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Abstract

Finding adequate responses to ongoing attacks on ICT systems is a pertinacious problem and requires assessments
from different perpendicular viewpoints. However, current research focuses on reducing the impact of an attack
irregardless of side effects caused by responses. In order to achieve a comprehensive yet accurate response to
possible and ongoing attacks on a managed ICT system, we propose an approach that evaluates a response from two
perpendicular perspectives: (1) A response financial impact assessment, considering the financial benefits of restoring
and protecting potentially threatened operational capabilities while considering implementation and maintenance
costs of responses. (2) A response operational impact assessment, which assesses potential impacts that efficient
mitigation actions may inadvertently cause on the organization in an operational perspective, e.g., negative side
effects of deploying mitigations. It is the key benefit of the presented approach to combine all obtained evaluations
with a multi-dimensional optimization procedure such that a response plan is selected which reduces a state of risk
below an admissible level while minimizing potential negative side effects of deliberately taken actions.
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1 Introduction
Finding adequate responses to ongoing attacks on infor-
mation and communications technology (ICT) systems
is a pertinacious problem and requires assessments from
different perpendicular viewpoints. An adequate response
to an ongoing attack or potential threat to a system must
have the aim to minimize an associated degree of risk,
minimize potential consequences of a successful attack,
and to reduce the attack surface. However, most impor-
tantly, a chosen response plan shall not affect a mis-
sion inadvertently by itself, i.e., one shall not sacrifice
a mission, e.g., a conglomeration of to-be-accomplished
business processes, for a false sense of security.
Current research, however, focus on considering the

impact of attacks [1–4], by evaluating their severity and
consequences, but leave aside the potential impact of
taken actions themselves onto higher goals. Moreover, the
analysis of current cyber events should also consider the
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impact of potential mitigation actions as well as time,
geographic space, and affected elements [5].
In this article, we present an approach to unify mul-

tiple perspectives on choosing adequate response plans
from a set of response plans that have been proposed by
some third-party entity, e.g., an operator or classical intru-
sion detection system. We consider a response plan as a
collection of individual atomic actions called “mitigation
actions,” and we consider the likelihood of success of the
detected attacks, their induced impact, their deployment
and maintenance costs, as well as the consequences of
these response plans onto a higher goal, e.g., success of a
company or mission.
Our approach is based on two general impact assess-

ments: (1) A financial impact assessment (FIA) and (2)
an operational impact assessment (OIA), where both are
applied to a cyber-defense domain for choosing adequate
response plans. Effectively, one obtains a response FIA
(RFIA) and a responseOIA (ROIA).
RFIA relies on a return on response investment (RORI)

index and a geometrical model (named attack volume) to
estimate the impact of security incidents (e.g., intrusions,
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attacks, errors) in a financial perspective, and to rank
responses accordingly. However, RFIA solely considers
directly associated costs for deploying and maintaining
a response, but does not consider their potential neg-
ative side effects onto a higher goal, e.g., loosing the
ability to accomplish a business process. ROIA exactly
considers that mitigation actions, while highly effective,
could lead to such operational negative side effects inside
the network and therefore onto a mission. ROIA evalu-
ates proposed response plans based on validatable local
impact- and dependency-assessments of dependencies
inside an organization’s business- and IT-infrastructure,
but leaves aside the effectiveness of a response against an
attack and neither considers associated implementation
costs.
Both, RFIA and ROIA, establish impact assessments

of proposed response plans, where a response plan rep-
resents a collection of multiple mitigation actions. Due
to their nature, a financial impact assessments (using
a RORI index) and an operational impact assessments
are performed from perpendicular perspectives: On the
one hand, the less invasive a response plan is, the less
it can potentially cause collateral damage (probability of
operational impact). On the other hand, a minimally inva-
sive response plan will not significantly reduce a risk,
i.e., will not yield a high return on response invest-
ment (RORI). It is the novel advantage of the presented
approach of being able to combine both assessments using
a multi-dimensional optimization procedure to find a
“best-compromise” identified by a Pareto-efficient set.
The contributions on this paper are summarized as

follows: We present a two-fold evaluation strategy for
response plans such that a mission is protected from
adversarial threats while not sacrificing the mission for
a false sense of security. The strategy considers perpen-
dicular perspectives: (1) A financial impact assessment of
mitigation actions based on a cost-sensitive metric and
geometrical models, and (2) an operational impact assess-
ment of mitigation actions based on mission and resource
dependency models. The combination of (1) and (2) yields
vital benefits for choosing adequate responses in, e.g., crit-
ical infrastructures, and overcomesmultiple discrepancies
of related work, e.g., the neglect of negative side effect
of responses. Further, we present multiple approaches to
automatically obtain required models, e.g., by learning
models from network traffic, and present practical imple-
mentation proposals for efficient evaluations and selec-
tions of responses. We validate and verify the presented
approach with a real-world use case from the industry
using real data.
This article extends previous work [6] by an in-depth

description of the response financial and operational
impact assessments, extended and improved theory of
multi-dimensional optimization, and approaches towards

automatically learning required models through machine
learning and interviews with experts. Moreover, we dis-
cuss possible conflicts among mitigation actions and the
relation between financial and operational assessments
that makes it possible to propose a Pareto-efficient
response plan. Furthermore, we discuss and compare
various other optimization strategies.

Paper organization — Sections 2 and 3 discuss pre-
liminaries and theory of a financial [7–9] and operational
[10–12] impact assessment. Section 4 describes practi-
cal approaches to obtain required models and discusses
an efficient implementation of evaluations. Section 5
presents the novel contribution of this article as a multi-
dimensional optimization for selecting adequate response
plans based on a combination of both impact assessment
and the use of Pareto-efficiency. A real-world application
of the presented approach is presented in Section 6 show-
ing the applicability of the proposedmodels and approach.
Section 7 discusses related work. In Section 8, we criti-
cally discuss our work, discuss potential conflicts among
response plans, relate the financial and operational impact
assessment to each other, and compare our approach to
other selection strategies. Conclusions and perspectives
for future work are presented in Section 9.

2 Financial impact assessment
Cost-sensitive metrics have been proposed as a viable
approach to find an optimal balance between intrusion
damages and the cost of implementing and maintaining
a response over a period of time. Commonly, they guar-
antee the choice of the most appropriate response with-
out sacrificing the system functionalities to an adversary,
but do not consider the self-inflicted side effects of the
responses themselves. Such cost-sensitive measurements
are either absolute or relative: absolutemeasurements use
precise values that scale with a given unit (e.g., hundreds,
thousands, millions); whereas relative measurements are
methods for deriving ratio scales from paired comparisons
represented by absolute numbers [13]. Relative measure-
ments are useful in obtaining an overall ratio scale ranking
of the alternatives. If the ratio produces repeatable and
consistent results, themodel can be used to compare secu-
rity solutions based on relative values [14]. Examples of
these models include the return on investment (ROI) and
all its variants [14–16].

2.1 Return on investment (ROI)
The simplest and most used approach for evaluating
financial consequences of business investments, deci-
sions, and/or actions is the return on investment (ROI).
The ROI index is a relative measure that compares the
benefits versus the costs obtained for a given investment
[15, 17]. Informally, ROI basically shows how much a
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company earns from invested money. This metric sup-
ports decision makers to select the option(s) that have the
highest return. ROI is calculated as the present value of
accumulated net benefits over a certain time periodminus
the initial costs of investment, then divided by the initial
costs of investment, as shown in Eq. 1.

ROI = Bt − Ct
Ct

· 100 , (1)

where Bt refers to all benefits during period t, andCt refers
to all costs during period t. The decision rule is that the
higher the ROI value, the more interesting the investment.

2.2 Return on security investment
Return on security investment (ROSI) is a relative metric
that compares the differences between the damages origi-
nated by attacks (with and without mitigation) against the
cost of the mitigation action [14, 16, 18]. ROSI has been
adapted from the ROI metric as presented in Eq. 2.

ROSI = (ALEb − ALEa) − CostMA
CostMA

· 100 , (2)

where ALEb refers to the annual loss expectancy before
mitigation,ALEa refers to the annual loss expectancy after
mitigation, andCostMA is the cost of themitigation action.
Similar to the ROI metric, the decision rule is that

the higher the ROSI value, the more interesting the
investment.

2.3 Return on response investment
Return on response investment (RORI) is a quantitative
model for ranking response plans by a cost-sensitive finan-
cial comparison and has been introduced in [7–9, 19], and
in the following. For the scope of this article, we con-
sider sets of individual actions performed as a response to
an adversary. Sets of these actions are hereinafter called
response plans:

Definition 2.1 (Response plan) A response plan RP is
a set of mitigation actions, representing individual actions
to be performed as a response to an adversary or threat
opposed to an organization.

RORI is an adaptation of the return on security invest-
ment (ROSI) index for a comparison of response plans.
The RORI index considers the intrusion impact and direct
financial costs as shown in Eq. 3.

RORI = (ALE · RM) − ARC
ARC + AIV

· 100 . (3)

For every response plan, a RORI indexmay be calculated
for a given attack scenario using Eq. 3. All parameters are
defined as follows:

Definition 2.2 (Annual loss expectancy, ALE) ALE cor-
responds to the attack impact loss that an organiza-
tion is exposed to in the absence of mitigation actions.
ALE is expressed in monetary values (e.g., $/year) and
depends directly on the attack’s severity and likelihood.
ALE includes the loss of assets (La), the loss of data (Ld), the
loss of reputation (Lr), the legal procedures (LP), the loss
of revenues from clients or customers (Lrc), as well as other
losses (Lo), contracted insurances (Ins), to be multiplied by
the annual rate of occurrence of the attack (ARO), as shown
in Eq. 4,

ALE = (La +Ld +Lr +LP+Lrc +Lo − Ins) ·ARO . (4)

Definition 2.3 (Annual infrastructure value, AIV ) AIV
represents the fixed costs that are expected to be perceived
by an organization regardless of the deployed response.
AIV is strictly positive and is expressed in monetary val-
ues (e.g., $/year). It includes the following costs: equipment
costs (Ce), personnel costs (Cp), service costs (Cs), and other
costs (Co), as well as the resell value (Vr), as shown in Eq. 5,

AIV = Ce + Cp + Cs + Co + Vr . (5)

Definition 2.4 [Risk mitigation, RM] RM refers to the
risk mitigation associated with a given mitigation action.
RM takes values between 0 and 100% (i.e., 0% ≤ RM ≤
100%). In the absence of mitigation actions, RM equals 0%.
RM is computed as the product of the mitigation coverage
(COV, which is the percentage of the attack covered by the
mitigation action) by the effectiveness factor (EF, which is
the percentage of reduction of the total incident cost given
the enforcement of themitigation action), as shown in Eq. 6,

RM = COV · EF . (6)

Definition 2.5 (Annual response cost, ARC) ARC refers
to the costs associated to a given mitigation action. ARC
is always positive and expressed in monetary values (e.g.,
$/year). It includes direct costs such as the cost of imple-
mentation (Cimpl), the cost of maintenance (Cmaint), as well
as other direct costs (Cod) that may originate from the
adoption of a particular mitigation action, as shown in
Eq. 7,

ARC = Cimpl + Cmaint + Cod . (7)

Considering a RORI index alone, the best candidate
response set is represented by a maximal positive RORI
index. Therefore, the RORI index of a response plan yields
a ranking of response plans for, e.g., an ongoing attack,
while considering the cost of implementing and maintain-
ing this response (ARC), the expected monetary loss in
the case of a successful attack (ALE), the absolute val-
ues of the protected good (AIV), and, obviously, a degree
of effectiveness of the response against the attack (RM).
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However, what a RORI index does not consider is a degree
of self-inflicted side effects of the responses themselves,
e.g., the severe issue of shutting down an extremely impor-
tant central control server in order to “protect” it from an
adversary.

3 Operational impact assessment
Operational impact assessment (OIA) is used to address
potential impacts onto a higher goal, from widespread
events which impact local operational capabilities. For
example, a local impact caused by an event on a distant
node might lead to a causal chain of operational failures,
leading to an impact on a company. In this work, we utilize
OIA and its associated property of being able to consider
“spreads of impacts” through an infrastructure to address
the negative side effects of responses onto a company
or mission. For example, the shutdown of a central con-
trol server will certainly lead to a high probability that a
central business process is not accomplishable anymore,
which will certainly lead to the fact that the company is
impacted as well. Likewise, a shutdown, patch, exchange,
or maintenance of a server that supports the central con-
trol server may induce the same (negative) causal chain
of events.
Motzek et al. introduce an approach towards OIA based

on a probabilistic graphical model in [11], which defines
a well-understood problem onto which an OIA can be
reduced. To obtain a consistent model, various experts
must be consulted, and information origins from various
different perspectives coming from different expertises.
In effect, experts, i.e., models, will contain disagree-
ments and contain semantic and technology gaps [11].
By resorting to a probabilistic model, the use of con-
ditional probability distributions allows for local views
on assessments, without a need to understand a specific
use case nor any algorithmic properties. Therefore, OIA
introduced by [11] is able to directly include all views
by experts directly into one consistent model, bridging
semantic and technology gaps. This is highly benefi-
cial, as experts are not forced to come one bad com-
promise, but the model is able to understand emerging
disagreements.
Moreover, local views allow one to validate data instead

of results. This means that all parts of the model per se are
understandable and validatable by using common sense
or by validating small subparts against ground truth. No
large, holistic ground truth datasets are required to vali-
date algorithms, as the emerging problem and associated
algorithms to solve these problems are inherently defined
by the model itself.
The following sections introduce views on OIA from

three different perspectives, each defining one depen-
dency model as a probabilistic graphical model of random
variables and respective dependencies.

Remark 3.1 (Impact) The abstract term “impact” is used
in this work in the sense of “not operating as fully intended.”
The underlying meaning of “intended operation” lies in a
use case of the model.

3.1 Mission dependency model (business view)
Motzek et al. [11] extend a model by Jakobson [20] and
model mission dependencies as a graph of mission nodes
(MN) as shown in Fig. 1. A company is dependent on its
business processes. A business process is dependent on one
ormore business functions, which are provided by business
resources. Figure 1 shows a dependency graph of busi-
ness relevant objects for a small company consisting of
two business processes, requiring a total of four functions
provided by four resources.
Dependencies are represented by local conditional

probability distributions (CPDs) modeling probabilities of
failure, given dependances fail. For example, the proba-
bility of business function BF1 (see Fig. 1), say, “provide
access to customer data”, failing, given required business
resource A, e.g., “customer-data-frontend”, fails is 90%.
[10] argues that the meaning of local conditional proba-
bilities are understandable using common sense (e.g., “in
9 out of 10 cases, customer data were not accessible for
employees during frontend-server maintenance”) and that
the (numerical) assessment can be directly validated by
either an expert or through ground-truth.

Definition 3.2 (Probabilistic preliminaries) A node of
a probabilistic dependency model is a random variable,
denoted with capital letters, e.g., X. A random variable X
is assignable to one of its possible values x ∈ dom(X). Let

Fig. 1Mission dependency model. Values along edges denote
individual conditional probability fragments
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P(X = x) denote the probability of random variable X hav-
ing x as a value. For the case dom(X) = {true, false}, we
write +x for the event X = true and −x for X = false.

The event +x represents the case that node X is oper-
ationally impacted and −x that is operating as fully
intended, i.e., no impact is present.

Definition 3.3 (From dependencies to distributions)
Single dependencies of a random variable Y on X are
modeled as individual conditional probability p(x|y) and
p(x|¬y). Such individual conditional probabilities are
fragments of a complete CPD and are therefore denoted in
lowercase. To acquire the local CPD P(X| �Y ) of node X from
all its fragments p(X|Y ) of all dependent nodes Y ∈ �Y ,
[10] employs a non-leaky noisy-or combination function as
described in [21, 22]. Non-leakiness implies p(+x|−y) = 0
for every dependency and therefore P(+x|−�y) = 0. Non-
leaky implies that an operational impact cannot origin
“from nowhere” and there must be a cause for it inside the
network.

Using individual conditional probability fragments leads
to a significantly easier design of mission dependency
models, as no complete conditional probability distribu-
tions need to be designed. Per Definition 3.3, the com-
plete conditional probability distributions are obtained
via a deterministic combination function such as Noisy-
OR. Other combination functions exist, which we briefly
discuss in the following remark.

Remark 3.4 (Noisy-OR, Noisy-AND, Redundancy) In
this work, we solely consider a Noisy-OR model, i.e., every
dependency can lead to a failure on its own. Notwithstand-
ing, Noisy-AND is another possible modeling technique for
certain resources, whose failure may only be provoked by
a combined impact on all higher resources simultaneously,
e.g., completely redundant systems. We define all models
more generally in [11], and explicitly consider Noisy-AND
cases. Still, we believe that a Noisy-OR assumption is often
a safer approach: claiming that there exists absolutely no
chance that a resource may be impacted given all, but one,
dependencies are impacted, is a harsh assumption.

Informally, a mission dependency model is a graph of
nodes where every edge is associated with a probabil-
ity value. A formal definition is given by [11] as follows,
which provides valuable properties from a probabilistic
perspective, which are discussed afterwards.

Definition 3.5 (Mission dependency model) A mission
dependency model M is a directed acyclic graph (DAG) as
a pair 〈 �V , �E〉 of vertices �V and edges �E. Vertices �V are ran-
dom variables (Def. 3.2) and are categorized according to

their semantic as business resources ( �BR), functions ( �BF),
processes ( �BP), and company (BC). For the scope of this
work, we consider that a business dependency model is cre-
ated for a single BC. The ordering BR ≺ BF ≺ BP ≺ BC
represents the strict topological ordering of graph M. Every
edge E ∈ �E represents a dependency. Let V ∈ �V, then
let �EV ⊆ �E be the set of edges directed to V, and let �DV
be the set of vertices from which �EV origin, i.e., �DV is the
set of dependencies of V. For every vertex V ∈ �V a con-
ditional probability distribution (CPD) P(V | �DV ) is given,
or, alternatively, a combination function is given for V and
edges E ∈ �EV are associated with conditional probability
fragments s.t. a p(+v|d) is given for all d ∈ dom(D),∀D ∈
�DV .

With Definition 3.5, a mission dependency model is a
Bayesian network, whose semantics is defined by the joint
probability distribution over all mission nodes, i.e., ran-
dom variables, as the product of all local defined CPDs.
This simple definition of a global JPD for this mission
dependencymodel is one of themost important aspects of
this probabilistic approach to mission impact assessment:
In the JPD, no global normalization factors are required.
This means that every individual CPD and every local
conditional probability fragment is interpretable individ-
ually and one does not require the complete big picture
of other assessments to understand it. This property, i.e.,
the correspondence of a mission dependency model to a
Bayesian network, is themathematical foundation why the
introduced mission impact assessment in [11] is context-
free and bias-free, i.e., every parameter is immediately
understandable without knowledge of other parts of the
model, and obtained final mission impact assessments are
directly understandable without requiring reference val-
ues, i.e., one cannot come to biased interpretation because
of a dulling due to long-time seen results.
Business resources are part of an infrastructure perspec-

tive and—from an operational view—might be irrelevant,
but are identified to be business critical by a business
expert. Notwithstanding, such an assessment might be
inaccurate, which is why transitive impacts must be con-
sidered. For example, a web-service might be identified as
a business critical resource; it cannot be expected that an
underlying distributed computing cluster is identified to
actually provide this web-service. The following resource
dependency model covers these dependencies.
Designing BPMN models is handled manually by an

expert from a company or by an external business consul-
tant having a precise expertise business analyses. Business
analysis is performed on a pure business perspective and
stops at a “resource” level. For example, a business ana-
lyst may identify a web-service, but will not describe the
technical dependencies of the webservice on a database or
a data center. This is a reasonable approach, as the latter
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perspective comes from a very different expertise and
would require very broad-range experts. Further, an iden-
tification of a web-service as a business relevant object is
causally more precise in the terms of an operation per-
spective: A failing database might cause a web-service to
not operate as intended and therefore might lead to an
unaccomplishment of a business-process. Still, the direct
cause for the business-process being unaccomplishable is
a rogue web-service and not the database. An “IT” expert
might identify a web-service to be irrelevant, as the crucial
point of failure or the point of interest lies in the avail-
ability of data from a database. Nevertheless, the latter
dependencies must be covered and are discussed in the
upcoming subsection. The main intention of using multi-
ple models here is to reflect all views exactly and make the
global model able to understand the discrepancies instead
of enforcing a bad compromise.

3.2 Resource dependency model (operation view)
Critical resources identified in a mission dependency
model are almost certainly dependent on further
resources. For example, a web-server is likely dependent
on a database-server. In effect, it is completely natural
that multiple experts will disagree on the identification
of critical devices. For example, a data analyst will solely
be interested in data from the database, whereas the
accountant will require data insights provided through
the webserver. Essentially, no difference on the impor-
tance exists between two devices. No matter which one
will be identified by a mission dependency model, the
vast dependence between both must be covered, which is
performed by the resource dependency model discussed
here.
Formally, a resource dependency model is a probabilis-

tic graphical model, where every resource represents a
random variable, and a dependency is modeled as a condi-
tional probability fragment as shown in Fig. 2. As before,

Fig. 2 A minimalistic resource dependency model. Conditional
probability fragments are marked along the edges. Gray nodes
represent external shock events leading to local impacts on
resources. Connections to the mission dependency model are
sketched in dashed gray

the local and intuitive interpretation of those is preserved
by following such a Bayesian approach.

Definition 3.6 (Resource dependency model) A resource
dependency model R is a directed graph as a pair 〈 �V , �E〉 of
vertices �V and edges �E. Every edge E ∈ �E, from vertex X ∈
�V to Y ∈ �V, represents a dependency, and is associated
with a conditional probability fragment p(+y|+x). Vertices
�V are random variables (Def. 3.2) and represent resources
in an infrastructure, where a subset of vertices semantically
correspond to vertices of a corresponding mission depen-
dency model M. Let V ∈ �V, then let �EV ⊆ �E be the set
of edges directed to V, and let �DV be the set of vertices
from which �EV origin, i.e., �DV is the set of dependencies
of V. For every vertex V ∈ �V a conditional probabil-
ity distribution (CPD) P(V | �DV ) is defined by a non-leaky
noisy-or combination of all conditional probability frag-
ments of associated edges in �EV . V is not contained in �DV ,
i.e., a resource V is not dependent on itself.

This definition is similar to the previous definition of
a mission dependency model, but allows one to model
cyclic dependencies, which will later be resolved during
inference.
Considering impacts in a large infrastructure, where

a resource is dependent on another, and a dependent
resource is threatened, the identified critical resource
might be threatened transitively as well. Effectively, an
impact will “spread” throughout this model onto a mission
dependency model which will later be covered during the
impact assessment.
Resources in a resource dependency model may repre-

sent, e.g., individual ICT servers, ICS devices, software
components or, in other use cases, manufacturing robots,
suppliers, soldiers, or vehicles. The underlying meaning of
resources in a resource dependency model depends on a
use case similar to the meaning of an impact. These impli-
cations and mixtures between different types of resources
are discussed in [11].
In large companies, resource dependency model may

quickly grow and containmultiple hundreds of nodes with
thousands of dependencies. Therefore, it is almost cer-
tain that a human expert will not be able to model such
a resource dependency model manually by hand. More-
over, in novel, dynamically scaling environments, these
infrastructure will quickly change over time and a model
needs to be constantly adjusted. We introduce in [11]
an approach to automatically learn resource dependency
model constantly from network traffic analyses, which
we discuss later in Section 4.2.1 and present results in
Section 4.2.
Mission dependency models and resource dependency

models already represent a probabilistic graphical model
for a company, its business goals and its dependencies
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on its infrastructure. If a node inside this infrastruc-
ture becomes impacted, e.g., attacked, an impact might
“spread” throughout the complete infrastructure and will
eventually impact the company as well. To judge, i.e., to
probabilistically correctly assess the probability of this
eventuality, what is yet missing is a source for these
potential impacts, which are addressed in the following
subsection.

3.3 Local impacts (security view)
The third view on OIA involves a security expert with
an expertise to analyze local consequences of events. In
effect, the security expert does neither require knowledge
of the complete infrastructure nor of the company’s busi-
ness goals. In the style of classical reliability analyses using
Bayesian approaches, as, e.g., early work investigated by
[23], every event potentially affecting, i.e., impacting, a
node represents a so-called external shock event. Infor-
mally, an external shock event (SE) represents a source for
an impact and threatens one or more nodes in a resource
dependency model to become impacted.
Every SE represents a random variable, by which one

obtains two vital benefits in modeling: (1) one is able to
model uncertainty about the existence of an SE and (2)
one is able to model uncertainty about the effect of an SE,
i.e., a probability belief in the impact-degree of an existing
SE. Note that both probabilities are assessable individu-
ally and locally. We define in [11] external shock events as
random variables formally as follows.

Definition 3.7 (External shock events) An external
shock event SE is a random variable. Let �SE be the set of all
known external shock events. An external shock event SE ∈
�SE might be present (+se) or not be present (¬se), for which
a prior random distribution P(SE) is defined, i.e., SE is a
prior random variable. Every vertex V of a resource depen-
dency model R might be affected by one or more external
shock events �SEV ⊆ �SE. In the case that an external shock
event is present (SE =+ se, SE ∈ �SEV ), there exists a proba-
bility of it affecting node V, expressed as a local conditional
probability fragment p(+v|+se). If an external shock event
exists and it is not inhibited, we speak of a local impact on
V. In the case that the external shock event is not present,
i.e., ¬se, it does not affect random variable V and we write
p(+v|¬se) = 0. Every individual conditional probability
fragment from an external shock event is treated in the
same noisy-or manner as a dependency towards another
node, and thus, multiple shock events can affect one node
and one shock event can affect multiple nodes.

Using Definition 3.7, the presence of an SE can be
known (observed) or can remain unclear. If the presence
of an external shock event remains unclear, its existence
is assessed probabilistically through its prior random

distribution P(SE). The prior random distribution P(SE)

can, for example, represent the uncertainty about whether
a vulnerability may or may not be present on a system
due to imprecise system configuration knowledge. We
denote the set of observed external shock events (known
presence) as a set of instantiations �seo of observed ran-
dom variables �SEO ⊆ �SE. If an SE, say SE1 is known
to be present (observed +se1 in �seo) or the existence-
case is considered during probabilistic assessment, there
exists a probability that SE1 will affect an associated node
X to become impacted. This probability is defined by
p(+x|+se1) and can, for example, represent the uncertain-
ity about whether an actually present (+se1) actually leads
to an impact on the node, as no exploits are present or
the node is additionally protected against, e.g., buffer-
overflows.
Both probabilities, p(+x|+se1) and p(+se1), are likely

to vary over time, as, e.g., access complexities for a vul-
nerability lower and exploits will eventually emerge and
become public. To capture this form of time-dependence,
we define a form of temporal aspects.

Definition 3.8 (Temporal aspects) We define a tem-
poral aspect of an external shock event. We employ the
idea of abstract timeslices in which the effect of an exter-
nal shock event changes. Every abstract timeslice then
represents a duplicate of the network- and mission depen-
dencies with a different set of local conditional probabil-
ities and prior probabilities of local impacts. We denote
time-varying probabilities in a sequence notation as 〈t0 :
p0, . . . , tT : pT 〉, with T + 1 abstract timeslices. In every
abstract timeslice i, varying local impacts take their respec-
tive conditional or prior probability pi defined for its
timeslice ti.

With Definition 3.8, an independent model is created
for each timeslice, i.e., impact assessments of time ti are
independent of assessments from time ti−1. For example,
for three timeslices, one obtains three complete proba-
bilistic graphical models, in which one obtains an OIA
for each business entity. Motzek et al. [11] call this the
“independent-timeslice model,” as no connection between
nodes from one timeslice to another exist. This idea is
extended by them in [11] towards a fully dynamic impact
assessment, where entities of timeslice ti depend on enti-
ties of timeslice ti−1, i.e., a resource dependency model
is a time-dependent model evolving over time with time-
dependent, “conscious” nodes allowing for retrospective
and predictive analyses of potential mission impacts.
As mentioned earlier, every local impact represents a

potential threat and can be, for example, a consequence
of a present vulnerability, a mitigation action, a failure,
or an attack. It lies in the expertise of a security opera-
tor to assess a potential local impact of those threats, for
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which we present examples in Section 4.2.2. Note that he
does not need to have neither any expertise in resource
dependencies nor an understanding of missions to do so.
Further, an assessment of local impact probability can be
formally validated through experiments or be grounded
on commonsense.
To summarize, external shock events affect nodes in a

resource dependency model, where complex interdepen-
dencies lead to a “spread” of impacts until even business
entities modeled by a mission dependency model become
impacted. This assessment is based on a well-defined
probabilistic inference problem, which is discussed in the
following section.

3.4 Mathematical mission impact assessment
To summarize, one probabilistic graphical model is
defined by a mission dependency network, a resource
dependency network, and a set of external shock events
with associated local impacts threatening nodes (or ran-
dom variables) defined by the resource dependency net-
work. As resource nodes are dependent on each other,
a threatened node might again threaten another node,
which leads to a global “spreading” of impacts induced by
external shock events. In the end, there exists a probabil-
ity that even a business process or the complete modeled
company (mission) is threatened transitively by various
external shock events, which is what we call the mission
impact assessment.
We believe that a manually created mission dependency

model will be constant over long periods of time, as a com-
panywill not change essentially. As a resource dependency
model is automatically and constantly learned, the com-
plete approach will adapt constantly to context drifts and
will remain valid over long periods of time with very low
manual workload during operation.
As mentioned before, a probabilistic approach is fol-

lowed, in which every dependency is modeled as an indi-
vidual local conditional probability. Every threat, i.e., local
impact, is modeled as an instantiated or observed prior
random variable (an external shock event). An (global)
impact on a mission node X is equivalent to the condi-
tional probability of the node being impacted (+x) given
all observed external shock events. Motzek et al. [11]
formally define this probability as the mission impact
assessment.

Definition 3.9 (Mission impact assessment,MIA) Given
a mission dependency model M, a resource dependency
model R and a set of external shock events �SE, a mis-
sion impact assessment of a mission node MN is defined
as the conditional probability of a mission node MN ∈
M being impacted (+mn), given all observed external
shock events �seo, i.e., P(+mn| �seo), where the effects of
local impacts due to all �SE are mapped globally based

on mission-dependency and resource-dependency graphs.
Note that �seo includes present (+se) and absent (¬se) shock
events and that some shock events are unobserved, i.e.,
are assessed probabilistically through their prior random
distribution P(SE). The task of obtaining P(+mn| �seo) is
defined as the MIA problem.

Given Definition 3.9, it is the task of a mission impact
assessment to solve the MIA problem, i.e., to obtain the
probability P(+mn| �seo). Probabilistic inference is gener-
ally known to be NP-hard, and exact solutions to MIA
problems are only obtainable in small toy domains. How-
ever, approximate inference techniques are a valuable
alternative for probabilistic inference. To obtain an algo-
rithm determining an approximate solutions to the MIA
problem, we show in [11] that the probabilistic model is
a probabilistic logic program, where every “path” wMN

i ∈
�wMN from an external shock event SE ∈ �SE to the mission
node MN is a conjunction of Boolean random variables
and is a sufficient proof for satisfying {MN = true} =+
mn. Due to the noisy-or assumptions, �wMN then rep-
resents a disjunction of conjunctions. Every proof wMN

i
exists with a probability P(wMN

i ), where P(wMN
i ) is the

product of all probabilities in this proof. Let P(wMN
i )

denote the probability viewed as a set. P(+mn| �seo) is then
the probability that at least one proof holds, or rather,
the probability that the disjunction of conjunctions is
satisfied, i.e.,

P
(+mn| �seo

) =
⋃

i
P

(
wMN
i

) = P
(�wMN)

= P
({

∨

i
wMN
i

})

,

where not allP(wMN
i ) are disjoint. Calculating

⋃
i P(wMN

i )

is also known as the probabilistic satisfaction problem and
is also used in the Problog reasoning framework [24]. To
reduce computational complexity, a search for all “paths”
wMN
i ∈ �wMN can be limited to a fixed depth, e.g., using a

depth-limited depth-first search. It is reasonable to limit
a depth to an average path length in a graph to at least
visit every node once, i.e., to at least include every external
shock event once.
Amore detailed evaluation, derivation, and validation of

this reduction and associated approximation algorithms
are given by us in [11].
A probabilistic MIA P(+mn| �seo) directly originates

from all defined dependency-models and represents an
inference problem in a probabilistic graphical model.
Therefore, we argue in [11] that if locally defined
dependency-models are validated to be correct, an
obtained impact assessment P(+mn| �seo) is validated, too.
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4 Model acquisition, learning, and evaluation
The operational impact assessment, as well as the finan-
cial impact assessment, requires various models and
parameters in order to yield a respective response OIA
and response FIA. In this section, we discuss multiple
approaches to obtain these models, i.e., to specify them
frommanual interviews with experts and to automatically
learn them from data analyses using machine learning.
Moreover, we discuss implementation details for efficient
inference on impact assessments. The latter is highly
important for the ROIA as it is based on a computationally
expensive probabilistic inference problem.

4.1 Response financial impact assessments
Response financial impact assessments (RFIA) quantifies
the level of benefit perceived per response plan on a finan-
cial basis. The main goal of RFIA is to calculate a RORI
index considering various implementation and mainte-
nance costs, and the effectiveness of a response against an
attack. In order to obtain these parameters, expert inter-
views and operations on geometric models are utilized as
discussed in the following subsections.

4.1.1 Return on response investment
Return on response investment (RORI) is a relative index
that indicates the level of benefit perceived if a given
mitigation action is implemented. Required parameters
for obtaining RORI estimates by Eq. 3 include two
kinds of parameters: (1) fixed parameter and (3) variable
parameters.
The fixed parameter includes the annual loss

expectancy (ALE), which characterizes the intrusion or
attack and is directly acquirable from expert knowledge
through interviews, as performed by us and presented in
Section 6.
Variable parameters include (i) the annual infrastruc-

ture value (AIV), which depends on the system, (ii) the risk
mitigation (RM), and (iii) the annual response cost (ARC)
which expresses the costs related to a mitigation action.
The RM parameter differs for every mitigation action type
which may be present in a response plan, and represent
the cost of installation, deployment and maintenance, but
leave aside their transitive cost-impacts onto the com-
pany through negative side effects (which are assessed
through ROIA). Therefore, RM parameters are obtainable
from expert interviews and manufacturer information. To
obtain an estimate for a risk mitigation (RM) of each miti-
gation type, a geometrical attack-volumemodel is used, as
discussed in the following section.

4.1.2 Attack volume (AV)
The attack volume model is a geometrical model for eval-
uating the impact of one or multiple attacks and/or mit-
igation actions over a specific target. The representation

of each attack is performed in a three-dimensional coor-
dinate system, i.e., user account (Acc), channel (Ip-Port),
and resource (Res). The same coordinates include also
system assets and potential mitigation actions. The pro-
jection of the three axis in our coordinate system gen-
erates geometrical instances in three dimensions. The
resulting volume is computed as the product of the axes
contribution to the execution of the incident, i.e.,

AV (A) = CoRes(A) · CoIp−Port(A) · CoAcc(A). (8)

The axis contribution is determined as the sum of the
product of each set of axis category (e.g., user account
type, port class, resource type, etc.) by its associated
weighting factor. Each category within the axis con-
tributes differently to the volume calculation. The weight-
ing factor corresponds to the severity of a given category
based on the CARVER methodology [25]. This latter
assigns an appropriate weight to each entity compos-
ing the axes in our coordinate system based on multiple
criteria (i.e., criticality, accessibility, recuperability, vul-
nerability, effect, and recognizability). CARVER assigns
numerical values on a scale of 1 to 10 to each considered
factor and places them in a decision matrix. The sum of
the values indicates the priority of a given entity in an
information system.
The volume calculation requires the computation of

the contribution of each axis represented in the coordi-
nate system. This contribution is determined as the sum
of each set of axis entities (e.g., user account type, port
class, resource type) times its associated weighting fac-
tor (that results from the implementation of the CARVER
methodology), i.e.,

CoAxis(A) =
n∑

i=0
Count(E ∈ TypeAxis(A))

× WF(TypeAxis(A)) .

The attack volume yields a three-dimensional represen-
tation of a complete attack scenario, making it possible
to calculate the impact of multiple security entities (e.g.,
system, attack, countermeasure) that originate simulta-
neously in the system. Furthermore, we use geometri-
cal operations to compute the union and/or intersection
of multiple volumes, making it possible to determine
the impact of multiple attacks arriving simultaneously
on the system and the effects of implementing multi-
ple countermeasures as a reaction strategy. As such, we
are able to compute the coverage of individual and com-
bined attacks in the system, and the level of coverage
for one or more response plans against the detected
attack(s). For instance, considering that attack, A1 affects
resources R1:R3 (WF=5), channels Ch1:Ch3 (WF=3), and
users U1:U3 (WF=2), the attack volume is equivalent to
(AV (A1) = (3 · 5) · (3 · 3) · (3 · 2) = 810units3);
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and response plan RP1 protects resources R2:R5, chan-
nels Ch2:Ch5, and users U2:U5. Therefore, the resources
elements that are covered by RP1 respect to A1 are the
following: R2:R3, Ch2:Ch3, and U2:U3. The coverage vol-
ume of RP1 with respect to A1, i.e., the volume of ARP1

1 , is
therefore equivalent to

AV
(
ARP1
1

)
= [(2 · 5) · (2 · 3) · (2 · 2)] = 240 units3 .

The coverage of RP1 with respect to A1 is calculated as:

COV =
AV

(
ARP1
1

)

AV (A1)
= 240units3

810units3
= 0.2962

As a result, only 29.62% of the total volume of A1 is
covered by RP1. This value helps improving the accuracy
in the evaluation and selection of response plans. The
remaining 70.38% of the attack is considered as a residual
risk. Details on the computation of the system, attack, and
countermeasure volumes can be found in [26, 27].

4.2 Response operational impact assessment
The response operational impact assessment (ROIA) is
supported by three learners, which acquire, learn, define,
and evaluate all information needed for a response oper-
ational impact assessment based on the described proba-
bilistic model.

4.2.1 Network dependency analysis
As mentioned earlier, a resource dependency model must
be kept up-to-date over time and must automatically
adapt to concept drifts, i.e., to changes in the network.
Therefore, a resource dependency model is continuously
learned from network traffic analyses inside an infras-
tructure. In more detail, a resource dependency model
is learned from maximum likelihood estimates based on
statistical analyses in network traffic meta data in a sim-
ilar fashion to learning classical probabilistic graphical
models.
In our use case, a resource dependency model consists

of a medium-sized ICT environment, in which some ICT
devices also represent gateways to an industry SCADA
system. Further, it can be assumed that every device
drives one purpose. This allows for a simple heuristic on
exchanged information amounts, initially proposed by us
in [10] and [11] to obtain a plausible resource depen-
dency network, explained at the following simple exam-
ple: A workstation X consuming different query results
from multiple databases distribute gained and processed
information from such queries to other devices. The per-
centage of received traffic TYi,X from every database Yi
towards the total received traffic gives a good guide-
line for the conditional dependency between them as
p(+x|+yi) = TYi ,X∑

i TYi ,X
. This measure is seen as a maximum

likelihood estimate for the conditional probability and

directly reflects classical learning approaches for learn-
ing probabilistic graphical models from data, e.g., learning
parameters of Bayesian networks [28, pp. 806-808] from
(in)complete data using “counts.”
Periodically capturing and analyzing conversation

statistics from traffic metadata is a feasible process and,
e.g., directly provided by Wireshark [29]. Therefore, this
heuristic is trivially to implement and has low and con-
stant memory requirements with low computational load
over time.
The heuristic that the relative amount of transferred

information directly represents the local conditional prob-
ability associated with an edge is a venturesome assump-
tion on first sight. Nevertheless, it delivers great and
validated results as demonstrated by [11] and in Section 6.
From a theoretical perspective, this heuristic must hold
under the assumption that all communication directed
towards a node, e.g., device, is equally encoded and has
similar entropy. In such a case, every received byte, kByte,
MByte, etc. must directly correspond to the importance is
the transferred information, as long as no irrelevant data
is transferred. Similar encoding and similar entropy com-
munication can often be assumed: For example, in indus-
trial control systems, a SCADA server will communicate
with remote terminal units (RTUs) over some simplis-
tic protocol and send control commands. These control
commands will be similarly encoded and share similar
entropy. In effect, each RTU will be highly dependent on
each SCADA server as almost all received traffic will orig-
inate from those. Additionally, each RTU will acknowl-
edge received commands, i.e., each SCADA server will
be slightly dependent on each RTU. Moreover, SCADA
servers frequently synchronize with each other, leading to
larger information transfers, and will frequently commu-
nicate with human machine interfaces (HMIs). Therefore,
SCADA servers will be highly dependent on each other,
moderately dependent on HMIs, and slightly on RTUs, as
one expects. Similar assumptions can be made for ICT
architectures, where distributed databases synchronize,
data is received from and transferred to webservers, and
analyzed in large computational clusters.
An implementation of this learning approach delivered

great results for multiple use cases as discussed in [11] and
outlined in Section 6.

4.2.2 Local impact definition
The introduced probabilistic mission impact model is
based on general external shock events. In order to obtain
a response OIA, a response plan must be transformed to
external shock events. Every mitigation action inside a
response plan represents a potential cause for local harm,
i.e., represents an external shock event. Therefore, every
response plan RP is a collection of external shock events
�SE and a vector of observations on those �seo. Effectively,
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one may calculate an impact assessment on a mission
nodeMN, i.e., P(+mn| �seo) for a response plan RP.
For example, a shutdown of a node X might cause other

transitively dependent nodes to not work as intended,
i.e., become impacted. Assessing the global effects of a
local action is intuitively not possible and is the goal of
an ROIA. However, local assessments are validatable and
can even be grounded on common sense: Given one shuts
down a node X, the probability that it will be impacted,
i.e., not work as intended, is 100%: p(+x|+shutdownx) =
1. We extend [10] and [11]’s proposed external shock
event transformation from response plans, which have
been validated and verified against the expectations of
Panoptesec’s product owner.

Definition 4.1 (Response plan side effects) We employ
mission impact assessment to achieve a qualitative assess-
ment of potential negative side effects of a proposed
response plan to an ongoing or potential attack. We see a
response plan as a collection of individual actions affect-
ing a network. For example, a shutdown of a server might
easily reduce the surface of a potential attack. Still, if a
critical resource is highly dependent on that server, it might
impact a mission even heavier than a potential attack.
We consider three mitigation-action types and transform
them to external shock events, possibly leading to local
impacts. The aim is to achieve a qualitativemission impact
assessment of a response plan.
We define external shock events by using three abstract

temporal timeslices: t0 representing a short-term impact,
t1 representing a mid-term impact, and t2 representing a
long-term impact.
If a node is shutdown (+se: the external shock event is

present) it is easy to assess a probability of local impact
to be 1. This means, p(+x|+se) = 〈t0 : 1, t1 : 1, t2 : 1〉.
Likewise, restarting a resource has the same effect as a
shutdown in t0, and might likely lead to hardware failure
during reboot in a mid-term t1, but will locally not cause
conflicts in a long-term: p(+x|+se) = 〈t0 : 1, t1 : 0.6, t2 : 0〉.
Employing a patch on a node X might produce collat-

eral damage as well. During installation of the patch, there
exists a (low) probability of immediate conflict, e.g., a flat
assumption of 10% or a measure published by a software
vendor. In a mean time, a patch might enforce a reboot of
a resource. This leads to a temporal shutdown and might
lead to hardware failure. Finally, after a successful reboot,
a replacement of hardware, and/or a restore of a previous
backup, the network device will fully resume its operational
capability. Therefore, p(+x|+se) = 〈t0 : 0.1, t1 : 1.0, t2 :
0.0〉. We argue that every installation, update or change of
software can be modeled from an impact perspective as a
patching operation.
Like software is exchanged by a patch, hardware can be

reconfigured as well. A reconfiguration is likely to enforce

a reboot, if an exchanged component is not hot swappable.
Therefore, we assume the same local impact as induced by
a reboot.
Our third considered mitigation action is the restric-

tion of a connection from node X to node Y, i.e., a new
firewall rule. From a technical perspective this operation
forbids a transfer of data that might have been crucial for
the operational capability of a node Y. Therefore, a fire-
wall rule leads to an operational impact on Y. We must
assess this impact locally. This is a special case requir-
ing Pearl’s [30] do-calculus. As a connection between two
devices resembles a dependency, we must further actually
remove this dependency. Otherwise, we would infer fur-
ther impacts over a dependency that was prohibited and
already assessed locally. To do so, we simply “bend” the
forbidden dependency to an observed external shock event
+se s.t. the local conditional failure probability p(+y|+x)
becomes a local impact probability p(+y|+se). Another
approach, decidable by a security operator, would be to
accumulate dropped connections and add an unified local
impact for them.

All of these external shock events are deliberately placed
inside our domain, we model their prior probability to
exist as a tautology, i.e., p(+se) = 1, and, obviously, fully
observe the presence of mitigation actions, i.e., all mod-
eled shock events �SE represent the observed events �seo.
Further examples for shock events are given by Motzek
et al. in [10, 11, 31].

4.2.3 Monte-Carlo evaluation
As mentioned before, an exact calculation of

⋃
i P(wMN

i )

is possible by the inclusion and exclusion principle and
the Sylvester-Poincaré equality, but is exponentially hard
due to the subtraction of all overlapping sets and is there-
fore not practical. We therefore approximate a solution to
the MIA problem by the use of an approximate inference
technique proposed in [11] for which we discuss technical
details and implementations in this section.
For every mission node MN, there exists a Boolean for-

mula �wMN as a disjunction of conjunction over Boolean
random variables �B. However, Boolean random variables
in �B take their respective truth value according to a prob-
ability distribution. To approximate

⋃
i P(wMN

i ), i.e., to
find an approximate solution to the MIA problem, a com-
plete instantiation of all Boolean variables �B is drawn by
sampling every Boolean variable according to its distri-
bution, and �wMN is checked for satisfaction. Repeating
this process n times, where n+ times a satisfaction was
found, approximates P(+mn| �seo) by n+/n. Our results
show that an upper three-sigma bound of expected error
Ē is obtained by Ē = 0.775 · √

n−1. A detailed descrip-
tion and evaluation is given in [11] and left out for brevity
in this paper. In summary, evaluations by [11] show that
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the utilized approximation method scales linearly with
a resource dependency model’s complexity in terms of
nodes and edges, scales linearly with the number of sim-
ulation rounds, and scales linearly with the number of
found Boolean disjunctions. As a consequence, evalua-
tions in all three dimensions are obtained in the range
of seconds even for large, deeply meshed graphs with
hundreds of nodes.
In order to approximate P(+mn| �seo), a two-step approx-

imation technique is employed, which calculates the con-
ditional probability through a probabilistic path search.
We first acquire all paths leading to external shock events,
for every mission node for which we would like to per-
form mission impact assessment. Often, we would like to
perform this for every node in the mission dependency
model. Finding paths for a node in the mission depen-
dency graph is trivial, given found paths from business
resources to external shock events. We therefore, as step
one, acquire (all) paths leading to evidence for all business
resources, which is a classic graph search problem.
Under the assumption that the number of business

resources and external shock events is comparably small
to all nodes in the network graph, a depth-limited search
is a reasonable approach for finding paths leading to exter-
nal shock events. If this assumption does not hold, an
alternative is discussed after the following definitions and
remarks.

Definition 4.2 (Probabilistic paths) For every business
resources, BRi ∈ �BR let �wBRi denote the set of all paths lead-
ing to an external shock event and let wBRi

j denote the jth
path. Let �w denote the super-set of all found paths. Every
path wBRi

j is a set of individual conditional probability
fragments p(x|y), representing an edge, i.e., a dependency,
from y to x. The product of all probability fragments
p(x|y) ∈ wBRi

j is the exist-probability of a path P(wBRi
j ).

Every path wBRi
k for which holds ∃j : wBRi

j ⊆ wBRi
k is irrel-

evant for calculation and �w is a finite set. Informally, this
means during path search along one path, an already vis-
ited node must not be visited again and we cannot get stuck
in infinite loops.

After acquiring all paths �w leading to all business
resources, subsequent paths leading to business func-
tions, processes, and the company are trivially acquired by
following the paths leading to all children.
Step two is a Monte-Carlo simulation to approximate

P(
∨ �wBRi) for every business resource BRi ∈ �BR. We

draw a sample from �w and from all dependencies in the
mission dependency model. We check for every BRi the
satisfaction of

∨ �wBRi and mark the satisfaction result on
BRi. Subsequently, we check for satisfaction of any chil-
dren, i.e., dependencies, of every node in the mission
dependency model. Every satisfaction for a mission node

MN found in the mission dependency model is marked
as a hit in hitMN . After nS iterations, the desired condi-
tional probability of MN being impacted (mn), i.e., the
mission impact, given all external shock events seo ∈ �seo is
approximated by P(+mn| �seo) = hitMN

nS .

Remark 4.4 (Path check) Checking all paths during
one Monte-Carlo round is highly optimizable. �wBRi can
be sorted descending by P(+wBRi

j ), s.t. most likely exist-
ing paths are checked first and subsequent checks can be
skipped once a path is found. Further, a path wBRi

j can be
sorted ascending by its individual local conditional prob-
ability fragments s.t. most unlikely random variables are
checked first and further checks inside one path can be
skipped. Further, a path w with P(w) < 1

nS will statistically
never be drawn, i.e., all such paths can be skipped dur-
ing simulation and check. Notwithstanding, the complete
process is highly parallelizable.

Following this procedure, at first, the complete graph is
searched for all proofs, followed by a simulation of these
proofs. For certain graphs, various found proofs will share
common subsets, which are simulated redundantly. This
redundant simulation may represent a performance bot-
tleneck. In such a particular situation, it may be beneficial
to not base the simulation on a strict disjunction of con-
junctions, but to preserve the underlying graph structure
for simulation. However, such an optimization heavily
depends on the graph structure, and evaluations in [10]
and [11] have shown that evaluations are obtained in the
range of seconds without further optimization on a graph’s
structure. Further implementation details and remarks on
the procedure are given in [11].

5 Selection of Pareto-efficient response plans
RFIA and ROIA evaluate different forms of impacts
implied by proposed response plans. As mentioned
before, their nature is complementary to each other and
it is neither trivial nor “intuitive” to rank all evaluated
response and select “the best.” In the following, we present
an approach to unify all assessments without becoming
biased towards one dimension.
Effectively, every response plan is associated with a four-

dimensional impact assessment, i.e., four real valued num-
bers. There exists no ordering among four-dimensional
values, and all impact assessments must be seen as equally
important, e.g., one is not biased towards preferring RORI
above some OIi. This is why one cannot trivially reduce
all four dimensions to a single one, and one cannot find a
simple ordering. Notwithstanding, such naive dimension-
reduction approaches exist and are frequently used, but
such approaches suffer from significant problems as later
discussed in Section 8.1.
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As all impact assessments are seen as equally important,
a response plan may dominate all other response plans in
all impact dimension. In such a particular situation, “the
best” response plan is well-defined. However, it is very
likely that no such response plan exist, as, e.g., the do-
nothing response plan will, by definition, lead to the most
optimal response plan in terms of operational impact, but
must be non-optimal in terms of financial impact. Effec-
tively, no clear optimumwill dominate, and a compromise
among all dimensions must be found. Finding such a best
compromise is known as finding a Pareto-efficient set.
The proposed FIA results in a linear, relative metric, i.e.,

assessments depend on a use case and context. There-
fore, response plans are only interpretable, evaluable, and
comparable for one common use case and context sce-
nario. This means that there exists a well-defined ordering
for all obtained FIAs from one scenario, but FIAs from
one scenario cannot be compared to another scenario. In
effect, relative reference points are required for obtaining
an absolute scale for each scenario.
The proposed OIA is based on a probabilistic model

resulting in a stable, absolute metric, e.g., an assessment
of, say, 5% is understandable and interpretable indepen-
dent of any context, use case, or scenario. For example, an
OIA of 5% for a potential impact on a company, given a set
of observed external shock event, is equivalent to a 5% of
winning a lottery, given one plays the lottery, or a 5% prob-
ability of tossing a 1 on a twenty-sided cube. Each OIA
consists of an n-dimensional vector representing a tempo-
ral diversity, e.g., short-, mid-, and long-term assessments.
There exists a well-defined ordering for every temporal
dimension by itself, but not for all in combination.
Based on these characteristics of OIA and FIA, we

propose a selection of response plans based on a best
compromise. Every dimension is considered equally and
optimized individually until one finds a solution. We
therefore define a selection of response plans based on
a Pareto-efficient solution among all impact assessment
dimensions as follows.

Definition 5.1 (Pareto-efficient response plans) Let �RPd
be a vector of proposed response plans, associated with
a linearly scaled impact assessment of dimension d. Let
ṘPd ⊆ �RPd denote the set of optimal-proposed response
plans in terms of dimension d. Let R̂Pd denote the assess-
ment of the theoretical optimal response plan, and let ŘPd

denote the assessment of the theoretical worst response
plan in terms of dimension d. Then, let ṘPdε ⊆ �RPd rep-
resent the set of Pareto-efficient response plans in terms of
dimension d and easing factor ε ∈ [0, 1] representing the
allowed deviation ε of the theoretical response plan range
|R̂Pd−ŘPd| from the evaluated optimal response plan ṘPd.
Thus, ṘPd0 = ṘPd and ṘPd1 = �RPd.

Finding the best compromise among an n-dimensional
impact assessment is therefore defined as finding the
smallest Pareto-efficient set.

Definition 5.2 (Smallest Pareto-efficient set) Let �d be
the vector of all impact dimensions. Then, the smallest
Pareto-efficient set of response plans R̊P is the set

R̊P = min
ε

⎛

⎝

⎧
⎨

⎩

⋂

d∈�d
ṘPdε

⎫
⎬

⎭
�= ∅

⎞

⎠ (9)

As the ROIA represents an absolute metric, ŘPROI =
1 and R̂PROI = 0. For the relative RFIA metric, ŘPRFI

and R̂PRFI depend on �RPRFI . If not all possibly allowed
response plans are evaluated by the RFIA for performance
criteria, ŘPRFI and R̂PRFI are not uniquely identifiable and
must be estimated by ŘPRFI = −1 and R̂PRFI = ṘPRFI .
This means, ṘPRFIε might be too large. A selection of a
response plan according to Definition 5.2 can efficiently
be performed by using binary search.
By finding the smallest Pareto-efficient set, one selects a

set of response plans which shows to be, to some degree,
superior to all other response plans. By Definition 5.1, no
further ordering exists inside the selected smallest Pareto-
efficient set, and all selected response plans are considered
equally superior. Nevertheless, it may be possible that
some selected response plans are fully dominated by oth-
ers in the case of draws in some dimensions. These cases
are not considered further, as they are obviously seen, and
it depends on a use case whether these may actually be
superior. Notwithstanding, one may still order a smallest
Pareto-efficient set by some criterion, e.g., by a short-time
operational impact, for ease of visualization and operator
assistance.
The choice of using a Pareto-efficient set as the opti-

mization procedure bear vital benefits and is later dis-
cussed intensively in Section 8.1.

6 Use case demonstration
All presented models, approaches, and optimizations are
implemented in the cyber-defense system PANOPTESEC,
whose use case partner gives us the opportunity to eval-
uate and study the application of the proposed multi-
dimensional evaluation and optimization of response
plans in an infrastructure environment of an energy distri-
bution organization (EDO). The environment consists of
a distributed network of remote terminal units (RTU) in
energy stations of medium voltage (MV = 20,000 V) and
high voltage (HV = 150,000 V). RTUs acquire data from
electrical equipments (e.g., PLC, sensors), and send data
to a supervisor terminal unit (STU) of the headquarter.
The RTU network utilizes Supervisory Control and Data
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Acquisition (SCADA) protocols and is composed of over
13,000 energy stations, 6000 of which are controlled by the
STU.
In the absence of security compromise, operators review

the security status of the monitored system (SCADA and
ICT environment). Security status indicators may note
the presence of one or more system vulnerabilities due to
known software security flaws as posted by publicly avail-
able vulnerability advisory services. Attack paths from
hypothetical attack sources to known mission critical sys-
tems are analyzed, and the impact on critical business
functions (e.g., energy distribution) is assessed resulting in
a quantified risk assessment.
From Table 1, we organize the information of the

EDO according to their nature (dimension). For exam-
ple, we obtain servers, firewalls, IDs, etc. as resources, IP
addresses and port numbers as channels, and operators
as user accounts. Depending on the type of element and
their importance to the mission of the organization, we
assign a weighting factor. A basic operator is assigned a
WF=1, whereas an advanced operator has a WF=4, and
a supervisor has a WF=5. For those cases where the cat-
egory regroups elements of different types (e.g., SCADA
Servers, Web servers, NTP Server, etc are regroup as
Servers), we assign a weighting factor for each type of
element, going from one to five.

Table 1 Information of the EDO system

Dimension Elements Description Q WF

Resource R1:R12 HV/MV Server 12 1-5

R13:R16 HV/MV Front End 4 4

R17:R22 HV/MV Gateway 4 4

R23:R56 Routers 34 3-4

R57:R63 Human-Machine Interface 6 2-3

R64:R363 Remote Terminal Unit 300 5

R364:R365 Firewall 2 2

R366 PC 1 2

R367:R368 IDS 2 2

Channel Ch1:Ch2 Public IP address 2 3

Ch3:Ch302 Private IP address 300 2

Ch303:Ch698 UDP Port 396 1-5

Ch699:Ch1712 TCP Port 1014 3-5

User U1:U30 Basic Operator 30 1

Account U31:U38 Advanced Operator 8 4

U39:U52 High Voltage Operator 14 3

U53:U70 Medium Voltage Operator 18 2

U71 Supervisor 1 5

We have modeled 368 resources, 1712 channels, and 71 User accounts. The
quantity of each type of element is shown in the column Q, and its weighting factor
is shown in the column WF

The annual infrastructure value for the EDO is equiv-
alent to 11,379,800 e, which represents the cost of oper-
ation, license, maintenance, and services incurred in a
yearly basis for the regular operations of the organization.
It considers the annual cost of all the policy enforcement
points (PEPs) of the organization.

6.1 Threat scenarios
Use case providers have identified five threat scenarios
that could lead to severe consequences on the target
system. Table 2 summarizes the information associated
to all possible threats, PEPs, and attack vectors of each
identified threats.
Threat AS02 has been detailedly analyzed. AS02 cor-

responds to a compromise of a specific target through
vulnerability exploitation, which will cause data corrup-
tion or leakage of a database in the ICT domain. For such
a threat, there exists a specific attack vector, as shown in
Table 2.

6.2 Financial impact assessment
Threat AS02 has a serious severity (1,000,000 e), and
a high likelihood (f=12), which results into an ALE =
12, 000, 000 e/year. This threat has been associated to
a set of mitigation actions. Combinations of associated
mitigation actions form response plans shall improve
the security status of the monitored system (e.g., patch
deployment, shutdown, restart, or other system recon-
figuration). They are selected and executed by operators
resulting in automated deployment of mitigation actions
where possible (e.g., firewall reconfigurations) or other-
wise issuing instructions to senior operators for follow-up

Table 2 SCADA threat scenarios

Threat Description ALE (e) Attack Vector

AS01HV DoS to High
Voltage nodes

20,000,000 EP=VGROUTER;
T1=WEBSCADA;
T2=FTPSRV;
BD=FEXSCADA

AS01MV DoS to Medium
Voltage nodes

2,000,000 EP=RTUSCADA;
T1=GWSCADA;
T2=FEXSCADA;
BD=SRVSCADA

AS02 Data corruption
or leakage

12,000,000 EP=VGROUTER;
T1=WEBSCADA;
T2=USERPC; BD=FTPSRV

AS03 DoS against
electrical
devices

100,000 EP=RTUSCADA;
T1=GWSCADA;
T2=FEXSCADA;
BD=SRVSCADA

AS04 DoS against
business
Services

2,000,000 EP=VGROUTER;
T1=FTPSRV; T2=USERPC;
BD=WEBSCADA

There are five threats that could affect the EDO system; from which Threat AS02, has
been selected to be evaluated
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deployment of actions (e.g., patch deployment). Table 3
details information of the authorized mitigation actions
for threat AS02.
From Table 3, the values of ARC and EF have been

estimated based on expert knowledge and historical data.
The RM value is calculated as the product of the EF and
coverage (COV), where the coverage is obtained using
geometrical operations from the attack volume model as
discussed in Section 4.1.2. The RORI index is calculated
using Eq. 3.
From the list of proposed mitigation actions, MA1

(reconfiguration of V-R08) provides the highest RORI
index. By taking this action, the risk is expected to
be reduced to 60% (RM), resulting in a RORI index
of 63.27. Response plans for this threat are formed
by combinations of all possible mitigation actions,
considering those actions that are mutually exclu-
sive (e.g.,MA10 cannot be simultaneously implemented
with MA2, MA4, and MA7). All potential combina-
tions, i.e., 797 response plans, were evaluated and
the best response plan results in a RORI index of
R̂PRFI = 97.1435 with a combination of mitigation actions
as 〈MA1,MA2,MA3,MA4,MA5,MA6,MA7,MA8,MA9〉.
The worst is represented by {〈MA7,MA9〉 〈MA8,MA9〉}
with ŘPRFI = 0.21. Please note that a response plan’s
RORI is not a linear combination of individual RORI
scores associated with individual mitigation actions, but
that an RFIA evaluation is performed for every response
plan of all 797 response plans yielding an individual RORI
score for every one of them.
An example of the graphical representation of the eval-

uated threat AS02 on the EDO, associated channels,
resources, and user accounts, and a visualization of a
corresponding response plan is given in Fig. 3.

Table 3 Examples of RFIA evaluations for proposed response
plans RPi consisting of a single mitigation actionMAi for threat
scenario AS02

MA Description EF COV RM ARC Restriction RORI

MA1 Reconfig. V-R08 1.00 0.60 0.60 50 None 63.27

MA2 Reconfig. Web-SRV 0.80 0.15 0.12 1000 MA10 12.64

MA3 Reconfig. File-SRV 0.80 0.15 0.12 500 MA11 12.65

MA4 Patch Web-SRV 1.00 0.15 0.15 2000 MA10 15.8

MA5 Patch File-SRV 1.00 0.15 0.15 500 MA11 15.81

MA6 Patch User-PC 1.00 0.10 0.10 500 MA12 10.54

MA7 Restart Web-SRV 0.01 0.15 0.00 50 MA10 0.16

MA8 Restart File-SRV 0.01 0.15 0.00 50 MA11 0.16

MA9 Restart User-PC 0.01 0.10 0.00 50 MA12 0.11

MA10 Shutdown Web-SRV 0.10 0.15 0.01 50 MA2,4,7 1.58

MA11 Shutdown File-SRV 0.10 0.15 0.01 50 MA3,5,8 1.58

MA12 Shutdown User-PC 0.10 0.10 0.01 50 MA6,9 1.05

Fig. 3 Graphical representation of threat AS02 (dashed) and a
corresponding response plan composed of three mitigation actions
(C1 yellow, C6 green, and C2 blue, from left to right). The gray box
represents the full operational dimension of the EDO

6.3 Operational impact assessment
To perform a response operational impact assessment, a
resource dependency model is needed. As described in
Section 3, a manual assessment is said to be infeasible, and
a solution based on a heuristic of exchanged traffic infor-
mation was proposed in Section 4.2.1. Network traffic has
been analyzed in a completely replicated backup environ-
ment of the use case partner involving all SCADA and
ICT communications over multiple months. Metadata of
all traffic, i.e., header information such as IPs and MAC-
addresses, are recorded constantly over 50 min intervals
and are analyzed postponed by the introduced NDAmod-
ule. All obtained information is synchronized and cross-
checked against a central network inventory s.t. one is
able to distinguish communicating- and communication-
establishing devices. The differentiation is based on an
analysis of network inventory matches against IPs and
MAC-addresses. The complete process for the use case
partner is discussed in great detail in [11], where addi-
tional implementation details and proposals are made.
The obtained network dependency model is shown in
Fig. 4. Figure 4 shows the automatically learned and ana-
lyzed dependencies between ICT devices (shown in white)
and directly business critical resources (shown in green).
Further, all business processes (shown in orange) and their
correspondingly required business functions (shown in
blue) are highlighted in Fig. 4.Most interestingly, the auto-
matic analysis revealed two “clouds” (see Fig. 4, lower
right) of highly dependent nodes, which are clusters of
remote terminal units communicating with the central
control server. The obtained network dependency model
has been validated by an external IT specialist consul-
tant to the company to be reasonable, to contain the most
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Fig. 4Mission dependency model and resource dependency model obtained and learned from data of the use case partner. BFR represents a
business function (blue) subject to handling remote terminal units (RTUs), which are visible as the lower right clouds of nodes, where the central
nodes are business critical devices (green). Business processes shown in orange, business company in dark green. Thicker and darker edges represent
higher dependency degrees. Visualized using Gephi [50]

important devices, and to bear reasonable dependency
degrees.
Figure 4 additionally shows an obtained mission depen-

dency model in combination with the automatically
learned resource dependency model. The mission depen-
dency model was obtained by deep collaboration with
various business and IT experts of the company in multi-
ple iterations. As all dependencies are understandable by
themselves, i.e., one does not require a complete global
picture to grasp the semantic of one conditional prob-
ability, knowledge from multiple experts was collectible
individually. This provided a great benefit, as every expert
could be interviewed individually, and no large meet-
ing had to be organized where all participants needed
to come to one conclusion. Often, if such models are
only generateable holistically, a bad compromise is cho-
sen due to disagreements between multiple experts. In
our approach, all view points of participants are includ-
able, and the model is designed to accept, respect, and
overcome these disagreements. We discuss these benefits
further in [11] and show how individually collected infor-
mation are mergeable into one model while containing all
information content in [12].
Based on the resource dependency model and the mis-

sion dependency model from the use case partner, ROI
assessments for all proposed response plans are evaluated,
for which an excerpt is given in Table 4 corresponding
to Table 3. As explained throughout Section 4.2, an OIA
is an evaluated marginal probability of impact of a node
X given observed shock events �seo, i.e., P(+x| �seo). Given
time-varying probabilities, such an evaluation returns a

multi-dimensional impact assessment, i.e., a probability
for every time slice, e.g., P(+x| �seo) = 〈t0 : 0.1, t1 : 0.9, t2 :
0〉. This probability value is obtained for every node of
a mission dependency model. In the following, we solely
discuss and consider the most-highest node in a mission
dependency model, i.e., the mission or business company
CM. Moreover, we abbreviate the probability nomencla-
ture by simply writing RP = 〈t0 : 0.1, . . . , t2 : 0.3〉 instead
of P(+mn| �seo) = 〈t0 : 0.1, . . . , t2 : 0.3〉, where �seo is a
transformation of response plan RP to (observed) external

Table 4 Examples of ROIA evaluations for proposed response
plans RPi consisting of a single mitigation actionMAi for threat
scenario AS02 corresponding to Table 3. (RORI given for reference)

MA Description RORI OI0 OI1 OI2

MA1 Reconfig. V-R08 63.27 4.2% 2.4% 0

MA2 Reconfig. Web-SRV 12.64 6.6% 3.6% 0

MA3 Reconfig. File-SRV 12.65 36.6% 22.2% 0

MA4 Patch Web-SRV 15.8 0.6% 6.6% 0

MA5 Patch File-SRV 15.81 3.6% 37.2% 0

MA6 Patch User-PC 10.54 0.6% 6.6% 0

MA7 Restart Web-SRV 0.16 6.6% 4.2% 0

MA8 Restart File-SRV 0.16 36.6% 22.2% 0

MA9 Restart User-PC 0.11 6.6% 4.2% 0

MA10 Shutdown Web-SRV 1.58 7.2% 7.2% 7.2%

MA11 Shutdown File-SRV 1.58 40.8% 40.8% 40.8%

MA12 Shutdown User-PC 1.05 7.2% 7.2% 7.2%
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shock events. Further, we refer to individual timeslices
simply by OIi for the i-th timeslice.
The comparison between a RORI index and operational

impact assessments in Table 4 shows how both lowest
and highest probabilities of operational impact lead to
extremely low RORI indices. In order to emphasize the
latter, Fig. 5 shows a scatter plot of all evaluated response
plans in AS03. From Fig. 5, it is evident that no sim-
ple correlation between OIA and FIA exists, i.e., both
impact assessment evaluate a different kind of impact
and are both required for a sound selection of opti-
mal response plans. In fact, Pearson’s product-moment
correlation coefficient between RORI and OI0 and OI1
for all evaluated response plan is ≈ 0.14 and between
RORI and OI2 even ≈ 0.01, showing that OIA and FIA
are almost uncorrelated. Furthermore, Fig. 5 shows the
top four Pareto-efficient response plans (highlighted in
red), which yield in high, i.e., good, RFIA, and low, i.e.,
good, probability of “collateral damage.” However, please
note that Pareto-efficiency cannot be seen or manually
analyzed from Fig. 5, as the figure is a reduction of a
four-dimensional hyperspace onto three planar plots. In
order to find a geometrical visualization for an evaluated
response plan and Pareto-efficiency, one needs to con-
sider a four-dimensional hypercube, where OI0,OI1,OI2,
and RORI represent all four axis, such that every evaluated
response plan is a point on its respective geometrical coor-
dinate in the hypercube. The Pareto-efficient response
plans then span a surface of Pareto-efficiency in this
hypercube.

6.4 Pareto-efficient response plan selection
Judging from Table 4, a good compromise seems to
be deploying mitigation action MA1 alone, result-
ing in both a low probability of operational impact
and being financially attractive in terms of RORI.
Still, deploying MA1 alone is not the best option.
The most financially attractive response plan RPR =
〈MA1,MA2,MA3,MA4,MA5,MA6,MA7,MA8,MA9〉
with a RORI index of 97.1435, however, is assessed

to bear almost the highest probability of operational
impact with 〈t0 : 0.408 t1 : 0.402 t2 : 0.0〉. Note that an OI
assessment of a response plan is not a linear combination
of individual mitigation actions, as a “double count” of
probabilities is not allowed and would lead to spurious
results. In terms of lowest short-term (t0) OI probabil-
ity, MA4 and MA6 alone show to be dominant, and in
mid-term (t1) MA1 alone is dominant. In a long-term
perspective (t2), a large set of response plans is dominant
with a 0 probability of impact. Thus RPR, MA4, and
MA6 represent a Pareto-optimal set. As proposed in
Section 5, we search for the best compromise: From Defi-
nition 5.2, one obtains the best Pareto-efficient response
plan R̊P = {〈MA1,MA2,MA4,MA6,MA7,MA9〉} using
ε = 0.1475, consisting of one response plan with an oper-
ational impact assessment of 〈t0 : 0.108 t1 : 0.09 t2 : 0.0〉
and a RORI index of 82.8514. This means, with a com-
promise of 14.75% of the theoretical optimum in every
dimension from the evaluated optimum, a Pareto-efficient
response plan is found.
Notwithstanding, multiple other optimization ap-

proaches exist, with which one may obtain similar results.
In Section 8.1, we compare the proposed Pareto-efficient
optimization with other, familiar approaches.

7 Related work
Current research focuses on considering the impact of
attacks by evaluating their severity and consequences,
leaving aside the impact of security actions in mitigat-
ing the effects of such attacks. Dini and Tiloca [1], for
instance, propose a simulation framework that evaluates
the impact of cyber-physical attacks, discuss the attack
ranking process, and analyze different mitigation actions.
However, the latter is not considered in the assess-
ment of the attacks’ impact nor they are ranked accord-
ing to their effectiveness in stopping or mitigating the
attacks.
Viduto et al. [32] present an approach to ponder risks

posed by vulnerabilities against financial investments,
while utilizing a multi-objective tabu search. Anyhow,

Fig. 5 Scatter plot of ROIA (ordinate, t0 blue, t1 orange, t2 green) and RFIA (abscissa) evaluations for all response plans. Note that both impact
evaluations are almost uncorrelated, i.e., both actually evaluate an impact from perpendicular perspectives, and all dimensions must be considered
equally in the form of a Pareto-efficient set to obtainmeaningful and valuable responses. The top four Pareto-efficient response plans aremarked in red
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they only consider direct impacts on devices, which leads
to an assumption that, in the absence of vulnerability and
a corresponding exploit, no harm can be caused at all.
Moreover, the usage of relative metrics does not provide
an intuitive interpretation of parameters. Therefore, their
work represents a holistic approach without a consider-
ing transitive business impact relations and negative side
effects of the proposed response plans.
Considering transitive and indirect effects is partially

they Foo et al. [33] identify by the use of “spread” chan-
nels in a network, they notably identify that considering
only local reactions to raised alarms is insufficient and
they try to maintain subfunctions of business services.
However, they utilize a novelly designed propagation algo-
rithm for “spreading” impacts, which is not mathemati-
cally grounded and solely provides response analyses in an
intransparent approach.
Considering the negative side effects of responses is

often only performed by a cost-perspective on the imple-
mentation, i.e., how much money must be spent to imple-
ment some response plans. [34] presents an interesting
and well-formalized approach for situations where too few
budget exists to fully implement all mitigation actions to
known attack surfaces. [35], [36], and Fiedler [37] con-
sider a defender-attacker interaction as strategic games
and present well-formalized definitions and well-defined
problems for winning these games based on a cost opti-
mization. Other cost-focused approaches are proposed
in [32, 36, 38, 39]. However, only considering the cost
of implementation has a significant drawback: as men-
tioned in the beginning, the cost of shutting down a
highly critical node will certainly eliminate an attack sur-
face and involves almost no costs at all for implementa-
tion. Notably, Fiedler et al. consider indirect costs where
a degree of performance disruption is covered in per-
forming required business tasks. However, Fiedler et al.’s
consideration does not consider the transitive impacts
implied by one mitigation action leading to potential
chains of failures in a network. Moreover, it is common
for all abovementioned works that a detailed analysis
of a defender-attacker interaction is required. However,
acquiring a detailed analysis of defender-attacker inter-
actions boils down to a detailed prediction of the future
on how an attacker will infiltrate a network. Examples
such as Stuxnet have shown that a prediction at the
required detail level is impractical and nearly impossi-
ble. Due to the automatic analyses of transitive impacts
in our ROIA and the volume-centric operation in the
RFIA, our approach does not require detailed analyses of
attacker behaviors. Notwithstanding, such analyses help
one to estimate attacker volumes, as discussed in [26, 27],
but our approach does not centrally built on a detailed
analysis and a rough analysis is solely used for parameter
estimation.

A further cost-focused and business economical
focused approach is presented by [40] who resort to a
meta-discussion of involved human factors in deriving
various business economical figures related to security
aspects. Unfortunately, what is yet missing in approach is
a clear mathematical formalization of underlying mathe-
matical problems and a formalized description to apply
their derived cost metrics to an IT security scenario.
Kundur et al. [2] propose a paradigm for cyber attack

impact analysis that employs a graph-theoretic structure
and a dynamical systems framework tomodel the complex
interactions among the various system components. The
approach involves quantifying the effects of given classes
of cyber attack, providing information on the degree of
disruption that such class of attacks enable, and identi-
fying sophisticated dependencies between the cyber and
physical systems, but leaves aside the impact of mitigation
actions in the attack’s impact calculation.
Squoras et al. [4] present a qualitative assessment of the

cyber attack impact on critical Smart Grid infrastructures.
Authors evaluate the impact of DoS/DDoS attacks on data
availability without considering mitigation actions in the
assessment of the overall impact calculation.
In terms of operational impact assessment, probabilistic

models have been investigated as an adequate assessment
of impacts or risks posed due to attacks or found vulner-
abilities [41–43]. However, often imperfect knowledge is
not considered [41] or dependency cycles pose a problem
[43]. Other impact propagation approaches, able to handle
such details, are not probabilistic based and degrade to a
hand-crafted propagation algorithm with arbitrary scores
[44, 45]. Similarly, Barreto et al. [46, 47] only consider
direct impacts as approaches to mission modeling, leaving
aside transitive impacts and require a manual description
of all dependencies between individual devices inside one
organization, which is an infeasible process.
Our approach proposes the evaluation and selection of

mitigation actions based on the financial and operational
assessment of security events (e.g., attacks and mitigation
actions). The ultimate goal of our approach is to select the
set of mitigation actions that provides the maximal pos-
itive financial gain and the minimal operational negative
side effect. The response financial assessment considers
the RORI as an index that ranks mitigation actions based
on multiple factors. The operational assessment evaluates
threats according to their nature expressed as local time-
varying impacts and considers transitive impacts based on
a well-defined probabilistic model, for an organization’s
missions and resources.

8 Discussion
Two different impact assessment approaches have been
proposed (i.e., financial and operational), which seem to
be conflicting at first sight: Every action taken in order
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to reduce a potential attack vector bears a potential neg-
ative side effect that needs to be reduced. Both, RFIA
and ROIA, perform impact assessments of mitigation
actions (individuals and/or combined) that integrate a
given response plan. Since the financial and operational
impact assessments are of different nature, they perform
the evaluation of response plans from different perspec-
tives. On the one hand, the RFIA aims at assessing mitiga-
tion actions based on their financial benefits to the system,
proposing the response plan with the highest RORI index,
thus the maximal positive financial gain to the organi-
zation. On the other hand, the ROIA aims at assessing
mitigation actions based on their potential collateral dam-
age to the system, proposing the response plan with the
lowest operational impact, thus the minimal operational
negative side effect.
Combining both assessments is not a trivial task, since

there exists no linear relationship between RFIA and the
ROIA outputs. The RFIA provides relative measurements
which are useful in obtaining an overall ratio scale ranking
of the alternatives, whereas the ROIA provides absolute
measurements that use precise values that scale with a
given unit (e.g., hundreds, thousands, millions). Unlike
absolute measurements, relative values derive ratio scales
from paired comparisons represented by absolute num-
bers [13]. If the ratio produces repeatable and consistent
results, the model can be used to compare security solu-
tions based on relative values [14]. The absence of an
absolute scale to compare RFIA and ROIA outputs makes
it difficult to find an optimal response plan that satis-
fies all financial and operational criteria. We, therefore,
propose a method that searches for an efficient solu-
tion related to a Pareto-optimum. The proposed Pareto-
efficient optimization features significant advantages for
this multi-dimensional optimization, which we discuss in
more detail in the following subsection.

8.1 Comparison with other optimization and ranking
approaches

A Pareto-efficient set of response plans might not be
the best solution neither in financial nor in operational
terms, but the Pareto-efficient response plans represent
response plans that, on the one hand, bear the high-
est financial attractiveness on return on investment, and,
on the other hand, bear the lowest probability of con-
flicting with a company’s mission. This is beneficial for
applications, where highly critical missions and resources
must be protected, without sacrificing missions in favor of
security.
From a mathematical perspective, the Pareto-efficient

optimization is a multi-dimensional optimization with
scaling-aware normalization and full information-content
preservation. This means that, at first, every response plan
RP of an evaluated set of response plan �RP is normalized

such that every dimension, i.e., RORI, OI0, OI1, OI2, is
based on a scale from 0 to 1, where 0 represents the
best case of a dimension, and 1 represents the worst
case of a dimension. It is extremely important to note
that this normalization is scaling-aware, i.e., the normal-
ization of each dimension d is based on R̂Pd and ŘPd,
and not on the current-best evaluated maxima and min-
ima in each dimension. If one would naively normalize
each dimension by the current-best evaluatedmaxima and
minima, densely clustered evaluations in one dimension
would be stretched artificially. As a counter example, say,
one obtains evaluated response plans with extremely sim-
ilar dimension-values [ 0.5, 0.499, 0.501] on a theoretical
scale from 0 to 1 (as for operational impact by default);
naively normalizing these response plans by themaximum
0.501 and minimum 0.499 would completely distort these
evaluations. In contrast, the Pareto-efficient optimization
preserves the underlying semantic that all evaluations are
extremely similar.
Based on these normalized response plans, the Pareto-

efficient optimization searches for the best compromise
in all dimensions by searching for a set of response
plans where all evaluations are close to the current-best
response plan in that dimension. In effect, some response
plans may exist which are better in some dimension, say,
OI0, but which were not selected to be Pareto-efficient,
because they deviated heavily in another dimension from
the best solution.
Various other approaches exist for finding an “optimal”

response plan from a set of multi-dimensional normal-
ized values. An extremely common and naive approach
is to simply reduce n-dimensional evaluations to a one-
dimensional scalar by some combination function f (·).
Note that this will inevitably reduce the information con-
tent during optimization, i.e., not all implications of the
evaluated set of response plans can be considered. In
contrast, the Pareto-efficient optimization preserves the
complete information content, as all dimensions are pre-
served.
An example for such a naive combination function

f (·) is a simple average or summation of all dimensions.
Obtained one-dimensional scalar values can then be easily
sorted, and an “optimum” is obtained trivially. Often, sim-
ilar results are obtained to a Pareto-efficient optimization,
but there exists significant and tenuous differences. Say,
one is given three response plan evaluations, which have
been normalized as described by our approach: RP1 =
〈t0 : 0.5, t1 : 0, t2 : 0, rori : 0.901〉, RP2 = 〈t0 : 0.28, t1 :
0.28, t2 : 0, rori : 0.9〉, and RP3 = 〈t0 : 0.2, t1 : 0.2, t2 :
0.7, rori : 0.899〉. Choosing a simple summation function
f (·), one obtains f (RP1) = 1.401, f (RP2) = 1.46, and
f (RP3) = 1.999. Following, one would select RP1 as it
has the lowest score. However, RP1 deviates heavily inOI0
by 30% from the evaluated optimum in that dimension
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(RPt03 = 0.2). RP2 is Pareto-efficient, as it maximally
deviates by only 8% from the evaluated optimum of each
dimension.
Another frequently dimension-reduction function f (·)

is a simple max operator which follows a similar inten-
tion as a Pareto-efficient optimization, as max tries to
consider some worst-case instead of a naive average. How-
ever, continuing the above example, a ranking by max
yields the ordering RP3,RP1,RP2, as the max operator is
unaware of the extremely small deviations in the RORI
dimension and it cannot comprehend contextual infor-
mation that a RORI evaluation deviating around 0.9 is
(unfortunately) currently the only viable option. In con-
trast, the Pareto-efficient optimization is aware of this
context, and, inherently, optimizes against all dimensions,
i.e., it acknowledges the current situation and considers
that a RORI around 0.9 is currently the only viable option.
Even though the proposed Pareto-efficient optimization

delivers highly beneficial results, some technical con-
flicts of different mitigation actions in response plans may
retain and are discussed in the following subsection.

8.2 Limitations of the proposed approach
An aspect to be discussed is related to conflicts among
individual mitigation actions in response plans. Every
mitigation action is associated to a generic type (e.g.,
patching, restart, shutdown), and each mitigation action
type has an associated restriction (e.g., mutually exclusive,
totally restrictive, partially restrictive). For instance, an
action that suggests to shutdown equipment E1 is totally
restrictive with any other action associated to E1 but it can
be perfectly combined with actions to be implemented on
another equipment as long as their implementation does
not interfere with the normal operation of equipment E1.
Conflicts of restrictive mitigation actions are assumed

to be avoided at the first stage of the evaluation pro-
cess, i.e., we assume that conflicting mitigation actions
are never proposed as a response plan which is evalu-
ated by RFIA or ROIA. However, our approach may not
comprehend external restrictions on proposed response
plans, i.e., RFIA and ROIA only perform syntactical ver-
ifications on response plans and do not implement any
semantical validation of their implementability. For exam-
ple, our approach cannot comprehend a situation where
(i) a selected response plan requires to implement a mit-
igation action that is already activated in the system, i.e.,
an indirect increase of financial costs, or (ii) a selected
response plan requires to deactivate an action that was
previously active, i.e., a (potential) increase or decrease of
operational impact and financial impact. Moreover, our
approach does not consider semantic implications of indi-
vidual mitigation actions. This means that, if a response
plan is proposed which stands in conflict to the above-
discussed restriction of shutdown of E1, both RFIA and

ROIA will still evaluate the response plan. Nevertheless,
all of the beforementioned issues are directly resolved by
an adequate approach of proposing response plans for
evaluation.
In situations where not enough initial information was

acquirable, RFIA may lead to inaccurate results. The rea-
son for this is that any response plan in which a mitigation
actions is missing information (e.g., cost, benefit, cover-
age) is directly discarded. To overcome this issue, future
work is dedicated to find adequate heuristics and estima-
tions for missing values in the RFIA evaluation. As ROIA
is based on probabilistic inference, estimations for missing
information is directly included and already considered in
our models.
To acquire all parameters and models for the RFIA

requires a great level of accuracy in estimations, i.e.,
requires detailed analyses of, e.g., monetary values. As the
RFIA is based on direct calculations on acquired param-
eters, results can only be as accurate as the forecasts of
loss event frequencies on which they rely. A significant
amount of parameters, e.g., the annual loss expectancy
(ALE), and the effectiveness (EF) used to compute the
risk mitigation level, rely on expert knowledge, which
will involve human errors. Effectively, an RFIA requires
various estimated parameters whose kind is very similar
to classical business economical operating figures. This
means that, on the one hand side, a large amount of expert
knowledge is required and many parameters must be
manually assessed by experts. However, on the other hand
side, experts from which this knowledge is acquirable, are
trained business experts that are deeply familiar with this
kind of estimation: estimating business operating figures.
Even though the targeted security of an IT infrastructure
is outside of the expert’s subject area, the kind of required
knowledge lies in their expertise.
A critical point to be discussed is that many calcula-

tions involved in the RFIA may seem simplistic, as they
represent “simple” multiplications or additions of some
business economical operating figures. On first sight, this
is true, and, e.g., ROSI and RORI are classical adapta-
tions of business economical key scores such as the return
on investment (ROI). It remains true that, from a com-
puter science perspective, these calculations are trivial
and simple multiplication and additions do not provide
an increase information content. However, these econom-
ical key scores such as ROI, ROA, ROIC, RONA, ROC,
and ROCE [48] play a major role in business economics
and are widely accepted as reference values. In addition
with the previous paragraph, this provides an increased
acceptance of our approach with the experts from which
information is acquired.
It may not be computationally feasible to evaluate

all proposed response plans, and a heuristic must be
employed to prune the evaluation space. As discussed
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throughout this article, RFIA and ROIA targeted different
impact dimensions whose performance criteria are con-
tradictorily defined. We show throughout this article that
their combination is highly beneficial and required. How-
ever, if both assessment perform a pre-pruning by their
own standards, it is likely that disjoint subsets are eval-
uated. Therefore, a pre-pruning step must be based on
a heuristic optimized against characteristics of RFIA and
ROIA simultaneously, which is subject to future work.
Finally, the proposed ROIA is based on amodel in which

time is represented by fixed timeslices, where each times-
lice is independent of each other. This implies that an
impact of, e.g., the first timeslice is not considered any-
more in the impact assessment of the second timeslice.
To overcome this characteristic, the local impact prob-
abilities must be adequately designed, as, e.g., proposed
throughout this article. Another possibility is to utilize a
time-dependent model, where the respective model of a
timeslice t is dependent on nodes of the model represent-
ing timeslice t − 1. Doing so creates a form of a dynamic
Bayesian networks in which a near-realtime analysis of
impacts is provided. Furthermore, such a network allows
one to analyze chains of events that lead to an impact in
retrospective. The design and mathematical implications
of such a time-dependent dynamic impact assessment is
considered by Motzek et al. in [11] utilizing so-called
activator dynamic Bayesian networks [49].

9 Conclusions
We have proposed an approach for selecting adequate
response plans as a reaction to threats opposed on a com-
pany based on a multi-dimensional impact assessments.
On the one hand, we utilize a response financial impact
assessment (RFIA) based on a cost-sensitive metric (i.e.,
return on response investment) and a geometrical tool
(i.e., attack volume model). On the other hand, we utilize
a response operational impact assessment (ROIA) based
on mission and resource dependency models. The deci-
sion rule for the RFIA is that the higher the RORI value,
the more interesting the response plan, whereas for the
ROIA, the higher the impact values for the short-term
(OI0), medium term (OI1), and long term (OI2), the less
interesting the response plan. We have shown that on
most response plans only one dimension dominates, i.e.,
no clear optimal choice is present.
Based on a multi-dimensional minimization approach,

we propose the choice of a Pareto-efficient response plan
that bears the highest financial attractiveness on return on
investment, and the lowest probability of conflicting with
a company’s missions. This is beneficial for applications,
where highly critical missions and resources must be pro-
tected, without sacrificing missions in favor of security.
Future work is dedicated towards an evolution of

the RORI metrics considering evaluations of multiple

response plans simultaneously. Furthermore, future work
is dedicated towards advancing operational impact assess-
ments towards domains over near-continuous time
dimensions for predictive and retrospective analyses.
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