
EURASIP Journal on
Information Security

Drew et al. EURASIP Journal on Information Security (2017) 2017:2
DOI 10.1186/s13635-017-0055-6

RESEARCH Open Access

Polymorphic malware detection using
sequence classification methods and
ensembles
BioSTAR 2016 Recommended Submission - EURASIP Journal on Information Security

Jake Drew1* , Michael Hahsler2 and Tyler Moore3

Abstract

Identifying malicious software executables is made difficult by the constant adaptations introduced by miscreants in
order to evade detection by antivirus software. Such changes are akin to mutations in biological sequences. Recently,
high-throughput methods for gene sequence classification have been developed by the bioinformatics and
computational biology communities. In this paper, we apply methods designed for gene sequencing to detect
malware in a manner robust to attacker adaptations. Whereas most gene classification tools are optimized for and
restricted to an alphabet of four letters (nucleic acids), we have selected the Strand gene sequence classifier for
malware classification. Strand’s design can easily accommodate unstructured data with any alphabet, including
source code or compiled machine code. To demonstrate that gene sequence classification tools are suitable for
classifying malware, we apply Strand to approximately 500 GB of malware data provided by the Kaggle Microsoft
Malware Classification Challenge (BIG 2015) used for predicting nine classes of polymorphic malware. Experiments
show that, with minimal adaptation, the method achieves accuracy levels well above 95% requiring only a fraction of
the training times used by the winning team’s method.

Keywords: Sequence classification, Minhashing, Polymorphic malware, Strand

1 Introduction
The analogy between information security and biology
has long been appreciated, since Cohen coined the term
“computer virus” [1]. Modern malware frequently takes
the form of a software program that is downloaded and
executed by an unsuspecting Internet user. “Infection” can
be achieved through compromising many thousands of
websites en masse [2], social engineering, or by exploit-
ing vulnerabilities on end-user systems. Regardless of how
the infection occurs, cybercriminals have also undertaken
considerable efforts to evade detection by antivirus soft-
ware [3, 4]. Current signature based detection methods
are highly sensitive to minor changes within the struc-
ture of a malware program. In many cases, a small change

*Correspondence: jakemdrew@gmail.com
1Darwin Deason Institute for Cyber Security, Southern Methodist University,
Dallas, TX, USA
Full list of author information is available at the end of the article

within the malware program alters the program’s signa-
ture sufficiently enough to thwart antivirus detection.
Developers of such polymorphic malware attempt to

avoid the detection of their malicious software by con-
stantly changing the program’s appearance while keep-
ing the functionality the same. This can be achieved by
manipulating the code using multiple forms of obfus-
cation. Techniques include encryption of malicious pay-
loads, obfuscating variable names using character code
shifts, equivalent code replacements, register reassign-
ments, and removal of white space or code minifica-
tion [5–7]. Individual instances of polymorphic malware
canmaintain the same general functionality while display-
ingmany unique source code characteristics. For example,
the computer worm Agobot or Gaobot was first identi-
fied around 2002 [8]. Over 580 variations of this malware
were subsequently identified [9]. Today, eachmalware cat-
egory can spawnmany thousands of mutations, adding up
to as much as one million new “signatures” per day [10]. In

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-017-0055-6&domain=pdf
http://orcid.org/0000-0002-1381-6688
mailto: jakemdrew@gmail.com
http://creativecommons.org/licenses/by/4.0/

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 2 of 12

some cases, variations between malware instances occur
simply to avoid detection. In others, new functionality
emerges over time. Such changes require a robust form of
malware classification which is less influenced by genera-
tional variation.
Gradual changes in polymorphic malware can be seen

as mutations to the code. Thus, these changes are simi-
lar to mutation of biological sequences which occur over
successive generations.
Recently, significant advances have been made in gene

sequence classification in terms of classification accuracy
and processing speed. Originally, classification was based
on expensive sequence alignment tools like BLAST [11]
for comparing sample sequences to other sequences from
known taxonomies. Many newer sequence classification
tools claim to be faster and/or more accurate. Examples
are BLAT [12], the Ribosomal Database Project (RDP)
naive Bayes classifier [13], UBLAST/USEARCH [14],
Strand [15], Kraken [16], and CLARK [17].
Given the similarities between mutations in malware

and in gene sequences, it stands to reason that the tools
developed for gene sequence classification hold the poten-
tial to be applied to polymorphic malware detection.
Consequently, in this paper we set out to apply one such
classifier, called Strand (The Super Threaded Reference-
Free Alignment-Free Nsequence Decoder) [15], to per-
forming classification of polymorphic malware data. We
selected Strand because, unlike the aforementioned gene
sequence classifiers, it can process sequences of arbitrary
alphabets. While BLAST has been adapted by researchers
to process non-biological sequences [18], Strand can be
used on general sequences “out of the box” and performs
more efficiently than BLAST. We then use Strand to clas-
sify the malware dataset used in the Kaggle Microsoft
Malware Classification Challenge (BIG 2015) [19]. We
show how the application achieves comparable accu-
racy to the winning team’s sophisticated malware clas-
sification techniques using only a fraction of the time
required to generate the Strand trainingmodel. This paper
is an expanded version of [20] and includes new fea-
ture extraction and ensemble techniques for the Interac-
tive Disassembler Tool (IDA) files provided by Microsoft
via Kaggle. We explain how 32-Bit vs. 64-Bit hashing
functions influence minhash signature classification accu-
racy and present new results which are approximately
seven times faster than our original results presented
in [20].

2 Background
We now give a brief overview of word-based gene
sequence classification, which is typically done using
word matching. Words are extracted from individual gene
sequences and used for similarity estimations between
two or more gene sequences [21]. Gene sequence words

are sub-sequences of a given length. In addition to words
they are often also referred to as k-mers or n-grams, where
k and n represent the word length. The general concept of
k-mers or words was originally defined as n-grams during
1948 in an information theoretic context [22] as a subse-
quence of n consecutive symbols. We will use the terms
words or k-mers in this paper to refer to n-grams cre-
ated from a gene sequence or other forms of unstructured
input data. Over the past 20 years, numerous methods
utilizing words for gene sequence comparison and classi-
fication have been presented [21].
Methods like BLAST [11] were developed for search-

ing large sequence databases. Such methods search for
seed words first and then expand matches. These so
called alignment-free methods [21] are based on gene
sequence word counts and have become increasingly pop-
ular since the computationally expensive sequence align-
ment method is avoided. In this paper, we refer to the
individual characters (A,C,G,T) within a particular gene
sequence as bases. The most common method for word
extraction uses a sliding window of a fixed size. Once the
word length k is defined, the sliding window moves from
left to right across the gene sequence data producing each
word by capturing k consecutive bases from the sequence.
The RDP classifier [13] uses only eight characters within

each gene sequence word during both training and clas-
sification processing. This makes the total possible num-
ber of unique words (i.e., features for the classifier) only
48 = 65, 536 words. Unfortunately, such a small fea-
ture space makes distinguishing between many sequence
classes challenging.
Rapid abundance estimation and sequence classification

tools [16, 17] use longer words and derive a large speed
advantage by utilizing, instead of word counts, a simple
match between the words extracted from sequence data
to identify the similarity between two sequences. How-
ever, this approach comes at the cost of storing a very large
number of sequence words to make accurate classifica-
tions. For example, the extraction of k = 30 base words
results in 430 ≈ 1018 unique word possibilities within
the training data feature space when an alphabet of four
symbols (A,C,G,T) is considered.
The issues with the need to store a large number

of words becomes even more problematic when the
size of the alphabet increases. This is clearly the case
when we consider compiled code or source code. Strand
addresses this problem by utilizing a form of lossy com-
pression called Minhashing [23] which still supports
sequence comparison, but with a much reduced memory
footprint.

3 Strand
Next, we give a very short overview of the Strand classifi-
cation process (see [15] for more details).

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 3 of 12

Strand uses the map reduction aggregation process
shown in Fig. 1 to rapidly prepare and process input data
in parallel during training or classification. Map reduc-
tion aggregation executes using shared memory during all
stages within each Strand worker process. When multiple
worker processes are used in a cluster, a single master pro-
cess combines the outputs from each of the self-contained
workers as they complete.
During stage 1 of map reduction aggregation, multi-

ple threads extract words and associated classes from the
gene sequence data in parallel. Simultaneously, a stage 2
combiner process minhashes each extracted word eventu-
ally creating a minhash signature for each input sequence
provided. Finally, the unique minhash keys within each
minhash signature are summarized by class during the
reduce stage. During training, the reduce step adds min-
hash values into the training data structure, and during
classification, minhash values are looked up within the
training data structure andminhash intersections for each
class are tabulated to determine one or more class similar-
ity estimates.

3.1 Traditional MapReduce vs. map reduction
aggregation

We now compare map reduction aggregation to more tra-
ditional MapReduce style processing for the benefit of
understanding its advantages. Map reduction aggregation
includes a preliminary map stage, any number of required
intermediate map or combiner stages, and a reduce stage.
In traditional MapReduce, a combiner stage is simply
an intermediate or semi-reducer that further processes
data prior to the final reduce stage [24]. In Strand, all
stages required for map reduction aggregation process-
ing are self-contained within a training or classification
worker process which allows each processing stage access
to the same shared memory at all times during machine

learning. This is highly advantageous when compared to
other traditional forms of MapReduce. The traditional
MapReduce execution overview is illustrated in Fig. 2.
The following steps comprise the typicalMapReduce

model [25]:

1. Input data is split into multiple pieces which are
managed by a master process.

2. Next, worker processes await either map or reduce
tasks provided by the master.

3. Specific operations for both the map and reduce
procedures are specified by the user.

4. The master monitors each map task’s successful
completion and notifies reduce workers of the map
file output locations.

5. Intermediate files on local disks are required between
each of the map, combiner, and reduce stages
executed for traditional MapReduce.

6. When the reduce stage reads in mapped files from
disk, the data is also sorted since a large number of
keys may map to a single reduce task.

7. The reduce function processes each sorted map item
according to the user specified reduce operations
writing results to a separate final result file for each
reduce task executed.

8. Finally, the master returns control to the calling
program once all reduce steps have successfully
completed.

Strand’s map reduction aggregation methods take
advantage of the parallelism constructs afforded by the
MapReduce model while avoiding much of the overhead
associated with intermediate file disk I/O, sorting, and
inter-process communication between the master and
worker processes located on different commodity hard-
ware machines.

Fig. 1 Strand map reduction aggregation processing for a single training or classification worker process

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 4 of 12

Fig. 2 Traditional mapreduce execution overview. Courtesy of [25]

The map reduction aggregation method specifies how
targeted input data will be aggregated within the current
system during training and classification worker process-
ing. Input data is consistently dissected by mapping and
optional combiner processes into individual, independent
units of intermediate work typically comprising consis-
tently mapped gene sequence word keys and class values
that are conducive to simultaneous parallel reduction
processing. The reduce method continually and simul-
taneously aggregates the mapped word keys and values
by eliminating the matching keys and aggregating val-
ues consistent with the specified reduce operations for
all matching keys which are encountered during reduce
processing.
All map, combiner, and reduce stages are self-contained

within a single user specified map reduction aggrega-
tion method allowing access to shared memory between
all processing stages. The user specified map reduction
aggregation method operates within any number of train-
ing and classification worker processes to scale as required
by the user or machine learning task at hand. Strand train-
ing worker processes apply map reduction aggregation to
gene sequence input data, reducing the resulting minhash
signatures and associated classes into the Strand train-
ing data structure. In certain Strand embodiments, class
frequencies are maintained for each unique minhash key.
During classification, minhash values within each min-
hash signature resulting from map reduction aggregation
are looked up within the Strand training data structure
to determine an accurate estimation of Jaccard similarity
between the query sequence and all known classes. Min-
hashing is used as a form of lossy compression to reduce
the overall size of the training data structure and decrease

the processing time required to estimate the similarity
between a query sequence and one or more known classes
within the system.

3.2 Minhashing during map reduction aggregation
Minhashing [23] is utilized within Strand to drastically
reduce the amount of storage required for high-capacity
map reduction aggregation and classification function
operations. Map reduction aggregation requires multiple
pipeline stages when lossy compression via minhashing is
deployed.
In Fig. 1, Strand uses a map reduction aggregation

pipeline including an additional combiner step to facil-
itate minhashing. This process also represents a more
accurate method for Jaccard approximation than mere
random selection of words. Minhashing is a form of lossy
data compression used to remove a majority of the gene
sequence words produced during stage one mapping by
compressing all words into a much smaller minhash sig-
nature.
During stage one of the map reduction aggregation

method shown in Fig. 1, transitional sequence word out-
puts are placed into centralized, thread-safe storage areas
accessible to minhash operation workers. In stage 2,
a pre-determined number of distinct hashing functions
are then used to hash each unique key produced dur-
ing the stage one map operation one time each. As the
transitional keys are repeatedly hashed, only one mini-
mum hash value for each of the distinct hash functions
are retained across all keys. When the process is com-
pleted, only one minimum hash value for each of the
distinct hash functions remains in a vector of minhash
values which represent the unique characteristics of the

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 5 of 12

learning or classification input data within a minhash
signature.
To further enhance minhashing performance, only a

single hash function can be used to generate a minhash
signature. This eliminates the overhead of hashing words
multiple times to support the family of multiple hashing
functions traditionally used to create a minhash signature.
In this scenario, all words are hashed by a single hashing
function and nminimum hash values are selected to make
up the minhash signature. These minimum values repre-
sent a random permutation of all words contained within
the target sequence.
The minhash signature is further reduced by storing

each minhash value in a partitioned collection of nested
categorical key-value pairs. The training data structure
illustrated in Fig. 3 is designed in this manner. The train-
ing data structure’s nested key-value pairs are partitioned
or sharded by each distinct hash function used. For exam-
ple, when the minhashing process uses 100 distinct hash
functions to create minhash signatures, the training data
structure is divided into 100 partitions. All unique min-
hash keys created by hash function 0 are stored within
partition 0 of the training data structure. Likewise, all
unique minhash keys created by hash function 99 are
stored in partition 99. However, when only a single hash
function is used, no partitions are required.
The partitioned training data structure shown in Fig. 3

includes minimum hash values which act as the key in
the nested categorical key-value pair collection. Eachmin-
hash key contains as it value a collection of the classes
which are associated with that key in the system. This
collection of classes represents the nested categorical key-
value pairs collection. Each nested categorical key-value
pair contains a known class as its key and an optional
frequency, weight, or any other numerical value which
represents the importance of the association between a
particular class and the minhash value key.

Fig. 3 The strand partitioned training data structure

4 Classification function processing
Using a single training data structure, multiple classifica-
tion scores can be used. Jaccard Similarity between two
sequences represented by a set of words is calculated using
the intersection divided by the union between the two
sets. No frequency values are required for this similarity
measure. For example, the Jaccard similarity between two
sequences represented by two sets S1 and S2, respectively,
is defined as SJ (S1,S2), where:

SJ (S1,S2) = |S1 ∩ S2|
|S1 ∪ S2|

Weighted Jaccard Similarity can be used when the class
frequency for unique minhash values are retained in the
nested categorical key-value pair collection and taken
into consideration [26]. The Weighted Jaccard similarity
between two sets S1 and S2 is defined as SWJ (S1,S2),
where S1i is the set frequency of token i in a set, and i
iterates over all tokens:

SWJ (S1,S2) =
∑

i min(S1i ,S2i)∑
i max(S1i ,S2i)

In Strand, Jaccard similarity between the sets of all
words in two sequences is approximated by intersect-
ing two sets of minhash signatures where longer signa-
tures provide more accurate Jaccard similarity or distance
approximations [27]. Class frequencies may be used
to produce other Jaccard Index variations such as the
Weighted Jaccard Similarity [26] shown above. However,
large performance gains are achieved in Strand by using
binary classification techniques where no nested cate-
gorical frequency values or log based calculations are
required during classification function operations. In the
binary minhash classification approach, minhash signa-
ture keys are simply intersected with the minhash keys of
known classes to calculate the similarity between a query
sequence and a known class.
We create a minhash signature by performing min-

hashing on all words in a gene sequence. The minhash
signature is a collection of integers which represent the
unique characteristics of all words created from a par-
ticular gene sequence and is typically much smaller than
original collection of words itself

M = minhash(S)

Minhashing allows us to efficiently approximate the
Jaccard index between two sequences, S1 and S2:

SJ (S1,S2) ≈ |minhash(S1) ∩ minhash(S2)|
k

,

where the intersection operator is used here to indicate for
how many hash functions [28] the minhash values agree

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 6 of 12

between the two signatures. This can be seen as a mul-
tivalue extension of the Simple Matching Coefficient [29]
between two vectors where:

SJ (S1,S2) ≈ SSMC(minhash(S1),minhash(S2))

Next, we discuss scoring the similarity between a
sequence minhash signature and the category minhash
signatures used for classification. Category signatures
are created by combining the minhash signatures of all
sequences for the category in the training set. Note that
this means that for many hash functions, we will have
several minhash values from different sequences. Since
sequences in the same category will be similar, many min-
hash values will agree resulting in a compact category
signature.
After training has completed, classification accuracy

may also be increased by making a single pass of the
training data and pruning or removing minimum hash
values which are associated with more than n cate-
gories. Our own empirical results show that the value
for n may vary based upon a particular set of train-
ing data. In this research, pruning minhash values with
more than one category association achieved the best
results.
However, this means that we do not directly estimate the

Jaccard index between a sequence and the categories, but
we measure similarity based on the number of collisions
between theminhash values in the sequence signature and
the category signature.

Definition 1 (Minhash Category Collision) We define
the Minhash Category Collision between a sequence S rep-
resented by the minhash signature M and a category
signature C as:

MCC(M, C) = |M ∩ C|,

where the intersection is calculated for eachminhash hash-
ing function separately.

We calculate MCC for each category and classify the
sequence to the category resulting in the largest category
collision count. While many other more sophisticated
approaches for scoring sequences are possible, these are
left for future research.

5 Applying strand toMalware classification
The Kaggle Microsoft Malware Classification Challenge
(Big 2015) [19] simulates the file input data processed
by Microsoft’s real-time detection anti-malware products
which are installed on over 160M computers and inspect
over 700M computers each month [19]. The goal of the
Microsoft Malware Classification Challenge is to group

polymorphic malware at a high level into 9 different
classes of malicious programs including: Ramnit, Lol-
lipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1,
Obfuscator.ACY, and Gatak.

5.1 The training and classification input data
Microsoft provided almost a half terabyte of training and
classification input data which included:

1. Binary Files: 10,868 training and 10,873 test files
containing the raw hexadecimal representation of the
file’s binary content with the executable headers
removed.

2. Asm Files: 10,868 training and 10,873 test files
containing a metadata manifest including data
extracted by the Interactive Disassembler Tool. This
information includes things such as function calls,
strings, assembly command sequences and more.

3. Training Labels: Each training and test file name is
a MD5 hash of the actual program. The training
labels file contains each MD5 hash and the malware
class which it maps to. No labels were provided for
the test data input files.

5.2 Challenge evaluation, competitors, and results
Kaggle challenge participants were evaluated using a
multi-class logarithmic loss score. Each test file submis-
sion made required not only the predicted malware class,
but the estimated probabilities for the file belonging to
each of the nine classes. Each submission record included
the file hash and nine additional comma-delimited fields
containing values for the predicted probability that a given
file belongs a particular class. The logarithmic loss score
is defined as:

log − loss = − 1
N

N∑

i=1

M∑

j=1
yij log (pij)

Where N is the number of test set files and M is
the number of classes. The variable yij = 1 when file
i is a member of class j and zero for all other classes.
The predicted probability that observation i belongs
to class j is given by the variable pij. The submitted
probabilities are truncated for the interval [10−15, 1 −
10−15] by pij = max (min (pij, 1 − 10−15), 10−15) prior
to scoring in order to avoid extremes in the log
function [30].
There were 377 international teams competing in the

contest with US$16,000 in available prize money. The
winning team achieved a logarithmic loss ratio score of
0.002833228 where a lower value represents a better score.
The winning team reported that their model produced
an accuracy level greater than 99% during 10-fold cross-
validation [31]. Their process was highly specialized and

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 7 of 12

tailored specifically to the task and available data for
detecting the nine classes of malware presented in the
challenge. Alternatively, we present here the results of a
more general and performance oriented approach which
should work well on many forms of input data where
generational polymorphism occurs.
The winning team’s final submission used a highly com-

plex ensemble of models [32] using a combination of fea-
tures including: byte 4-gram instruction counts, function
names and derived assembly features, assembly op-code
n-grams, disassembled code segment counts, and image
based features using the binary file data. Generating these
features required 500 GB of disk space for the original
training data and an additional 200 GB for engineered fea-
tures. While the final features used for the model required
only 4 GB, both feature creation and generating the top
performing model takes around 48 h. Furthermore, it
takes an additional 24 h to generate the best model ensem-
ble which produced the winning score [32]. In short, the
winning submission takes 72 h to produce using a Google
Compute Engine with 16 CPUs, 104 GB RAM, and 1
TB of disk space. The winning model requires about 700
GB of disk space including 500 GB for the original data
and an additional 200 GB of disk space for the meta data
generated.

6 Applying strand toMicrosoft Malware
classification challenge

While Strand was originally designed to process FASTA
formatted gene sequence files, only minor changes were
required to accommodate for reading and processing
the malware bytes files as input. This is possible since
unlikemany other sequence classifiers and k-mer counters
[16, 17, 33], Strand uses no special encoding of sequence
data and supports any Unicode character within the
sequences.
During gene sequence classification, the short

reads of sequence data commonly generated by
modern sequencers can be in either forward or
reverse-complement order. As a result of this limi-
tation, classification searches on sequence data must
be made using each input sequence’s forward and
reverse-complement effectively doubling the number of
classification searches required. This particular feature
of Strand is gene sequence specific and was irrelevant
for malware classification. After turning off the reverse-
complement search and modifying the sequence file
parsing routine, Strand was able to train and classify
against malware data with no other changes.

6.1 Developing binary file features for strand
We now discuss the feature engineering required to pre-
pare bytes files for training and classification using Strand.
All of the malware feature engineering required to convert

bytes file program data into Strand sequences fits into
just a few lines of code. While conversion of the raw hex
data to a sequence alphabet (A,C,T,G) is possible, it is
not required to produce satisfactory classification results.
The disassembled code files (Asm files) were not used
to produce the score and accuracy results presented later
in Tables 1 and 2 and are covered in detail in the next
section.
Figure 4 illustrates the typical content encountered

within the bytes hex data files provided by Microsoft.
The first eight characters of each line contain a line
number, and the last line shows how some hex con-
tent is unavailable and displayed as “??”. Both the line
numbers and “??” symbols are removed during Strand
processing.
When reading each bytes file, Strand uses the code

shown in Fig. 5 to convert the bytes malware files
into a Strand sequence. During processing each car-
riage return, space, and “?” character are removed. This
produces a single string or Strand sequence contain-
ing all hex content read from the malware file. Once
the malware hex data is cleaned, sequence words of
length k or k-mers are generated by Strand as previously
described.

6.2 Developing Asm file features for strand
Each Asm file provided for training or classification con-
tains a metadata manifest which includes details extracted
from each malware program’s binary content such as
function calls, assembly commands, strings, and other rel-
evant executable data elements. This data was provided
by Microsoft to Kaggle and generated by the Interac-
tive Disassembler tool. We focused on extracting only
the assembly language commands from each pure code
segment contained within each Asm file.
Figure 6 shows a sample of assembly commands within

an Asm file’s pure code segment. Using known valid
assembly language commands [34] and additional tokens
extracted from the Asm training data, a list of 1251 unique
Asm file commands and tokens were collected. Next, the
commands were assigned a unique index number which
was converted from a base 10 to base 4 value. Finally,
each base 4 number was encoded to a 5 character gene
sequence value where 0 = A, 1 = C, 2 = G, and
3 = T. For instance, the assembly command “adc” was
assigned the base 10 index 4, which converts to the base
4 value 00010, and is encoded to the gene sequence value
“AAACA”.
Using this approach each Asm file’s content is con-

verted to a contiguous string of gene sequence char-
acters. Furthermore, this encoding gives each assembly
command or Asm file token a common length. Unique
assembly commands and tokens collected ranged from
2 to 15 characters in length. Processing this data in

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 8 of 12

Table 1 Ten-fold cross-validation results when using strand with 32-bit hash codes and bytes file hex sequences to predict 10 folds
from the Microsoft malware training data

10-Fold cross-validation results Binary 32-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 979 90.06% 90.06% 6:46:31 0:30:38

2 1087 998 91.81% 91.81% 6:25:38 0:30:26

3 1087 1011 93.01% 93.01% 6:35:01 0:31:50

4 1087 995 91.54% 91.54% 6:34:53 0:33:53

5 1087 1004 92.36% 92.36% 6:21:12 0:28:12

6 1087 1003 92.27% 92.27% 6:27:41 0:28:13

7 1087 1006 92.55% 92.55% 6:49:04 0:33:34

8 1087 993 91.35% 91.35% 6:32:48 0:31:45

9 1086 1001 92.17% 92.17% 6:26:36 0:33:26

10 1086 995 91.62% 91.62% 6:51:28 0:29:05

a fashion similar to the bytes files as raw text would
result in many of the unique token values being broken
across each gene sequence word created during Strand
training and classification processing. For example, cre-
ating gene sequence words within Strand of length 50
would ensure that each gene sequence word contained
a block of five assembly commands or Asm file tokens.
After testing word sizes of 45, 50 ,55, and 60, empiri-
cal results showed that a block of five commands opti-
mized both sensitivity and precision during classification
processing.
Extracting only the assembly command sequence data

from each Asm file also greatly reduced the total size
and volume of data being processed by Strand dur-
ing training and classification resulting in an almost
1/7 decrease in processing time when compared to
models produced by using the bytes files as input.
Finally, Asm command sequences also produce a more

accurate classification result as well which is shown in
Section 7.3.

7 Malware classification results using strand
While we did not produce a winning logarithmic
loss score for the Kaggle Microsoft Malware Classi-
fication Challenge (BIG 2015) [19], we were able to
achieve a top score of 0.047999572 when using a 64-
bit minhashing configuration with Strand. We used sev-
eral techniques including model ensembling, pruning,
and prediction adjustments based on the confidence
scores produced by Strand to achieve our best score.
These results are discussed in detail in the following
sections.
The individual Asm sequence model is our most

impressive result achieving greater than 98.59% accuracy
during ten-fold cross validation and a substantial perfor-
mance gain when compared to the winning team’s 72 h

Table 2 Ten-fold cross-validation results when using Strand with 64-bit hash codes and bytes file hex sequences to predict 10 folds
from the Microsoft malware training data

10-fold cross-validation Results Binary 64-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 1053 96.87% 96.87% 6:42:54 0:33:22

2 1087 1054 96.96% 96.96% 5:53:21 0:31:36

3 1087 1069 98.34% 98.34% 6:50:26 0:34:12

4 1087 1052 96.78% 96.78% 6:32:24 0:35:00

5 1087 1065 97.98% 97.98% 6:50:25 0:32:50

6 1087 1061 97.61% 97.61% 6:36:49 0:35:21

7 1087 1063 97.79% 97.79% 6:50:02 0:34:48

8 1087 1053 96.87% 96.87% 6:33:02 0:33:30

9 1086 1059 97.51% 97.51% 6:28:38 0:30:58

10 1086 1058 97.42% 97.42% 6:35:53 0:27:17

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 9 of 12

Fig. 4Malware bytes file hex data content

training time. In fact, we are able to generate the Asm
training models for 10-fold cross validation in under 45
min while processing 224 GB of training data and 189 GB
of test data as shown in Table 3 below.

7.1 Influence of hash code size and pruning on
classification accuracy

The individual size of each hash code value making up
Strand’s minhash signature is critical for producing accu-
rate classification results. While hashing words into 32
or 64-bit integers can reduce the memory footprint by
very large amounts, the selected word length can also
influence collisions, drastically impacting classification
accuracy.
Table 4 illustrates how the available unique hash values

per unique gene sequence word and potential collisions
produced are influenced by both word length and the
selection of an appropriate hash code size. For example,
over 1 billion potential collisions per word are observed
when hashing a 31 base gene sequence word into only
32-bits while a 64-bit hash provides ample room for
each unique 31 base word value. Finally, the remaining
sections of Fig. 4 show that a 32-bit hashing function
provides enough unique values to map single words up
to 16 bases in length, while a 64-bit hashing function
supports unique values for single words up to 32 bases

in length. Collisions may still occur when storing a 31
base word as a 64-bit hash. However, they are drastically
reduced when compared to storing a 31 base word as a
32-bit hash.
Finally, minimum hash values which are associated

with multiple classification categories my add noise to a
given model since multiple categories may receive votes
when a minhash signature contains such a multi-category
value. The Strand classifier includes a function which may
be executed after a training model has been created to
remove any minhash values within the training data that
are associated with multiple categories. Empirical results
show a small lift in classification accuracy on both the
bytes and Asmmodels when all minhash values associated
with more than one category are removed.

7.2 Binary file classification results
Table 1 shows ten-fold cross-validation results for mod-
els using only bytes file hex data. Strand averaged
91.88% accuracy across the ten folds predicted using
only 32-bit hashing functions. Table 2 shows 10-fold
cross-validation results for the version of Strand using
64-bit hash codes. Strand averaged 97.41% accuracy
across the 10 folds. When using 64-bit hashing func-
tions, we were able to drastically reduce the logarith-
mic loss score produced from 0.452784 to 0.222864.
While memory consumption increased slightly, there
was no large degradation in training or classification
performance.
The training times in Tables 1 and 2 represent the time

required to train on 90% of the 10,868 Malware Clas-
sification Challenge training data records (9782 training
records). The classification times in both tables reflect the
time required to classify the number of records reflected
in the “Classified” column which represent 10% of the
training data for each fold. The 32-bit and 64-bit versions
of Strand required 5.482 and 5.483 total hours, respec-
tively, to classify all of the 10,868 training records during
10-fold cross validation.

Fig. 5 Strand C# code used to process malware .bytes hex data files

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 10 of 12

Fig. 6 Sample of assembly commands in an Asm file pure code segment

The 64-bit model takes up approximately 5 GB in
memory and 436 MB compressed on disk while the
32-bit version takes up approximately 3 GB in mem-
ory and 255 MB compressed on disk. Due to the small
size of the model, multiple copies can be loaded into
memory for multiple worker processes to take advan-
tage of process level parallelism when classifying large
volumes of data. For example, 15 classification work-
ers were used to process the test files provided by
Microsoft.

7.3 Asm file classification results
When using the sequence data created from Asm file
assembly commands and tokens, we were able to increase
accuracy during ten-fold cross-validation while drasti-
cally reducing training and classification times to under
45 and 5 mins respectively per fold. The primary rea-
son for this large gain in performance is a substantial
reduction in input data required for processing when
compared to the bytes file models. For instance, 10,873

test data files generated for Asm sequences requires 720
MB size on disk while the same number of correspond-
ing bytes files required 47.3 GB. Likewise, 10,868 training
files generated for Asm sequences required 773 MB on
disk while the same number of corresponding bytes files
also require 47.3 GB. The 64-bit Asmmodel achieved a log
loss score of 0.062721944 when used to predict the Kaggle
test data.
Table 3 shows ten-fold cross-validation results for mod-

els using Asm sequence data as input. We were able to
achieve a higher average sensitivity of 98.59% across each
of the ten folds when compared to the bytes files. Further-
more, both training and classification times are approxi-
mately eight times faster on all folds. The training times
in Table 3 represent the time required to train on 90% of
the 10,868 Malware Classification Challenge training data
records (9782 training records). The classification times
reflect the time required to classify the number of records
reflected in the “Classified” column which represent 10%
of the training data for each fold.

Table 3 Ten-fold cross-validation results when using Strand with 64-bit hash codes and Asm sequences to predict 10 folds from the
Microsoft malware training data

10-fold cross-validation results ASM 64-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 1071 98.53% 99.17% 0:40:21 0:04:19

2 1087 1071 98.53% 98.98% 0:39:11 0:05:31

3 1087 1073 98.71% 99.17% 0:39:45 0:05:19

4 1087 1061 97.61% 98.61% 0:40:44 0:05:24

5 1087 1072 98.62% 99.17% 0:37:12 0:04:49

6 1087 1074 98.80% 99.26% 0:40:21 0:05:12

7 1087 1076 98.99% 99.35% 0:41:51 0:04:33

8 1087 1076 98.99% 99.26% 0:31:06 0:04:36

9 1086 1071 98.62% 98.89% 0:38:43 0:05:08

10 1086 1070 98.53% 98.89% 0:33:34 0:04:11

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 11 of 12

Table 4 Average collisions per gene sequence word varying
base word size for 32 and 64-bit hash codes

Hash size Sequence Avg. seq. words per hash value

32 bits 31 base word 1 073 741 824

64 bits 31 base word 0.25

32 bits 16 base word 1

64 bits 32 base word 1

Unlike the previous bytes file models, Strand’s high level
of accuracy leaves it unable to make a handful of pre-
dictions in some cases (43 out of 10878) which makes
distinguishing between Precision and Sensitivity relevant.
In the bytes model case, both values are the same for
each fold. While Strand’s average sensitivity was 98.59%
across each of the ten folds, precision is calculated by
excluding the 43 cases where Strand was unable to make
a prediction. Strand’s precision for the Asm model during
ten-fold cross-validation is 99.10% when considering only
the records which Strand is able to predict.

7.4 Ensemble classification results
We tried multiple approaches for creating ensembles
using both the bytes and Asm models from Strand. While
adding together minhash category scores for both models
did produce a very small lift in accuracy during cross-
validation, we were unable to lower the Kaggle log loss
score using this approach.
There were 61 out of 10,877 Kaggle test records for

which the Asm model was unable to make a prediction.
The final bytes model had no such records. We com-
bined predictions from both models by defaulting to the
bytes model prediction only when no Asm file prediction
was available. This approach produced a Kaggle log loss
score of 0.081511944. A similar and possibly more accu-
rate version of this ensemble could be made by generating
a second Asmmodel using a shorter token length of 50 vs.
55 to pick up additional missing predictions. However, we
leave this to future research.
Strand produces minhash collision scores for each

known category within the training data repository.
Results from multiple training models may be utilized
to perform more accurate predictions in some instances.
Since minhash collisions approximate Jaccard similarity,
winning category MCC scores also reflect confidence in
a particular prediction. For example, a 2400 value min-
hash signature with 2400 collisions for a given category
indicates a Jaccard similarity of approximately 1 while
only 15 collisions may indicate a Jaccard similarity of only
0.00625%. In fact, 15 out of the 16 incorrect predictions
for Fold 1 in Table 3 had less than 221 out of 2400minhash
collisions. This represents a Jaccard similarity of approx-
imately 0.092%, while all had less than 517 or 0.095%
Jaccard similarity approximation.

Our best log loss score was achieved by taking the Asm
and bytes ensemble and setting the values for all categories
to 1/M (total number of categories) for predictions with
very low confidence. In this case, the values for each cat-
egory were 1/9 or equal probability when predictions had
less than 15 minhash collisions. Empirical results showed
that 15 was the best threshold out the values 5, 10, 15,
20, and 25. Using this approach changed 23 out of 10,877
predictions to equal probability producing a final log loss
score of 0.047999572.

8 Conclusions
In this paper we have demonstrated how modern gene
sequence classification tools can be applied to large-scale
malware detection. In this first study, we have shown how
the gene sequence classifier Strand can be used to pre-
dict multiple classes of polymorphic malware using data
provided by the Kaggle Microsoft Malware Classification
Challenge (Big 2015).While the approach, using onlymin-
imal adaptation, did not best the accuracy scores achieved
by the highly tailored approach that won the competition,
we did achieve classification accuracy levels exceeding
98%while making predictions over seven times faster than
the training times required by the winning team.
From the success of this demonstration, we conclude

that gene sequence classifiers in general, and Strand in
particular, hold great promise in their application to secu-
rity datasets. In addition to polymorphic malware, we
anticipate that these classifiers can be used anywhere data
sequences are used, such as in network traces of attacks or
the identification of ransomware.

Authors’ contributions
JD implemented the code required for the Strand application and performed
all experiments on the BIG 2015 Polymorphic Malware Dataset. JD wrote the
first draft version of this paper. MH made substantial contributions to the
architecture of strand and the design of experiments carried out within the
paper. MH gave final approval of the version to be published and made many
revisions to the final publications content. TM contributed to the cyber
security component of the paper making major revisions and drafting large
portions of publication sections related to cyber security. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Darwin Deason Institute for Cyber Security, Southern Methodist University,
Dallas, TX, USA. 2Department of Engineering Management, Information, and
Systems, Southern Methodist University, Dallas, TX, USA. 3Tandy School of
Computer Science, The University of Tulsa, Tulsa, OK, USA.

Received: 6 October 2016 Accepted: 12 January 2017

References
1. F Cohen, Computer viruses. Comput. Secur. 6(1), 22–35 (1987).

doi:10.1016/0167-4048(87)90122-2
2. NPP Mavrommatis, MARF Monrose, in USENIX Security Symposium. All your

iframes point to us (USENIX Association, Berkeley, 2008), pp. 1–16
3. McAfee: For Consumers (2014). https://www.mcafee.com/consumer/en-

us/store/m0/index.html. Accessed 06 Jan 2016

http://dx.doi.org/10.1016/0167-4048(87)90122-2
https://www.mcafee.com/consumer/en-us/store/m0/index.html
https://www.mcafee.com/consumer/en-us/store/m0/index.html

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 12 of 12

4. Norton Norton Anti (2014). http://us.norton.com. Accessed 06 Jan 2016
5. M Christodorescu, S Jha, S Seshia, D Song, RE Bryant, et al, in Security and

Privacy, 2005 IEEE SymposiumOn. Semantics-aware malware detection
(IEEE, Los Alamitos, 2005), pp. 32–46

6. P Ször, P Ferrie, in Virus Bulletin Conference. Hunting for metamorphic,
(2001)

7. JM Drew, Mass Compromise of IIS Shared Web Hosting for Blackhat SEO:
A Case Study (2014). http://blog.jakemdrew.com/2015/03/10/mass-
compromise-of-iis-shared-web-hosting-for-blackhat-seo-a-case-study/.
Accessed 06 Jan 2016

8. Wikipedia: Agobot (2014). https://en.wikipedia.org/wiki/Agobot.
Accessed 06 Jan 2016

9. M Bailey, J Oberheide, J Andersen, ZM Mao, F Jahanian, J Nazario, in
Recent Advances in Intrusion Detection. Automated classification and
analysis of internet malware (Springer, Heidelberg, 2007), pp. 178–197

10. V Total, File Statistics During Last 7 Days. https://www.virustotal.com/en/
statistics/. Accessed 15 Jan 2015

11. SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman, Basic local alignment
search tool. J. Mol. Biol. 215(3), 403–410 (1990)

12. WJ Kent, Blat-the blast-like alignment tool. Genome Res. 12(4), 656–664
(2002)

13. Q Wang, GM Garrity, JM Tiedje, JR Cole, Naive bayesian classifier for rapid
assignment of RNA sequences into the new bacterial taxonomy. Appl.
Environ. Microbiol. 73(16), 5261–5267 (2007)

14. RC Edgar, Search and clustering orders of magnitude faster than blast.
Bioinformatics. 26(19), 2460–2461 (2010)

15. J Drew, M Hahsler, in Proceedings of the 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics. Strand: fast
sequence comparison using mapreduce and locality sensitive hashing
(ACM, New York, 2014), pp. 506–513

16. DE Wood, SL Salzberg, Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15(3), 46 (2014)

17. R Ounit, S Wanamaker, TJ Close, S Lonardi, Clark: fast and accurate
classification of metagenomic and genomic sequences using
discriminative k-mers. BMC Genomics. 16(1), 236 (2015)

18. E Peterson, D Curtis, A Phillips, J Teuton, C Oehmen, in Intelligence and
Security Informatics (ISI), 2013 IEEE International Conference On. A
generalized bio-inspired method for discovering sequence-based
signatures, (2013), pp. 330–332. doi:10.1109/ISI.2013.6578853

19. Kaggle: Microsoft Malware Classification Challenge (BIG 2015) (2015).
https://www.kaggle.com/c/malware-classification. Accessed 04 Nov 2015

20. J Drew, M Hahsler, T Moore, in International Workshop on Bio-inspired
Security, Trust, Assurance and Resilience (BioSTAR 2016). Polymorphic
malware detection using sequence classification methods (IEEE, Los
Alamitos, 2016)

21. S Vinga, J Almeida, Alignment-free sequence comparison—review.
Bioinformatics. 19(4), 513–523 (2003)

22. CE Shannon, A mathematical theory of communication. ACM SIGMOBILE
Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

23. A Gionis, P Indyk, R Motwani, et al, in VLDB. Similarity search in high
dimensions via hashing, vol. 99, (1999), pp. 518–529

24. hadooptutorial.info: Combiner in MapReduce (2014). http://
hadooptutorial.info/combiner-in-mapreduce/. Accessed 02 Apr 2015

25. J Dean, S Ghemawat, Mapreduce: simplified data processing on large
clusters. Commun. ACM. 51(1), 107–113 (2008)

26. S Ioffe, in DataMining (ICDM), 2010 IEEE 10th International Conference On.
Improved consistent sampling, weighted minhash and l1 sketching (IEEE,
Los Alamitos, 2010), pp. 246–255

27. A Rajaraman, JD Ullman,Mining of Massive Datasets. (Cambridge
University Press, Cambridge, 2012)

28. J Leskovec, A Rajaraman, JD Ullman,Mining of Massive Datasets.
(Cambridge University Press, Cambridge, 2014)

29. Wikipedia: Simple Matching Coefficient. https://en.wikipedia.org/wiki/
Simple_matching_coefficient. Accessed 14 Aug 2015

30. Kaggle: Evaluation (2016). https://www.kaggle.com/c/malware-
classification/details/evaluation Accessed 14 Jan 2016

31. Kaggle: Microsoft Malware Winners’ Interview: 1st place, “NO to
overfitting” (2015). http://blog.kaggle.com/2015/05/26/microsoft-
malware-winners-interview-1st-place-no-to-overfitting Accessed: 02
Nov 2015

32. L Wang, Microsoft Malware Classification Challenge (BIG 2015) First Place
Team: Say No To Overfitting (2015). https://github.com/xiaozhouwang/
kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
Accessed: 02 Nov 2015

33. G Marcais, C Kingsford, A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 27(6), 764–770 (2011).
doi:10.1093/bioinformatics/btr011. http://bioinformatics.oxfordjournals.
org/content/27/6/764.full.pdf+html

34. F Cloutier, x86 Instruction Set Reference. http://www.felixcloutier.com/
x86/. Accessed 18 Jul 2015

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://us.norton.com
http://blog.jakemdrew.com/2015/03/10/mass-compromise-of-iis-shared-web-ho sting-for-blackhat-seo-a-case-study/
http://blog.jakemdrew.com/2015/03/10/mass-compromise-of-iis-shared-web-ho sting-for-blackhat-seo-a-case-study/
https://en.wikipedia.org/wiki/Agobot
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
http://dx.doi.org/10.1109/ISI.2013.6578853
https://www.kaggle.com/c/malware-classification
http://hadooptutorial.info/combiner-in-mapreduce/
http://hadooptutorial.info/combiner-in-mapreduce/
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://www.kaggle.com/c/malware-classification/details/evaluation
https://www.kaggle.com/c/malware-classification/details/evaluation
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st -place-no-to-overfitting
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st -place-no-to-overfitting
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Sayn otooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Sayn otooverfitting.pdf
http://dx.doi.org/10.1093/bioinformatics/btr011
http://bioinformatics.oxfordjournals.org/content/27/6/764.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/27/6/764.full.pdf+html
http://www.felixcloutier.com/x86/
http://www.felixcloutier.com/x86/

	Abstract
	Keywords

	Introduction
	Background
	Strand
	Traditional MapReduce vs. map reduction aggregation
	Minhashing during map reduction aggregation

	Classification function processing
	Applying strand to Malware classification
	The training and classification input data
	Challenge evaluation, competitors, and results

	Applying strand to Microsoft Malware classification challenge
	Developing binary file features for strand
	Developing Asm file features for strand

	Malware classification results using strand
	Influence of hash code size and pruning on classification accuracy
	Binary file classification results
	Asm file classification results
	Ensemble classification results

	Conclusions
	Authors' contributions
	Competing interests
	Author details
	References

