark is not detected anymore. Together with the band-
pass filter, this is a successful attack that achieves a PSNR of
30.2 dB.

2.5. Rotation attack

We found that geometric attacks are more successful in pre-
serving high PSNR. This sounds odd since operations like
rotation and translation decrease the PSNR very fast. But
the watermarking method used here seems to be even more
fragile against such operations. Rotation is successful for the
strawberry image after bandpass filtering:

Ficure 5: Fill a margin (width = 65 pixels) with neutral grey to re-
move the watermark. This is a successful attack after bandpass fil-
tering (30.2 dB).

FIGURE 6: Principle of counter-rotating zones with zone radius 100
pixels (a); (b): rotation angle 0.3° for inner zone, and —0.2° for
marginal zone, bandpass filter applied (successful with 30.97 dB
PSNR).

init.cache()
frotate <- function(angle, image, imagenumber) {
rotimage <- as.gscale(rotate(image, angle))
bows(rotimage, imagenumber)$removed — 0.5
}
alpha <- uniroot(frotate, interval=c(0,2),
image=strawberry, imagenumber=1)$root
rotstraw <- get.cimg(strawberry)
bows(bandpass(strawberry, rotstraw), 1)
The watermark has been removed.
The PSNR of the image after your attack is 31.74 dB.

Figure 6 shows a successful attack for the church image
with two counter-rotating zones.

2.6. Limited translation attack

It was rather easy to find a suitable attack for the strawberry
and the church image. The woodpath image was more re-
sistant against geometric attacks because its high frequencies
are stronger. The quality penalty based on PSNR rises with
the square of the introduced error. We decided to revert pix-
els to their original value if the error exceeds a given limit.
Figure 7 shows two versions of the woodpath image that are
translated by 50 pixels to the right. In the version on the right,
all pixels that would be changed by more than 80 levels of

EURASIP Journal on Information Security

(a) (b)

Ficure 7: Translation of woodpath ((a), shifted by 50 pixels), lim-
ited translation of woodpath ((b), limiting difference: 80 levels of

grey).

grey have been replaced by their original value to take care of
the PSNR.

For successful attacks, the image is shifted by 2 or 3 pixels.
The limit is between 33 and 42.

> transstraw <- translate.with.limit(strawberry, 42, 3)
> bows(bandpass(strawberry, transstraw), 1)

The watermark has been removed.

The PSNR of the image after your attack is 32.46 dB.
> transwood <- translate.with.limit(woodpath, 33, 2)
> bows(bandpass(woodpath, transwood), 2)

The watermark has been removed.

The PSNR of the image after your attack is 31.99 dB.
> transchurch <- translate.with.limit(church, 38, 3)
> bows(bandpass(church, transchurch), 3)

The watermark has been removed.

The PSNR of the image after your attack is 31.45 dB.

3. SENSITIVITY ATTACK

The sensitivity attack can estimate the watermark of
correlation-based systems with linear complexity. It was in-
troduced by Cox and Linnartz in 1997 [5]. The work by
Comesana et al. [6] generalised it to watermarking schemes
that are not correlation-based.

The sensitivity attack is usually applied in the spatial do-
main and does not require any prior knowledge. However,
since we already knew the domain of the watermark and the
subbands used for it, we decided to apply it directly to the
DCT coefficients. The sensitivity attack is not restricted to
a particular domain. When applied to the DCT coefficients,
the attack would also work if the watermark resided in the
wavelet or spatial domain. One reason for this choice was
to eliminate unnecessary oracle calls for coefficients that we
know to be insensitive.

The starting point for the sensitivity attack is a boundary
image: a random image close to the detection boundary in
which the watermark is still detected. Some minor modifica-
tions to this image cause the detector to respond “removed”
while the watermark is still detected after other modifica-
tions. We construct the boundary image as follows. First, we
order all coefficients from the 12 subbands that affect the wa-
termark (v contains these 12 subband indices) by decreasing

TABLE 1: Parameters for boundary images.

Image n Consolidated set PSNR p

Strawberry 3 {3} 39.339dB 1990
Woodpath 18 {1, 10, 14} 36.113dB 1338
Church 23 {5,7,23} 34.948 dB 1756

magnitude, because large coefficients can be altered by a large
amount without saturation.

> dimage <- dct(strawberry)
> oimage <- order(abs(dimage[v,]), decreasing=T)

Second, we collect some large coefficients (3 are enough
for the strawberry image) and invert their sign until the wa-
termark is removed.

> selection <-1:3
>k <- dimage[v,][oimage[selection]]
> dimage([v,] [oimage[selection]] <- k — 2000xsign(k)
> bows(as.gscale(idct(dimage)), 1)
The watermark has been removed.
The PSNR of the image after your attack is 34.5 dB.

Third, we consolidate, that is, we remove all coefficients
from the selection that are not necessary to remove the wa-
termark.

> dimage <- dct(strawberry)
> selection <- 3
>k <- dimage[v,][oimage[selection]]
> dimage([v,] [oimage[selection]] <- k — 2000x*sign(k)
> bows(as.gscale(idct(dimage)), 1)
The watermark has been removed.
The PSNR of the image after your attack is 39.31 dB.

Finally, we decrease the change p of the coefficients that
still remain in the selection to a level at which the watermark
is just detected. In our example, p has to be reduced from
initially 2000 to 1990:

> dimage <- dct(strawberry)
> selection <- 3
>k <- dimage[v,][oimage[selection]]
> dimage[v,] [oimage[selection]] <- k — 1990xsign(k)
> bows(as.gscale(idct(dimage)), 1)
The watermark is still there.
The PSNR of the image after your attack is 39.32 dB.

The reader may follow the implementation in the supple-
mentary file sensitivity.R to create a boundary image:

(1) get.boundary.n({(image number)) is used to determine
the initial number 7 of large coefficients;

(2) consolidate.changes({image number), 1 : 1) to remove
coefficients that do not contribute (return a consoli-
dated selection);

(3) find.boundary.psnr({selection), (image number))

to determine the PSNR of the boundary image as a hurdle for
additional contributing coefficients.

Andreas Westfeld

The resulting images near the detection boundary with
their initial selection of one to three coefficients are listed in
Table 1. Now we can try individual coefficients in combina-
tion with this initial consolidated set to test their sensitivity.
The sensitivity of the coefficients depends on the initial set.
The initial selection determines the state of the trellis that is
attacked. We can distinguish the following three cases.

(1) Most changes to coefficients do not change the detec-
tor result neither in positive nor in negative direction,
mostly because they do not collaborate with the ini-
tial selection of coefficients. For these coefficients, we
remember a “sensitivity” of 0.2

(2) Some coefficients contribute to the removal of the wa-
termark in both directions, positive and negative. The
reason for this is that there is more than one possibility
to flip the bit that is encoded in a particular step. This
is a property of dirty paper codes; several codewords
encode the same message. The encoder will choose the
most appropriate one for the host image [7]. It is not
possible to combine the coefficients that fall in this sec-
ond case to achieve an attacked image with better qual-
ity. Consequently, these coefficients have also a “sensi-
tivity” of 0.

(3) Rarely, we encounter coefficients that remove the wa-
termark only in positive direction (“sensitivity” 1), or
only in negative direction (“sensitivity” —1).

If we finally checked all coefficients that affect the watermark,
we determined a vector s of sensitivity sings for the coeffi-
cients. With this vector, we can create an attacked image a
from the marked original m according to the following equa-
tion:

i =i+ ps 2)

The parameter p is chosen to be as small as possible using
interval bisection so that the watermark is just removed. Be-
cause of a daily limit of 3000 oracle calls per IP address, we
can only test 1500 coefficients in 24 hours. However, these
3000 calls could be finished in about two hours. So, we in-
clude some “duty cycles” to reduce the server load. Instead
of already twiddling thumbs after these two hours, we rather
optimise p for each individual test. Let T be our initial set of
coefficients yielding a boundary image with 44.4 dB PSNR.
When the same p is applied to T and different coefficients
under test, the PSNR will fluctuate (cf. Figure 8). To guaran-
tee a gain in PSNR when the watermark is removed in the
test, we would have to decrease p by a security margin. How-
ever, this security margin could mask the sensitivity of co-
efficients that needed a larger parameter p° > p to remove
the watermark but still increase the PSNR in that case. For
instance, if coefficient 41 is tested, the attacked image with
fixed p will score the maximum PSNR 45.0 dB. If the water-
mark is still there, how can we know that it is not removed

2 Actually the sensitivity might be nonzero. We remember only the signs
of the sensitivity or, like in this case, 0 if the coefficient is considered not
usable.

PSNR (dB

Coefficient index x

o min/max PSNR

Figure 8: Different PSNR for fixed parameter p when testing the
sensitivity of the first 100 coefficients in woodpath.

TaBLE 2: Time needed for particular PSNR levels.

PSNR #calls BOWSserver Local detector # coefficients
40dB 343 0.6 hours 0.2 hours 5
45dB 1426 3 hours 0.8 hours 14
50dB 5124 1.2 days 2.8 hours 40
55dB 21165 7 days 12 hours 111
57dB 33619 11 days 19 hours 178
59dB 62743 21 days 35 hours 293
60dB 81051 27 days 45 hours 365

for a larger parameter p’ that causes 44.8 dB? This would be
a contribution of 0.4 dB compared to the boundary image.
But when this parameter p’ is used for testing coefficient 2,
the PSNR is certainly lower than the 44.4 dB for the bound-
ary image. With p’, we would find the watermark removed
for many coefficients that do not contribute to the removal.
For this reason we adjust p individually to have an attacked
image with a quality that is just not poorer than the quality
of the boundary image.

Table 2 lists the amount of time that is necessary to gain
a particular PSNR level for the strawberry image. While the
50 dB level can be reached in less than two days, it takes an-
other 4 weeks to increase the PSNR by 10 dB again. However,
because of the daily limit of 3000 oracle calls, we can already
knock off work after 6 hours.

4. DECODING

In the rest of the paper, we assume that the attacker com-
pletely knows the decoder. This section describes the decod-
ing procedure of the dirty paper trellis watermark decoder. It
covers four main steps as follows.

4.1. Extraction and preprocessing of coefficients

First, the input image is transformed using the 8 x 8 block
DCT into the frequency domain, yielding 64 coefficients for
each of the 4096 tiles. As mentioned earlier, only 12 low-
frequency coefficients from every tile are regarded by the

6 EURASIP Journal on Information Security
Step = 38 Step = 39 Step = 40
4 22 22 27 27 31
FIGURE 9: Best path through the trellis of woodpath (last three steps).
TasLE 3: Number of inputs assigned to the outputs in step 39 of woodpath’s Viterbi decoding.
Output 22 52 20 47 50 62 7 10 19 24 40 42 53 56 57 60
Number of inputs 38 8 2 2 2 2 1 1 1 1 1 1 1 1 1 1

watermarking detector (cf. Figure 2). The decoding algo-
rithm starts with 124096 = 49152 coefficients that are used
for the watermark. These are shuffled by a key-driven per-
mutation.

Comesana and Pérez-Gonzélez describe an approach to
find the key by brute force in their SPIE’07 paper [8]. All
three images contain the same payload, “BOWS*” (40 bits),
which is embedded with the same key. We can check this by
submitting the strawberry as woodpath (image 2), and the
woodpath as church (image 3):

> init.cache()
> bows(strawberry, 2)

The watermark is still there.

The PSNR of the image after your attack is 10.8 dB.
> bows(woodpath, 3)

The watermark is still there.

The PSNR of the image after your attack is 9.84 dB.

The correct key extracts the same payload from all three
images. It can be identified using this property.

4.2. Correlation

The shuffled coefficients are reshaped as a 40 x 1228 input
matrix I.> Also driven by the same key, a 1228 x 4096 pattern
matrix P is filled with 5029 888 standard normal distributed
pseudorandom values. Both are combined to the normalised
correlation matrix

C=L-I><P

1228 ®)

4.3. Processing of the correlation result

The resulting 40 X 4096 matrix C is partitioned into 40 ma-
trices A; - - - Ayo with 64 X 64 elements each. We yield A; by

31228 is yielded by dividing the number of coefficients in the 12 subbands
by the number of payload bits (12-4096 : 40 = 1228). The remaining 32
coefficients are ignored and not used for decoding.

filling a 64 x 64 matrix row by row with the 4096 elements of
row i from C.

The modified trellis that is used in BOWS [7] is a graph
with nodes (called states) and edges (called arcs). Every 64
nodes belong to a set, while the arcs belong to the 40 steps
between these sets. Each arc in step k from state i to state j
is assigned element Ax(i, j) of the step matrix, called the arc
metric. A path is an ordered set of 40 arcs which takes the
40 steps through the trellis. The path metric is defined as the
sum of the arc metrics for the arcs that make up the path.

The Viterbi algorithm gives us an iterative procedure for
finding the path with the largest path metric. We are inter-
ested in the closest path that decodes differently. Therefore,
we also store intermediate results in the matrices S, ..., Ss0.
Let §; = A; (first state metrics are 0). We get S for k > 1
by adding the column maxima of Sx_; (64 state metrics be-
fore step k) to the rows of Ay (e.g., we add the maximum of
column 3 from S;_; to all elements of row 3 in Ay).

4.4. Decoding of the payload

Figure 9 shows the last three matrices Ssg,...,S4 that are
produced in the 40 steps of the iteration. Imagine the
square matrices Sk as “connection centre” linking 64 inputs
(columns of the matrix, states after step k) with outputs
(rows, states before step k). The inputs are deflected at the
maximum of their respective column (state metric). In the
figure, grey lines connect the inputs with their actual out-
put. The matrices are rotated counter-clockwise by 45° so
that horizontal connection lines can be used between them.
The decoding is again an iterative process like the encoding.
It starts at step 40 with the global maximum of S4, which is
in row 27 and column 31. The one-bit-arc labels determine
the message bits. The trellis is fully connected. The 4096 arc
labels in each step are systematically chosen to be the sum of
row and column index modulo 2. For example, bit 40 of the
payload is decoded as the LSB of the sum of row and column
number (27 + 31 is even, so the bit is 0).

The output 27 determines the input for the next step. In
S39, not all elements but only column 27 is decisive. The max-
imum is at row 22. We yield 1, since 22 + 27 is odd. We con-
tinue in step 38 at input 22. When we look at the grey lines in

Andreas Westfeld 7

x103 x103 %103

PO Y PATY P AT YRS N v AT BT

A o 11 1 O N AL I A AR AR N INA IMAR

2 HHHEHHHEEY 2 THIHHE A £ T T A T A

5 - TR g 2 P 3 e

_2'. i i . ; —2-I ; . . ; _2'. T T T T

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Bit index, payload “BOWS*”
(42 4£57 53 2a)

(a)

Bit index, payload “BOWS*”
(42 4£57 53 2a)

(b)

Bit index, payload “BOWS*”
(42 4£57 53 2a)

(c)

FIGURE 10: Soft bit values for strawberry (a), woodpath (b), and church (c). The horizontal lines show the overall absolute minimum bit.

Figure 9 at step 39, it is apparent that most of the inputs end
up in row 22. Even if a bit error in the previous step leads
to another input, the decoding leads with high probability
to the correct output (cf. Table 3). That is because the maxi-
mum state metric before step k was added to row 22.

To decode the whole payload, the iteration is continued
until step 1 is finished.

5. SINGLE COEFFICIENT ATTACK

To render the watermark unreadable to the BOWS oracle,
it is sufficient to flip one bit. In this section, we will deter-
mine the most suitable coefficient to remove the watermark.
By chance, each of the 40 steps in the decoding chain could
be the weakest because random numbers are incorporated
in the correlation. The influence of a single coefficient on
the watermark depends on 4096 standard normal distributed
pseudorandom values from the pattern P. Apart from this
probabilistic view, there are also structural reasons that the
two matrices in steps 1 and 40 are less robust than the rest.
Matrix S; = A; is the only one that directly results from the
correlation without any row lifted (all initial state metrics are
0). This makes it easier to create a new maximum in its input
column. Also matrix Sy offers a larger range to find appro-
priate coefficients because there is no predetermined input
column. The global maximum of S4 determines both, out-
put and “input.” For all other steps k, the input is determined
by the output of step k + 1, that is, the maximum of only 64
values decides which output is yielded. We can choose from
2048 elements that are distributed across Sqg like the squares
of one colour on a chessboard. However, compared with S,
we have about the same choice: in step 1, there is a predeter-
mined input column but no lifted row, while there is a lifted
row in step 40 but no predetermined input column. It is hard
to tell which one will be easier to alter.

There are three alternatives to determine “softbits,” that
is, the resistance of individual bits of the payload to alter-
ation: (1) the resistance to single coefficient attacks; (2) the
resistance to single step attacks involving only coefficients of
one particular row of I (cf. Section 4); and (3) involving all
coefficients without any restriction. The first one is the eas-
iest case, which is shown in Figure 10. The resistance is de-
fined by the current bit and the absolute value | p| by which
the most suitable coefficient needed to be altered. The satu-

ration is neglected, that is, an increased alteration could be
necessary to equalise the impact of clipping the pixel values
to the range 0,...,255. The bows package provides a func-
tion to determine the resistance of all coefficients. If we add
the determined resistance to the corresponding coefficient,
the payload is changed. In the following example, we attack
the weakest coefficient of step 1 in the strawberry image.

> resistance <- determine.resistance(strawberry)

> index <- resistance[[1]]$index[1]

> d <- dct(strawberry)

> d[v,][index]| <- d[v,][index] + resistance[[1]]$value[1]

> singlestraw <- idct(d)

> dptdecode(singlestraw) # error in first payload bit
“AOWS*”

Let i be the input column index of Sx determined by S+1.
Let o be the current output row index, and o’ the envisaged
row index that leads to an altered bit. Then Sk (o, i) is the cur-
rent maximum in column i, and Si(0’,7) the current value
for the envisaged one. Let (j, k) = 7m(€) be the permutation
used for shuffling the DCT coefficients in I, and P the pattern
matrix (cf. Section 4). We determine the resistance rr(,}fi)n (the
necessary alteration to flip the bit in step k) together with the
corresponding coefficient index €, as follows:

Sk(0,1) — Sk(0', 1)
P(j,64-(0' —1)+i)’

Sk(0,1) — Sk(0', 1)
P(j,64-(0" —1)+i)’

.

min —

(4)

k)
The most suitable coefficient in the strawberry im-

age preserves 3.9dB more than the watermark itself (cf.
Figure 11).

Crin = 71! <arg min
j

6. SINGLE STEP ATTACK
Let rj(-k) be resistance for coefficient j = 1- - - 1228 in step k:
% _ _Sk(0,1) = S0’ 1)
] P(j,64:(0' —1)+1i)’
If their absolute values are arranged in ascending order of
magnitude,

75|

(5)

<

<

= | T(1228) | > (6)

I

=)= -

EURASIP Journal on Information Security

FiGure 11: Successful attack with one particular coefficient in the
strawberry image (visible at the right edge of the fruit, 46.04 dB
PSNR).

r((ﬁ)) is called the resistance of coefficient with rank n
(=resistance[[k]]$value[n]) and corresponding index ¢, =
7 1((n), k) (=resistance[[k]]$index[n]).

The optimal single step attack changes the first coeffi-
cients with index £y,..., €y. The attacked image a is derived
from the marked original 71 with minimal parameter p that

just removes the watermark:
ag, = me, +p-sign(r((lrf))), n=1---N. (7)

The ragged shape of the PSNR curve (cf. Figure 12, top)
prevents fast optimisation of N. We did an exhaustive search
to find the maximum quality.

The function fsstep takes the image, its number, the re-
sistance structure, the parameters p and N, and optionally
step k (default k = 1). Before we knew the PSNR curve, we
used golden section search to find the maximum quality for
each step. This yielded 57dB (k = 13) to 62.52dB (k = 1)
for the strawberry, 55.51dB (k = 33) to 62.79dB (k = 1) for
the woodpath, and 56.13dB (k = 23) to 61.49dB (k = 40)
for the church. The second best result for the church image
was achieved in step 20, the third best in step 1. Comparing
steps 40 and 1 by exhaustive search turned out that step 1 is
superior also for the third image.

fsstep <- function(image, nr, resistance, p, N, step=1) {
dimage <- dct(image)
index <- resistance[[step]]$index[1:N]
sign <- sign(resistance[[step]]$value)[1:N]
dimage(v,][index] <- dimage[v,][index] + p * sign
bows(as.gscale(idct(dimage)), nr)

}

> resistance <- determine.resistance(strawberry)

> fsstep(strawberry, 1, resistance, 4.5, 302)

PSNR (dB)

0 200 400 600 800 1000 1200
Number of coefficients

o PSNR = 62.9dB for 302 coefficients
(a)

0 200 400 600 800 1000 1200
Number of coefficients

o p = 4.5 for 302 coefficients
(b)

FiGure 12: PSNR and p for attacking bit 1 (decoding step 1) with
1,...,1228 most effective coefficients.

(a) (b)

FiGuURrE 13: Absolute difference between pristine and marked origi-
nal image (a, 42.14 dB), and between attacked and marked original
image (b, 62.90 dB). Differences are 15 times amplified.

The watermark has been removed.
PSNR of the image after your attack is 62.9 dB.
> resistance <- determine.resistance(woodpath)
> fsstep(woodpath, 2, resistance, 4.02, 309)
The watermark has been removed.
The PSNR of the image after your attack is 63.1 dB.
> resistance <- determine.resistance(church)
> fsstep(church, 3, resistance, 4.94, 374)
The watermark has been removed.
The PSNR of the image after your attack is 61.91 dB.

Andreas Westfeld

Step = 38

34

50 50

Step = 39

Step = 40

43 43 42

FiGuUrk 14: Changed path through the trellis of the attacked woodpath (last three steps).

TABLE 4: Summary of results.

Strawberry Woodpath Church
Sensitivity attack 60.74 dB 57.05dB 57.29dB
Matrices affected A9 Ay Aszg Azg Ayg Agg Ayy Asg
Number of coefficients 217 207 98 97 84 58 64 63
Attacked payload “BOgS*” “BOWS+” “BOWc*”

424f67532a 424f57532b 424157632a
Single-step attack (A;) 62.90dB 63.10dB 61.91dB
Number of coefficients 302 309 374
Parameter p 4.5 4.02 4.94
Single-coefficient attack 46.04 dB 44.88 dB 43.57dB
Parameter p 757.7 809.5 1139.6
PSNR of watermark 42.14dB 46.20dB 44.38dB
Worst PSNR 3.05dB 2.72dB 3.54dB
Worst watermarked 3.14dB 2.92dB 3.76 dB

Figure 13 shows the energy (15 times amplified absolute
differences) of the watermark and the single step attack for
the strawberry image. The changes made by the attack are
invisible, ranging from —2 to 2 levels of grey. The PSNR of
the attack is 20.76 dB higher than for the watermark.

7. SUMMARY AND CONCLUSION

Table 4 presents the results for all three images, in the first
rows for the sensitivity attack. We see the number of sensitive
coefficients and the matrix to which they belong. Interest-
ingly, the sensitivity attack has chosen coefficients of consec-
utive matrices although the key was not used. Thus the effect
of shuffling in the watermarking process slows down the es-
timation, but it cannot prevent us from gaining the knowl-
edge that coefficients belong to the same bit. Figure 14 illus-
trates the case of the attacked woodpath. Although the max-
ima of the last three steps are changed, only step 40 decodes
to another bit. However, the changes in the other two matri-
ces help to lift a different row in step 40. On one hand, the
quality of the images is less reduced by the attack than by the
watermark embedding itself. On the other hand, 95% of the
attacked payloads are still intact.

The quality is slightly increased (by 4.83 dB on average)
for the single step attacks that are possible with the knowl-
edge of the key. Maybe another slight increase of quality is
possible using multistep attacks that combine the most pow-

erful coefficients of previous steps to affect the lifting as well.
The single coefficient attacks yielded approximately the same
PSNR as the watermark. For the strawberry, it is even ex-
ceeded.

It is hard to derive universal lessons from one particu-
lar contest. Craver et al. contributed an impressive list of
advices to watermark designers [9]. Their main point is to
avoid super-robustness attacks, that is, severe changes that
will not affect the watermark. Such attacks are a powerful
tool to identify the feature space of the watermark. However,
knowledge of the watermarking algorithm is only of little
help for watermark removal [10]. In addition, it is still un-
clear whether compliance with the advices regarding super-
robustness will not enable further attacks that obtain com-
parable or even better levels of PSNR. Since it is possible to
embed the same watermark in different images with the same
key, it is difficult to develop a detector that inhibits severe
false positives.

ACKNOWLEDGMENTS

The work on this paper was supported in part by the Air
Force Office of Scientific Research under the research Grant
no. FA8655-06-1-3046. The US government is authorised to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation there on. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Air Force
Office of Scientific Research, or the US government.

REFERENCES

[1] ECRYPT, “Network of excellence in cryptology,” http://www
.ecrypt.eu.org, 2006.

[2] ECRYPT, “BOWS, break our
http://lci.det.unifi.it/BOWS, 2006.

[3] A. Westfeld, “Lessons from the BOWS Contest,” in Proceed-
ings of the Multimedia and Security Workshop 2006 (MM and
Sec’06), vol. 2006, pp. 208-213, Geneva, Switzerland, Septem-
ber 2006.

[4] A. Westfeld, “Tackling BOWS with the sensitivity attack,” in
Proceedings of Security, Steganography and Watermarking of
Multimedia Contents IX, E. J. Delp IIT and P. W. Won, Eds.,
vol. 6505 of Proceedings of SPIE, San Jose, Calif, USA, January-
February 2007.

watermarking system,”

http://www.ecrypt.eu.org
http://www.ecrypt.eu.org
http://lci.det.unifi.it/BOWS

10

EURASIP Journal on Information Security

(5]

[10]

1. J. Cox and J.-P. M. G. Linnartz, “Public watermarks and
resistance to tampering,” in Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP *97), vol. 3, pp. 3—
6, Santa Barbara, Calif, USA, January 1997.

P. Comesana, L. Pérez-Freire, and F. Pérez-Gonzalez, “The
blind newton sensitivity attack,” in Proceedings of The Interna-
tional Society for Optical Engineering, vol. 6072 of Proceedings
of SPIE, pp. 149-160, 2006.

M. L. Miller, G. J. Doérr, and I. J. Cox, “Applying informed
coding and embedding to design a robust high-capacity wa-
termark,” IEEE Transactions on Image Processing, vol. 13, no. 6,
pp. 792-807, 2004.

P. Comesania and F. Pérez-Gonzélez, “Two different ap-
proaches for attacking BOWS,” in Proceedings of The Interna-
tional Society for Optical Engineering, E. J. Delp III and P. W.
Wong, Eds., vol. 6505 of Proceedings of SPIE, San Jose, Calif,
USA, January 2007.

S. Craver, 1. Atakli, and J. Yu, “How we broke the BOWS wa-
termark,” in Proceedings of The International Society for Optical
Engineering, E. J. Delp III and P. W. Wong, Eds., vol. 6505 of
Proceedings of SPIE, San Jose, Calif, USA, January 2007.

M. Barni and A. Piva, “Is knowledge of the watermarking al-
gorithm useful for watermark removal?” in Proceedings of the
2nd Wavila Challenge, pp. 1-10, 2006, 2007.

	INTRODUCTION
	GETTING STARTED
	Domain of the watermark
	Additive white Gaussian noise attack
	Valumetric attack
	Cropping attack
	Rotation attack
	Limited translation attack

	SENSITIVITY ATTACK
	DECODING
	Extraction and preprocessing of coefficients
	Correlation
	Processing of the correlation result
	Decoding of the payload

	SINGLE COEFFICIENT ATTACK
	SINGLE STEP ATTACK
	SUMMARY AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

