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the interaction between the user and the NN owner is kept to a minimum with no resort to multiparty computation protocols.
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1. INTRODUCTION

Recent advances in signal and information processing to-
gether with the possibility of exchanging and transmitting
data through flexible and ubiquitous transmission media
such as Internet and wireless networks have opened the way
towards a new kind of services whereby a provider sells its
ability to process and interpret data remotely, for example,
through a web service. Examples in this sense include in-
terpretation of medical data for remote diagnosis, access to
remote databases, processing of personal data, processing of
multimedia documents. In addition to technological devel-
opments in artificial intelligence, multimedia processing and
data interpretation, and to an easy and cheap access to the
communication channel, the above services call for the adop-
tion of security measures that ensure that the information
provided by the users and the knowledge made available by
the service providers are adequately protected.

Most of the currently available solutions for secure ma-
nipulation of signals apply some cryptographic primitives
on top of the signal processing modules, so to prevent the
leakage of critical information. In most cases, however, it
is assumed that the involved parties trust each other, and
thus the cryptographic layer is used only to protect the data
against third parties. In the new application scenarios out-

lined above, however, this is only rarely the case, since the
data owner usually does not trust the processing devices, or
those actors required to manipulate the data. It is clear that
the availability of signal processing algorithms that work di-
rectly on the encrypted data, would represent a powerful so-
lution to the security problems described above.

A fundamental brick ofmodern artificial intelligence the-
ory is represented by neural networks (NNs), which thanks
to their approximation and generalization capabilities [1] are
a universal tool enabling a great variety of applications. For
this reason, in this paper we introduce a protocol whereby
a user may ask a service provider to run a neural network
on an input provided in encrypted format. The twofold goal
is on one side to ensure that the data provided by the user,
representing the input of the neural network, are adequately
protected, on the other side to protect the knowledge (ex-
pertise) of the service provider embedded within the NN.
it is worth pointing out that the scope of our protocol is
not to preserve user anonymity. Specifically, the latter goal
is achieved by protecting the weights of the network arcs,
together with the parameters defining the neuron activa-
tion functions. The proposed protocol relies on homomor-
phic encryption principles (first introduced in [2]) whereby
a few elementary operations can be performed directly in the
encrypted domain. For those tasks that cannot be handled
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by means of homomorphic encryption, a limited amount
of interaction between the NN owner and the user is intro-
duced; however, in contrast to previous works in the general
area of privacy preserving data mining [3], the interaction
is kept to a minimum and no resort to sophisticated mul-
tiparty computation protocols [4, 5] is made. Great atten-
tion is paid to avoid any unnecessary disclosure of informa-
tion, so that at the end of the protocol the user only knows
the final NN output, whereas all internal computations are
kept secret. In this way, the possibility for a malevolent user
to provide a set of fake inputs properly selected to disclose
the network secrets is prevented. A solution is also sketched
that permits to obfuscate the network topology, however, a
deeper investigation in this direction is left for future re-
search.

The rest of this paper is organized as follows. In Section 2,
the prior art in the general field of privacy preserving and
oblivious computing is reviewed, and the peculiarities of our
novel protocol are discussed. In Section 3 the cryptographic
primitives our scheme relies on are presented. The details of
the protocol we propose for oblivious NN computing are de-
scribed in Section 4, where a single perceptron is studied, and
in Section 5, where the whole multilayer feedforward net-
work is analyzed. Section 6 is devoted to the discussion raised
by the necessity of approximating real numbers by integer
values (given that the adopted cryptosystem works only with
integer values while NN computations are usually carried out
by considering real numbers). Section 7 is devoted to the ex-
perimental results obtained developing a distributed appli-
cation that runs the protocol. Some concluding remarks are
given in Section 8.

2. PRIOR ART

In modern society great amount of data are collected and
stored by different entities. Some of these entities may take
an advantage cooperating with each other. For example, two
medical institutions may want to perform a joint research on
their data; another example is a patient that needs a diagno-
sis from a medical institute that has the knowledge needed
to perform the diagnosis. Of course those entities want to get
themaximum advantage from the cooperation, but they can-
not (or do not want to) let the other party know the data they
own. Usually they cannot disclose personal data due to pri-
vacy related law, and at the same time they like to keep their
knowledge for business reasons.

A trivial solution to protect the data owned by the partic-
ipants to the computation consists in resorting to a trusted
third party (TTP) that actually carries out the computation
on the inputs received by the two parties, and sends to them
the corresponding output. A privacy preserving protocol al-
lows to achieve the same goal without the participation of a
TTP, in such a way that each player can only learn from the
protocol execution the same information he/she could get by
his/her own inputs and the output received by the TTP.

In 2000 two different papers proposed the notions of pri-
vacy preserving data mining, meaning the possibility to per-
form data analysis on a distributed database, under some pri-

vacy constraints. Lindell and Pinkas [6] presented a way to
securely and efficiently compute a decision tree using cryp-
tographic protocols; at the same time, Agrawal and Srikant
[7] presented another solution to the same problem using
data randomization, that is by adding noise to customer’s
data.

After the publication of these papers, the interest in pri-
vacy preserving cooperative computation has grown up. In
particular several techniques from machine learning were
converted to the multiparty scenario where several parties
contribute to some kind of computation while preserving the
security of the data provided by each of them. Solutions for
the following algorithms were proposed: decision trees [6],
neural networks [8], SVM [9], naive bayes classifiers [10],
belief networks [11, 12], clustering [13]. In all these works,
we can identify two major scenarios: in the first one Alice
and Bob share a dataset and want to extract knowledge from
it without revealing their own data (privacy preserving data
mining). In the other scenario, the one considered in this pa-
per, Alice owns her private data x, while Bob owns an evalu-
ation function C (in most cases C is a classifier); Alice would
like to have her data processed by Bob, but she does not want
that Bob learns either her input or the output of the compu-
tation. At the same time Bob does not want to reveal the exact
form of C, representing his knowledge, since, for instance, he
sells a classification service through the web (as in the remote
medical diagnosis example). This second scenario is usually
referred to as oblivious computing.

Cooperative privacy preserving computing is closely re-
lated to secure multiparty computation (SMC), that is a sce-
nario where Alice owns x, Bob owns y, and they want to
compute a public function f (·) of their inputs without re-
vealing them to each other. At the end of the protocol, Alice
and Bob will learn nothing except f (x, y). The roots of SMC
lie in a work by Yao [14] proposing a solution to the mil-
lionaire problem, in which two millionaires want to find out
which of them is richer without revealing the amount of their
wealth. Later on Yao [15] presented a constant-round pro-
tocol for privately computing any probabilistic polynomial-
time function. Themain idea underling this protocol is to ex-
press the function f as a circuit of logical gates, and then per-
form a secure computation for each gate. It is clear that this
general solution is unfeasible for situations where the parties
own huge quantities of data or the functions to be evaluated
are complex.

After these early papers extensively relying on SMC,
more efficient primitives for privacy preserving computing
were developed, based on homomorphic encryption schemes
[16], which permit to carry out a limited set of elementary
operations like additions or multiplications in the encrypted
domain. In this way, a typical scheme for privacy preserv-
ing computing consists in a first phase where each party per-
forms the part of the computation that he can do by himself
(possibly by relying on a suitable homomorphic cryptosys-
tem). Then the interactive part of the protocol starts, with
protocol designers trying to perform as much as they can in
an efficient way. At the end, the operations for which an effi-
cient protocol is not known (like division, maximumfinding,
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etc.) are carried out by resorting to the general solution by
Yao.

Previous works on privacy preserving NN computing are
limited to the systems presented in [8, 17]. However, first
study resort extensively to SMC for the computation of the
nonlinear activation functions implemented in the neurons,
and hence is rather cumbersome. On the other hand, the pro-
tocol proposed in [17] may leak some information at the
intermediate states of the computation, in fact the output
of all the intermediate neurons is made available to the data
owner, hence making it rather easy for a malevolent user to
disclose the NN weights by feeding each neuron with prop-
erly chosen inputs. This is not the case with our new protocol
which conceals all the intermediate NN computations and
does not resort to SMC for the evaluation of the activation
functions. In a nutshell, the owner of the NN (say Bob) per-
forms all the linear computations in the encrypted domain
and delegates the user (say Alice) to compute the nonlinear
functions (threshold, sigmoid, etc.). Before doing so, how-
ever, Bob obfuscates the input of the activation functions so
that Alice does not learn anything about what she is comput-
ing.

When designing an SMC protocol it is necessary to take
into account the possible behavior of the participants to the
protocol. Cryptographic design usually considers two possi-
ble behaviors: a participant is defined semihonest or passive if
he follows the protocol correctly, but tries to learn additional
information by analyzing the messages exchanged during the
protocol execution; he is definedmalicious or active if he arbi-
trarily deviates from the protocol specifications. In this work,
like most of the protocols mentioned above, the semi-honest
model is adopted. Let us note, however, that a protocol secure
for semi-honest users can always be transformed into a pro-
tocol secure against malicious participants by requiring each
party to use zero-knowledge protocols to grant that they are
correctly following the specifications of the scheme.

3. CRYPTOGRAPHIC PRIMITIVES

In this section the cryptographic primitives used to build the
proposed protocol are described.

3.1. Homomorphic and probabilistic encryption

To implement our protocol we need an efficient homomor-
phic and probabilistic, public key, encryption scheme.

Given a set of possible plain textsM, a set of cipher texts
C, and a set of key pairs K = PK× SK (public keys and secret
keys), a public key encryption scheme is a couple of func-
tions Epk : M → C, Dsk : C → M such that Dsk(Epk(m)) = m
(where m ∈ M) and such that, given a cipher text c ∈ C,
it is computationally unfeasible to determine m such that
Epk(m) = c, without knowing the secret key sk.

To perform linear computation (i.e., scalar product), we
need an encryption scheme that satisfies the additive homo-
morphic property according to which, given two plaintexts

m1 and m2 and a constant value a, the following equalities
are satisfied:

Dsk
(
Epk
(
m1
) · Epk

(
m2
)) = m1 +m2,

Dsk
(
Epk
(
m1
)a) = am1.

(1)

Another feature that we need is that the encryption
scheme does not encrypt two equal plain texts into the same
cipher text, since we have to encrypt a lot of 0s and 1s,
given that the output of the thresholding and sigmoid acti-
vation functions is likely to be zero or one in most of the
cases. For this purpose, we can define a scheme where the
encryption function Epk is a function of both the secret mes-
sage x and a random parameter r such that if r1 �= r2 we
have Epk(x, r1) �= Epk(x, r2) for every secret message x. Let
c1 = Epk(x, r1) and c2 = Epk(x, r2), for a correct behavior we
also need that Dsk(c1) = Dsk(c2) = x, that is, the decryp-
tion phase does not depend on the random parameter r. We
will refer to a scheme that satisfies the above property as a
probabilistic scheme. This idea was first introduced in [18].
Luckily, homomorphic and probabilistic encryption schemes
do exist. Specifically, in our implementation we adopted the
homomorphic and probabilistic scheme presented by Paillier
in [16], and later modified by Damgård and Jurik in [19].

3.2. Paillier cryptosystem

The cryptosystem described in [16], usually referred to as
Paillier cryptosystem, is based on the problem to decide
whether a number is an nth residue modulo n2. This prob-
lem is believed to be computationally hard in the cryptogra-
phy community, and is related to the hardness to factorize n,
if n is the product of two large primes.

Let us now explain what an nth residue is and how it can
be used to encrypt data. The notation we use is the classic
one, with n = pq indicating the product of two large primes,
Zn the set of the integer numbers modulo n, and Z∗n the set of
invertible elements modulo n, that is, all the integer numbers
that are relatively prime with n. As usual, the cardinality of
the latter set is indicated by |Z∗n | and it is equal to the Euler’s
totient function φ(n).

Definition 1. z ∈ Z∗n2 is said to be a nth residue modulo n2 if
there exists a number y ∈ Z∗n2 such that z = yn mod n2.

Conjecture 1. The problem of deciding nth residuosity, that is,
distinguishing nth residues from non nth residues is computa-
tionally hard.

Paillier cryptosystem works on the following facts from
number theory.

(1) The application

εg : Zn × Z∗n −→ Z∗n2 ,

m, y −→ gmyn mod n2
(2)

with g ∈ Z∗n2 an element with order multiple of n is a
bijection.
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(2) We define the class of c ∈ Z∗n2 as the uniquem ∈ Zn for
which y ∈ Z∗n exists such that c = gmyn mod n2.

This is the ciphering function, where (g,n) represents the
public key, m the plaintext, and c the ciphertext. Note that
y can be randomly selected to have different values of c that
belong to the same class. This ensures the probabilistic nature
of the Paillier cryptosystem.

Let us describe now the deciphering phase, that is, how
we can decide the class of c from the knowledge of the factor-
ization of n,

(1) It is known that |Z∗n | = φ(n) = (p − 1)(q − 1) and
|Z∗n2 | = φ(n2) = nφ(n).
Define λ(n) = lcm(p− 1, q− 1) (least common multi-
ple).

(2) This leads to, for all x ∈ Z∗n2 ,

(i) xλ(n) = 1 mod n,

(ii) xnλ(n) = 1 mod n2.
(3)

(3) From (ii) (xλ(n))n = 1 mod n2, so xλ(n) is an nth root
of unity, and from (i) we learn that we can write it as
1+an for some a ∈ Zn. So gλ(n) can be written as 1+an
mod n2.

(4) Note that for every element of the form 1 + an it is
true that (1 + an)b mod n2 = (1 + abn) mod n2. So
(gλ(n))m = (1 + amn).

(5) Consider cλ(n) = gmλ(n)ynλ(n): we have that gmλ(n) = 1+
amn mod n2 from (4) and ynλ(n) = 1 mod n2 from
(ii). We obtain that cλ(n) = 1 + amn mod n2.

(6) So we can compute cλ(n) = 1 + amn mod n2 and
gλ(n) = 1 + an mod n2.

(7) With the function L(x) = (x − 1)/n, by computing
L(cλ mod n2) and L(cλ mod n2) we can simply re-
cover am, a, and obtain am · a−1 = m mod n2.

Note that this is only an effort to make Paillier cryptosys-
tem understandable using simple facts. For a complete treat-
ment we refer to the original paper [16] or to [20].

At the end, the encryption and the decryption procedures
are the following

Setup

Select p, q big primes. λ = lcm(p − 1, q − 1) is the private
key. Let n = pq and g in Z∗n2 an element of order αn for some
α �= 0. (n, g) is the public key.

Encryption

Let m < n be the plaintext and r < n a random value. The
encryption c ofm is

c = Epk(m) = gmrn mod n2. (4)

Decryption

Let c < n2 be the ciphertext. The plaintextm hidden in c is

m = Dsk(c) = L
(
cλ mod n2

)

L
(
gλ mod n2

) mod n, (5)

where L(x) = (x − 1)/n.

3.3. Generalized Paillier cryptosystem

In [19] the authors present a generalized and simplified ver-
sion of the Paillier cryptosystem. This version is based on the
complexity to decide the nth residuosity modulo ns+1, and
includes the original Paillier cryptosystem as a special case
when s = 1.

The way it works is almost the same of the original ver-
sion except for

(i) The domain where one can pick up the plaintext is Zns

and the ciphertexts are in Z∗ns+1 .
(ii) g is always set to 1 + n (that has order ns).
(iii) The decryption phase is quite different.

The main advantage of this cryptosystem is that the only
parameter to be fixed is n, while s can be adjusted according
to the plaintext. In other words, unlike other cryptosystems,
where one has to choose the plaintext m to be less than n,
here one can choose anm of arbitrary size, and then adjust s
to have ns > m and the only requirement for n is that it must
be unfeasible to find its factorization.

The tradeoff between security and arithmetic precision is
a crucial issue in secure signal processing applications. As we
will describe later a cryptosystem that offers the possibility
to work with an arbitrary precision allows us to neglect that
the cryptosystemworks on integermodular numbers so from
now on we will describe our protocol as we have a homomor-
phic cryptosystem that works on approximated real numbers
with arbitrary precision. A detailed discussion of this claim is
given in Section 6.

3.4. Private scalar product protocol

A secure protocol for the scalar product allows Bob to com-
pute an encrypted version of the scalar product 〈·, ·〉 be-
tween an encrypted vector given by Alice c = Epk(x) and
one vector y owned by Bob. The protocol guarantees that
Bob gets nothing, while Alice gets an encrypted version of
the scalar product that she can decrypt with her private key.
At the end Bob learns nothing about Alice’s input while Alice
learns nothing except for the output of the computation. As
described in [21], there are a lot of protocols proposed for
this issue.

Here we use a protocol based on an additively homomor-
phic encryption scheme (see Algorithm 1).

After receiving z, Alice can decrypt this value with her
private key to discover the output of the computation. By us-
ing the notation (inputA; inputB) → (outputA; outputB), the
above protocol can be written as (c = Epk(x); y) → (z =
Epk(〈x, y〉);∅) where∅ denotes that Bob gets no output.
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Input: (c = Epk(x); y)
Output: (z = Epk(〈x, y〉);∅)
PSPP(c; y)
(1) Bob computes w =∏N

i=1 c
yi
i

(2) Bob sends z to Alice

Algorithm 1

It is worth observing that though the above protocol is a
secure one in a cryptographic sense, some knowledge about
Bob’s secrets is implicitly leaked through the output of the
protocol itself. If, for instance, Alice can interact N times
with Bob (where N = |x| = |w| is the size of the input
vectors), she can completely find out Bob’s vector, by sim-
ply setting the input of the ith iteration as the vector with
all 0s and a 1 in the ith position, for i = 1, . . . ,N . This ob-
servation does not contrast with the cryptographic notion of
secure multiparty computation, since a protocol is defined
secure if what the parties learn during the protocol is only
what they learn from the output of the computation. How-
ever, if we use the scalar product protocol described above to
build more sophisticated protocols, we must be aware of this
leakage of information. In the following we will refer to this
way of disclosing secret information as a sensitivity attack af-
ter the name of a similar kind of attack usually encountered
in watermarking applications [22, 23]. Note that the prob-
lems stemming from sensitivity attacks are often neglected in
the privacy preserving computing literature.

3.5. Malleability

The homomorphic property that allows us to produce mean-
ingful transformation on the plaintext modifying the cipher-
text also allows an attacker to exploit it for a malicious pur-
pose.

In our application one can imagine a competitor of Bob
that wants to discredit Bob’s ability to process data, and thus
adds random noise to all data exchanged between Alice and
Bob, making the output of the computation meaningless. Al-
ice and Bob have no way to discover that such an attack was
done, because if the attacker knows the public key of Alice,
he can transform the ciphertext in the same way that Bob
can, so Alice cannot distinguish between honest homomor-
phic computation made by Bob and malicious manipulation
of the ciphertext performed by the attacker. This is a well
known drawback of every protocol that uses homomorphic
encryption to realize secure computation. Such a kind of at-
tacks is called a malleability attack [24]. To prevent attackers
from maliciously manipulating the content of the messages
exchanged between Alice and Bob, the protocol, such as any
other protocol based on homomorphic encryption, should
be run on a secure channel.

4. PERCEPTRON

We are now ready to describe how to use the Paillier cryp-
tosystem and the private scalar product protocol to build a

x1

x2

xm

w1

w2

wm

∑ y τ(y, δ)δ
x2w2

x1w1

xmwm

...

Figure 1: A perceptron is a binary classifier that performs a
weighted sum of the inputs x1, . . . , xm by means of the weights
w1, . . . ,wm followed by an activation function usually implemented
by a threshold operation.

protocol for oblivious neural network computation. We start
by describing the instance of a single neuron, in order to clar-
ify how the weighted sum followed by the activation function
shaping the neuron can be securely computed.

A single neuron in a NN is usually referred to as percep-
tron. A perceptron (see Figure 1) is a binary classifier that
performs a weighted sum of the input x1, . . . , xm by means
of the weights w1, . . . ,wm followed by an activation function
(usually a threshold operation). So if y = ∑m

i=1 xiwi, the out-
put of the perceptron will be

τ(y, δ) =
⎧
⎨

⎩
1 if y ≥ δ,

0 if y < δ.
(6)

We also address the case where the activation function is
a sigmoid function, in this case the output of the perceptron
is

σ(y,α) = 1
1 + e−αy

. (7)

This function is widely used in feedforward multilayer NNs
because of the following relation:

dσ(x,α)
dx

= ασ(x,α)
(
1− σ(x,α)

)
(8)

that is easily computable and simplifies the backpropagation
training algorithm execution [25].

In the proposed scenario the data are distributed as fol-
lows: Alice owns her private input x, Bob owns the weights
w, and at the end only Alice obtains the output. Alice will
provide her vector in encrypted format (c = Epk(x)) and will
receive the output in an encrypted form. We already showed
how to compute an encrypted version of y, the scalar prod-
uct between x and w. Let us describe now how this compu-
tation can be linked to the activation function in order to
obtain a secure protocol (c;w, δ) → (Epk(τ(〈x,w〉, δ));∅)
in the case of a threshold activation function, or (x;w,α) →
(Epk(σ(〈x,w〉,α));∅) in the case of the sigmoid activation
function. In order to avoid any leakage of information, an ob-
fuscation step is introduced to cover the scalar product and
the parameters of the activation function.
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Input: (c;w, δ)
Output: (Epk(τ(〈x, y〉, δ));∅)
PerceptronThreshold(c;w, δ)
(1) Bob computes y =∏N

i=1 c
wi
i

(2) Bob computes γ = (y · Epk(−δ))a with random a and
a > 0

(3) Bob sends γ to Alice
(4) Alice’s output is 1 if Dsk(γ) ≥ 0; else it is 0

Algorithm 2

4.1. Secure threshold evaluation

What we want here is that Alice discovers the output of the
comparison without knowing the terms that are compared.
Moreover, Bob cannot perform such a kind of computation
by himself, as thresholding is a highly non-linear function,
thus homomorphic encryption cannot help here. The solu-
tion we propose is to obfuscate the terms of the comparison
and give them to Alice in such a way that Alice can compute
the correct output without knowing the real values of the in-
put. To be specific, let us note that τ(y, δ) = τ( f (y−δ), 0) for
every function such that sign( f (x)) = sign(x). So Bob needs
only to find a randomly chosen function that he can com-
pute in the encrypted domain, that transforms y − δ into a
value indistinguishable from purely random values and keeps
the sign unaltered. In our protocol, the adopted function is
f (x) = ax with a > 0. Due to the homomorphic property of
the cryptosystem, Bob can efficiently compute

Epk
(〈x,w〉 − δ

)a
∼ Epk

(
a
(〈x,w〉 − δ

))
, (9)

where ∼ means that they contain the same plaintext. Next,
Bob sends this encrypted value to Alice that can decrypt the
message and check if a(〈x,w〉 − δ) > 0. Obviously, this gives
no information to Alice on the true values of 〈x,w〉 and δ. In
summary, the protocol for the secure evaluation of the per-
ceptron is shown in Algorithm 2.

4.2. Secure sigmoid evaluation

The main idea underlying the secure evaluation of the sig-
moid function is similar to that used for thresholding. Even
in this case we note that σ(y,α) depends only on the product
of the two inputs, say if yα = y′α′, then σ(y,α) = σ(y′,α′).
So what Bob can do to prevent Alice to discover the output
of scalar product and the parameter of the sigmoid α is to
give Alice the product of those values, that Bob can compute
in the encrypted domain and that contains the same infor-
mation of the output of the sigmoid function. In fact, as the
sigmoid function could be easily inverted, the amount of in-
formation provided by σ(y,α) is the same of αy. The solution
we propose, then, is the following: by exploiting again the
homomorphic property of the cryptosystem Bob computes
Epk(y)α ∼ Epk(αy). Alice can decrypt the received value and
compute the output of the sigmoid function. The protocol
for the sigmoid-shaped perceptron is shown in Algorithm 3.

Input: (c;w,α)
Output: (Epk(σ(〈x, y〉,α));∅)
PerceptronSigmoid(x;w,α)
(1) Bob computes y =∏N

i=1 c
wi
i

(2) Bob computes η = yα and
(3) Bob sends η
(4) Alice decrypts η and computes her output

σ(Dsk(η), 1)

Algorithm 3

4.3. Security against sensitivity attacks

Before passing to the description of the protocol for the com-
putation of a whole NN, it is instructive to discuss the sensi-
tivity attack at the perceptron level. Let us consider first the
case of a threshold activation function: in this case the per-
ceptron is nothing but a classifier whose decision regions are
separated by a hyperplane with coefficients given by the vec-
tor w. Even if Alice does not have access to the intermediate
value 〈x,w〉, she can still infer some useful information about
w by proceeding as follows. She feeds the perceptron with a
set of random sequences until she finds two sequences ly-
ing in different decision regions, that is, for one sequence the
output of the perceptron is one, while for the other is zero.
Then Alice applies a bisection algorithm to obtain a vector
that lies on the border of the decision regions. By iterating
the above procedure, Alice can easily find m points belong-
ing to the hyperplane separating the two decision regions of
the perceptron, hence she can infer the values of the m un-
knowns contained in w. In the case of a sigmoid activation
function, the situation is even worse, since Alice only needs
to observe m + 1 values of the product αy to determine the
m + 1 unknowns (w1,w2 · · ·wm;α).

Note that it is impossible to prevent the sensitivity attacks
described above by working at the perceptron level, since at
the end of the protocol the output of the perceptron is the
minimum amount of disclosed information. As it will be
outlined in the next section, this is not the case when we are
interested in using the perceptron as an intermediate step of
a larger neural network.

5. MULTILAYER FEEDFORWARDNETWORK

A multilayer feedforward network is composed by n layers,
each having mi neurons (i = 1 · · ·n). The network is then
composed by N = ∑n

i=1mi neurons. Every neuron is iden-
tified by two indexes, the superscript refers to the layer the
neuron belongs to, the subscript refers to its position in the
layer (e.g., w2

3 indicates the weights vector for the third neu-
ron in the second layer, while its components will be referred
to asw2

3, j). An example of such a network is given in Figure 2.
The input of each neuron in the ith layer is the weighted sum
of the outputs of the neurons of the (i− 1)th layer. The input
of the first layer of the NN is Alice’s vector, while the out-
put of the last layer is the desired output of the computation.
Each neuron that is not an output neuron is called hidden
neuron.
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x1

x2

x3

x1 x2 x3

w1
1 w2

1 w3
1

w1
2 w2

2 w3
2

z1

z2

Figure 2: This network has n = 3 layers. The network has three
inputs, and all layers are composed of two neurons (m1 = m2 =
m3 = 2). The network is so composed of six neurons (N = 6).
Let us note that the input neurons are not counted as they do not
perform computation. For the sake of simplicity, the weights vector
of every neuron is represented into the neuron, and not on the edge.

In addition to protecting the weights of the NN, as de-
scribed in the previous section, the protocol is designed to
protect also the output of each of those neurons. In fact
the simple composition of N privacy preserving perceptrons
would disclose some side information (the output of the hid-
den neurons nodes) that could be used by Alice to run a sen-
sitivity attack at each NN node.

The solution adopted to solve this problem is that Bob
does not delegate Alice to compute the real output of the hid-
den perceptrons, but an apparently random output, so that,
as it will be clarified later, the input of each neuron of the
ith layer will not be directly the weighted sum of the outputs
of the neurons of the (i − 1)th layer, but an obfuscation of
them. To be specific, let us focus on the threshold activation
function, in this case every neuron will output a 0 or a 1. The
threshold function is antisymmetric with respect to (0, 1/2)
as shown in Figure 3. That is, we have that y ≥ δ ⇒ −y ≤ −δ
or equivalently:

τ(−y,−δ) = 1− τ(y, δ). (10)

Then, if Bob changes the sign of the inputs of the thresh-
old with 0.5 probability, he changes the output of the com-
putation with the same probability, and Alice computes an
apparently random output according to her view. Then she
encrypts this value, sends it to Bob that can flip it again in
the encrypted domain, so that the input to the next layer will
be correct.

Also the sigmoid is antisymmetric with respect to
(0, 1/2), since we have that 1/(1 + e−αy) = 1 − 1/(1 + eαy)
or equivalently:

σ(−y,α) = 1− σ(y,α), (11)

then if Bob flips the product inputs with 0.5 probability, the
sign of the value that Bob sends to Alice will be again ap-
parently random. Alice will still be able to use this value to
compute the output of the activation function that will ap-
pear random to her. However, Bob can retrieve the correct
output, since he knows whether he changed the sign of the

y

x

1

0

0

(a)

y

x

1

0

0

(b)

Figure 3: Both threshold and sigmoid functions are antisymmetric
with respect to (0, 1/2) as shown, that is, τ(−y,−δ) = 1 − τ(y, δ)
and σ(−y,α) = 1− σ(y,α).

inputs of the activation function or not. Note that Bob can
flip the sign of one or both the inputs of τ or σ in the en-
crypted domain, and he can also retrieve the real output by
still working in the encrypted domain since he can do this
by means of a simple linear operation (multiplication by 1 or
−1 and subtractions).

5.1. Multilayer networkwith threshold

We are now ready to describe the final protocol for a mul-
tilayer feedforward neural network whose neurons use the
threshold as activation function. The privacy preserving per-
ceptron protocol presented before is extended adding an in-
put for Bob using the following notation: given ξ ∈ {+,−},
we define

PerceptronThreshold (c;w, δ, ξ) → (Epk(τ(ξ〈x,w〉,
ξδ));∅).

The Alice’s encrypted input vector will be the input for
the first layer, that is c1 = c. With this new definition, we
obtain the protocol shown in Algorithm 4.

To understand the security of the protocol, let us note
that if Bob flips the sign of the input in the threshold with
probability 1/2, Alice does not learn anything from the com-
putation of the threshold function hence achieving perfect
security according to Shannon’s definition. In fact, it is like
performing a one time pad on the neuron output bit. This is
not true in the case of the sigmoid, for which an additional
step must be added.

5.2. Multilayer networkwith sigmoid

Even in this case, we need to extend the perceptron protocol
presented before by adding an input to allow Bob to flip the
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Input: (c;wi
j , δ

i
j) with i = 1 · · ·n, j = 1 · · ·mi

Output: (Epk(z);∅) where z is the output of the last layer of the network
PPNNThreshold(c;wi

j , δ
i
j)

(1) c1 = c
(2) for i = 1 to n− 1
(3) for j = 1 tomi

(4) Bob picks ξ ∈ {+,−} at random
(5) (Epk(τ(ξ〈xi,wi

j〉, ξδij));∅) = PerceptronThreshold(ci;wi
j , δ

i
j , ξ)

(6) Alice decrypts the encrypted output and computes the new input xi+1, sending
back to Bob ci+1j = Epk(xi+1j )

(7) if ξ = “−′′
(8) Bob sets ci+1j = Epk(1) · (ci+1j )−1

(9) // last layer does not obfuscate the output
(10) for j = 1 tomn

(11) (zj ;∅) = PerceptronThreshold(xn;wn
j , δ

n
j , +)

Algorithm 4

sigmoid input:
PerceptronSigmoid (c;w,α, ξ) → (Epk(σ(ξ〈x,w〉,

α));∅).
At this point we must consider that, while the threshold

function gives only one bit of information, and the flipping
operation carried out by Bob completely obfuscates Alice’s
view, the case of the sigmoid is quite different: if Bob flips the
inputs with probability 0.5, Alice will not learn if the input of
the sigmoid was originally positive or negative, but she will
learn the product ±αy. This was not a problem for the per-
ceptron case, as knowing z or this product is the same (due
to the invertibility of sigmoid function). For the multilayer
case, instead, it gives to Alice more information than what
she needs, and this surplus of information could be used to
perform a sensitivity attack.

Our idea to cope with this attack at the node level is to
randomly scramble the order of the neurons in the layer for
every execution of the protocol except for the last one. If
the layer i has mi neurons we can scramble them in mi! dif-
ferent ways. We will call πri the random permutation used
for the layer i, depending on some random seed ri (where
i = 1, . . . ,n− 1) so that the protocol will have a further input
r. Evidently, the presence of the scrambling operator prevents
Alice from performing a successful sensitivity attack. In sum-
mary, the protocol for the evaluation of a multilayer network
with sigmoid activation function, using the same notation of
the threshold case, is shown in Algorithm 5.

5.3. Sensitivity attack

Before concluding this section, let us go back to the sen-
sitivity attack. Given that the intermediate values of the
computation are not revealed, a sensitivity attack is possible
only at the whole network level. In other words, Alice could
consider the NN as a parametric function with the parame-
ters corresponding to the NN weights, and apply a sensitiv-
ity attack to it. Very often, however, a multilayer feedforward
NN implements a complicated, hard-to-invert function, so
that discovering all the parameters of the network by con-
sidering it as a black box requires a very large number of in-

teractions. To avoid this kind of attack, then, we can simply
assume that Bob limits the number of queries that Alice can
ask, or require that Alice pays an amount of money for each
query.

5.4. Protecting the network topology

As a last requirement Bob may desire that Alice does not
learn anything about the NN topology. Though strictly
speaking this is a very ambitious goal, Bobmay distort Alice’s
perception of the NN by randomly adding some fake neurons
to the hidden layers of the network, as shown in Figure 4. As
the weights are kept secret, Bob should randomly set the in-
bound weight of each neuron. At the same time Bob has to
reset the outbound weights, so that the fake neurons will not
change the final result of the computation. The algorithms
that we obtain by considering this last modification are equal
to those described so far, the only difference being in the
topology of Bob’s NN. Note that for networks with sigmoid
activation functions, adding fake neurons will also increase
the number of random permutations that can be applied to
avoid sensitivity attacks.

6. HANDLING NONINTEGER VALUES

At the end of Section 3.3 we made the assumption that the
Paillier encryption scheme, noticeably the Damgård-Jurik
extension, works properly on noninteger values and satisfies
the additive homomorphic properties on such kind of data
to simplify the analysis reported in the subsequent sections.
Indeed, rigorously speaking, this is not true. We now analyze
more formally every step of the proposed protocols showing
how the assumption we made in Section 3.3 is a reasonable
one.

To start with, let us remember that the Damgård-
Jurik cryptosystem allows to work on integers in the range
{0, . . . ,ns − 1}. First of all we map, in a classic way, the posi-
tive numbers in {0, . . . , (ns − 1)/2}, and the negative ones in
{(ns − 1)/2+1, . . . ,ns−1}, with−1 = ns−1. Then, given a real
value x ∈ R, we can quantize it with a quantization factor Q,
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Input: (c;wi
j ,α

i
j , r) with i = 1 · · ·n, j = 1 · · ·mi

Output: (Epk(z);∅) where z is the output of the last layer of the network
PPNNSIGMOID(c;wi

j ,α
i
j , r)

(1) for i = 1 to n− 1
(2) Bob permutes neurons position in layer i using random permutation πri
(3) // now the network is scrambled, and the protocol follows as before
(4) x1 = x
(5) for i = 1 to n− 1
(6) for j = 1 tomi

(7) Bob picks ξ ∈ {+,−} at random
(8) (Epk(σ(ξ〈xi,wi

j〉,αij));∅) = PerceptronSigmoid(ci;wi
j ,α

i
j , ξ)

(9) Alice decrypts the encrypted output and computes the new input xi+1, sending
back to Bob ci+1j = Epk(xi+1j )

(10) if ξ = “−′′
(11) Bob sets ci+1j = Epk(1) · (ci+1j )−1

(12) // last layer does not obfuscate the output
(13) for j = 1 tomn

(14) (zj ;∅) =PerceptronSigmoid(cn;wn
j ,α

n
j , +)

Algorithm 5

Figure 4: To obfuscate the number and position of the hidden neu-
rons Bob randomly adds fake neurons to the NN. Fake neurons do
not affect the output of the computation as their outbound weights
are set to 0. Inbound weights are dotted as they are meaningless.

and approximate it as x = 
x/Q� � x/Q for a sufficiently thin
quantization factor. Clearly the first homomorphic property
still stands, that is,

Dsk
(
Epk
(
x1
) · Epk

(
x2
)) = x1 + x2 � x1 + x2

Q
. (12)

This allows Bob to perform an arbitrarily number of
sums among cipher texts. Also the second property holds,
but with a drawback. In fact:

Dsk
(
Epk(x)a

) = a · x � a · x
Q2

. (13)

The presence of the Q2 factor has two important conse-
quences:

(1) the size of the encrypted numbers grows exponentially
with the number of multiplications;

(2) Bob must disclose to Alice the number of multiplica-
tions, so that Alice can compensate for the presence of
the Q2 factor.

The first drawback is addressed with the availability of
Damgård-Jurik cryptosystem that allows us, by increasing s,
to cipher bigger numbers. The second one imposes a limit on
the kind of secure computation that we can perform using
the techniques proposed here.

We give here an upper bound for the bigger integer that
can be encrypted, that forces us to select an appropriate pa-
rameter s for the Damgård-Jurik cryptosystem.

In the neural network protocol, the maximum number of
multiplications done on a quantized number is equal to two:
the first in the scalar product protocol and the second with
a random selected number in the secure thresholding evalu-
ation or with the α parameter in the secure sigmoid evalua-
tion. Assume that the random values and the α parameters
are bounded by R.

Let X be the upper bound for the norm of Alice’s input
vector, andW an upper bound for the weight vectors norm.
We have that every scalar product computed in the proto-
col is bounded by |x| · |w| cos(x̂w) ≤ XW . Given a modulo
n sufficiently high for security purposes, we have to select s
such that

s ≥
⌈
logn

2XWR

Q2

⌉
, (14)

where the factor 2 is due to the presence of both positive and
negative values.

Other solutions for working with noninteger values can
be found in [8] where a protocol to evaluate a polynomial on
floating-point numbers is defined (but the exponent must
be chosen in advance), and [26], where a sophisticated cryp-
tosystem based on lattice properties allowing computation
with rational values is presented (even in this case, however,
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a bound exists on the number of multiplications that can be
carried out to allow a correct decryption).

7. IMPLEMENTATION OF THE PROTOCOL

In this section a practical implementation of the proposed
protocol is described, and a case study execution that will
give us some numerical results in terms of computational and
bandwidth resource needed is analyzed.

7.1. Client-server application

We developed a client-server application based on the Java
remote method invocation technology.1 The application,
based on the implementation of the Damgård-Jurik cryp-
tosystem available on Jurik’s homepage,2 is composed of two
methods, one for the initialization of the protocol (where
public key and public parameters are chosen) and one for
the evaluation of every layer of neurons.

7.2. Experimental data

From the UCImachine learning repository,3 the data set cho-
sen by Gorman and Sejnowski in their study about the clas-
sification of sonar signals by means of a neural network [27]
has been selected. The task is to obtain a network able to dis-
criminate between sonar signals bounced off a metal cylinder
and those bounced off a roughly cylindrical rock. Following
the author’s results, we have trained a NN with 12 hidden
neurons and sigmoid activation function with the standard
backpropagation algorithm, obtaining an accuracy of 99.8%
on the training set and 84.7% on the test set.

7.3. Experimental setup

To protect our network we have embedded it in a network
made of 5 layers of 15 neurons each, obtaining a high level
of security as the ratio of real neurons on fake one is really
low, in fact it is 12/75 = 0.16. The public key n is 1024 bit
long, and the s parameter has been set to 1, without any prob-
lem for a very thin quantization factor Q = 10−6. We have
then initialized every fake neuron with connections from ev-
ery input neuron in a way that they will look the same of
the real ones, setting the weights of the connection at ran-
dom. Then we have deployed the application on two mid-
level notebooks, connected on a LAN network.

The execution of the whole process took 11.7 seconds, of
which 9.3 on server side, with a communication overhead of
76 kb. Let us note that no attempt to optimize the execution
time was done, and as seen the client computation is negli-
gible. These results confirm the practical possibility to run a
neural network on an input provided in encrypted format.

1 http://java.sun.com/javase/technologies/core/basic/rmi
2 http://www.daimi.au.dk/∼jurik/research.html
3 http://www.ics.uci.edu/∼mlearn/MLRepository.html

8. CONCLUSIONS

In artificial intelligence applications, the possibility that the
owner of a specific expertise is asked to apply its knowledge
to process some data without that the privacy of the data
owner is violated is of crucial importance. In this frame-
work, the possibility of processing data and signals directly in
the encrypted domain is an invaluable tool, upon which se-
cure and privacy preserving protocols can be built. Given the
central role that neural network computing plays in mod-
ern artificial intelligence applications, we devoted our at-
tention to NN-based privacy-preserving computation, where
the knowledge embedded in the NN as well as the data the
NN operates on are protected. The proposed protocol re-
lies on homomorphic encryption; for those tasks that cannot
be handled by means of homomorphic encryption, a lim-
ited amount of interaction between the NN owner and the
user is introduced; however, in contrast to previous works,
the interaction is kept to a minimum, without resorting to
multiparty computation protocols. Any unnecessary disclo-
sure of information has been avoided, keeping all the internal
computations secret such that at the end of the protocol the
user only knows the final output of the NN. Future research
will be focused on investigating the security of the network
topology obfuscation proposed here, and on the design of
more efficient obfuscation strategies. Moreover, the possibil-
ity of training the network in its encrypted form will also be
studied.
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