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Abstract

Cyber security attacks are becoming ever more frequent and sophisticated. Enterprises often deploy several security
protection mechanisms, such as anti-virus software, intrusion detection/prevention systems, and firewalls, to protect
their critical assets against emerging threats. Unfortunately, these protection systems are typically ‘noisy’, e.g., regularly
generating thousands of alerts every day. Plagued by false positives and irrelevant events, it is often neither practical
nor cost-effective to analyze and respond to every single alert. The main challenges faced by enterprises are to extract
important information from the plethora of alerts and to infer potential risks to their critical assets. A better
understanding of risks will facilitate effective resource allocation and prioritization of further investigation. In this
paper, we present MUSE, a system that analyzes a large number of alerts and derives risk scores by correlating diverse
entities in an enterprise network. Instead of considering a risk as an isolated and static property pertaining only to
individual users or devices, MUSE exploits a novelmutual reinforcement principle and models the dynamics of risk
based on the interdependent relationship among multiple entities. We apply MUSE on real-world network traces and
alerts from a large enterprise network consisting of more than 10,000 nodes and 100,000 edges. To scale up to such
large graphical models, we formulate the algorithm using a distributed memory abstraction model that allows
efficient in-memory parallel computations on large clusters. We implement MUSE on Apache Spark and demonstrate
its efficacy in risk assessment and flexibility in incorporating a wide variety of datasets.
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Introduction
Mitigating and defending against ever more frequent
and sophisticated cyber attacks are often top priori-
ties for enterprises. To this end, a plethora of detec-
tion and prevention solutions have been developed and
deployed, including anti-virus software, intrusion detec-
tion/prevention systems (IDS/IPS), blacklists, firewalls,
and so on. With these state-of-the-art technologies cap-
turing various types of security threats, one would expect
that they are very effective in detecting and prevent-
ing attacks. In reality, however, the effectiveness of
these systems often fall short. The increasingly diver-
sified types of cyber attacks, coupled with increasing
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collection of applications, hardware configurations, and
network equipments, have made the enterprise environ-
ment extremely ‘noisy’. For example, IDS/IPS systems
regularly generate over 10,000 alerts every day. Majority
of them turn out to be false positives. Even true alerts are
often triggered by low level of threats such as brute-force
password guessing and SQL injection attempts. Although
the suspicious nature of these events warrants the reports
by IPS/IDS systems, their excessive amount often only
made the situation even more noisy.
Digging into the haystack of alerts to find clues to actual

threats is a daunting task that is very expensive, if not
impossible, through manual inspection. As a result, most
enterprises practically only have resources to investigate
a very small fraction of alerts raised by IPS/IDS systems.
Vast majority of others are stored in a database merely
for forensic purposes and inspected only after signifi-
cant incidents have been discovered or critical assets have
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already been severely damaged, e.g., security breaches
and data leakage. However, even those small fraction of
true positive alerts (e.g., device compromise, virus infec-
tion on a user’s computer) are often too voluminous to
become security analysts’ top priority. In addition, these
alerts are often considered as low level of threats and
pose far less risks to the enterprises comparing with more
severe attacks, such as server compromise or sensitive
data leakage. Evidently, a more effective solution is to bet-
ter understand and rank potential risks associated with
these alerts so that analysts can effectively prioritize and
allocate resources for alert investigation.
In a typical enterprise environment, as shown in

Figure 1, there are different sets of entities: servers,
devices, users, credentials, and (high-value) assets (e.g.,
databases, business processes). The connections between
these entities represent their intuitive relationships; for
example, a user may own multiple devices, a device
may connect to different types of servers and inter-
nal databases, a device may be associated with mul-
tiple user accounts with different credentials, etc. We
note that the reputation of these entities provide valu-
able indicators into their corresponding risks and are
important factors to rank various security incidents
associated with these entities e.g., IPS/IDS alerts and
behavior anomalies. More importantly, an entity’s rep-
utation and the risk it may produce are not restricted
to each individual entity. In fact, multiple entities are
often tied together in a mutually reinforcing relationship
with their reputation closely interdependent with each
other.
In this work, we develop MUSE (Mutually-reinforced

Unsupervised Scoring for Enterprise risk), a risk analysis
framework that analyzes a large amount of security alerts

Figure 1 Entities in a typical enterprise network.

and computes the reputation of diverse entities based on
various domain knowledge and interactions among these
entities. Specifically, MUSE models the interactions with
composite, multi-level bipartite graphs where each pair
of entity types (e.g., a user and a device) constitute one
bipartite graph. MUSE then applies an iterative prop-
agation algorithm on the graphic model to exploit the
mutual reinforcement relationship between the connected
entities and derive their reputation and risk score simul-
taneously. Finally, with the refined risk scores, MUSE is
able to provide useful information such as ranking of low-
reputation entities and potential risks to critical assets,
allowing security analysts to make an informed decision
as to how resources can be prioritized for further inves-
tigation. MUSE will also provide greater visibility into
the set of alerts that are responsible for an entity’s low
reputation, offering insights into the root cause of cyber
attacks.
Themain contributions of this work include: 1) amutual

reinforcement framework to analyze the reputation and
the risk of diverse entities in an enterprise network, 2) a
scalable propagation algorithm to exploit the networking
structures and identify potential risky entities that may
be overlooked by a discrete risk score, 3) a highly flexi-
ble system that can incorporate data sources in multiple
domains, 4) implementation of MUSE that takes advan-
tage of recent advances in distributed in-memory cluster
computing framework and scales to very large graphic
models, and 5) evaluations with real network traces from
a large enterprise to verify the efficiency and efficacy of
MUSE.

Risk and reputation in amulti-entity environment
In the following sections, we will present the design and
the architecture of MUSE. We will first formulate the
problem of risk and reputation assessment in enterprise
network and then discuss specific domain knowledge and
intuition that are crucial for solving the problem.

Problem formulation
In a typical enterprise environment, there are multiple
sets of connected entities. Specifically, we consider five
distinct types of entities as depicted in Figure 1: users
, devices , credentials , high value assets , and

external servers . These entities are often related in a
pairwise many-to-many fashion. For example, a device
can access multiple external servers. A user may own
several devices e.g., laptops and workstations, while one
device (e.g., server clusters) can be used by multiple users.
We model the interconnection between entities as a

composite bipartite graph G = (V ,E), schematically
shown in Figure 2. In G, vertices V = {U ,D, C,A,S}
represent various entities. Edges E = {MDS ,MDU ,
MDA,MUC ,MDC} of bipartite graphs represent their
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Figure 2 Network of interactions amongmultiple entities.

relationships, where MDS is the |D|-by-|S| matrix
containing all the pairwise edges, i.e., MDS(i, j) > 0 if
there is an edge between device di and external server sj.
The value of MDS(i, j) denotes the edge weight derived
from the characteristics of the relationship, such as the
number of connections, the number of bytes transmit-
ted, duration, and so on. Similarly, MDS , MDU , MDA,
MUC , and MDC are the matrices of the pairwise edges
representing the association of their respective entities.
Next, we define the risk and the reputation of different

entities more precisely. We treat each entity as a ran-
dom variable X with a binary class label X = {xR, xNR}
assigned to it. Here, xR is a risky (or bad) label, and xNR is
a non-risky (or good) label. A probability distribution P is
defined over this binary class, where P(xR) is the proba-
bility of being risky and P(xNR) is the probability of being
non-risky. By definition, the sum of P(xR) and P(xNR) is
1. We use this probabilistic definition because it encom-
passes a natural mapping between P(xNR) and the general
concept of reputation, i.e., an entity with a high proba-
bility of being good (or non-risky) is expected to have
high reputation. In addition, it accepts different types of
entities to incorporate specific domain knowledge into
the reputation computation considering their respective
characteristics, e.g.,

• External server reputation ps = Ps(xNR) indicates
the server’s probability of being malicious and
infecting the clients connecting to it. Notice that a
low reputation ps means high probability of being
malicious.

• Device reputation pd = Pd(xNR) represents the
probability that a device may have been infected or
compromised and thus under control of adversaries.

• User reputation pu = Pu(xNR) indicates how
suspiciously a user behaves, e.g., an unauthorized
access to sensitive data.

• Credential reputation pc = Pc(xNR) denotes the
probability that a credential may have been leaked to
the adversaries and thus making any servers
associated with the credential vulnerable.

• High-value asset reputation pa = Pa(xNR) denotes
the asset’s probability of being risky; for instance, a
confidential database being accessed by unauthorized
users, exfiltration of sensitive data, etc.

As there is a natural correlation between reputation and
risk (e.g., less reputable entities generally pose high risks),
we define an entity’s risk as P(xR) = (1−P(xNR))weighted
by the importance of the entity, such that a high-value
asset will experience a large increase in its risk score even
with a small decline in its reputation. With these defi-
nitions, the goal of MUSE is to aggregate large amounts
of security alerts, determine the reputation of each entity
by exploiting their structural relationships in the con-
nectivity graph, and finally output a ranked list of risky
entities for further investigation. In the next section, we
will describe the mutual reinforcement principle [1] that
underlies MUSE.

Mutual reinforcement principle
The key observation of MUSE is that entities’ reputation
and risk are not separated; instead, they are closely corre-
lated and interdependent. Through interacting with each
other, an entity’s reputation can impact on the risk associ-
ated with its neighbors, and at the same time, the entity’s
risk can be influenced by the reputation of its neighbors.
For example, a device is likely to be of low reputation 1)
if the server it frequently visits are suspicious or mali-
cious e.g. Botnet C&C, Phishing, or malware sites, 2) if the
users using the device have bad reputation, and 3) if the
credentials used to log into the device have high risks of
being compromised, leaked, or even used by an unautho-
rized user. Similarly, a credential’s risk of being exposed
will increase if it has been used by a less reputable user
and/or on a device that exhibits suspicious behavior pat-
terns. Along the same line, a user will have low reputation
if she owns several low-reputation devices and credentials.
Last but not least, a high-value asset or the sensitive data
stored in internal databases are likely to be under a signif-
icant risk e.g., data exfiltration if they have been accessed
by multiple low-reputation devices that also connect to
external malicious servers. We describe these mutually
dependent relationships more formally in our multi-layer
mutual reinforcement framework, using the following set
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of equations governing the server reputation ps, device
reputation pd, user reputation pu, credential reputation pc,
and high-value asset reputation pa.

pd ∝ ωds
∑

d∼s
mdsps + ωdu

∑

d∼u
mdupu + ωdc

∑

d∼c
mdcpc

pu ∝ ωdu
∑

d∼u
mdupd + ωuc

∑

u∼c
mucpc

pc ∝ ωuc
∑

u∼c
mucpu + ωdc

∑

d∼c
mdcpd

pa ∝ ωda
∑

d∼a
mdapd + ωua

∑

u∼a
muapu + ωca

∑

c∼a
mcapc,

where d ∼ s, d ∼ u, etc. represent edges connecting
device d with server s and user u, etc., ∝ means ‘propor-
tional to’, ωij indicates the weights associated with edges
and reputation types, andmij is the value in the connectiv-
ity matrices. Next, we exploit this mutual reinforcement
principle in the bipartite graph network to simultaneously
estimate the reputation and the risk using the propagation
algorithm described in the next section.

Reputation propagation algorithm
Specifically, we employ the principle of belief propaga-
tion (BP) [2] on the large composite bipartite graph G
to exploit the link structure and efficiently compute the
reputations for all entities. Belief propagation is an iter-
ative message passing algorithm on general graphs and
has been widely used to solve many graph inference prob-
lem [3], such as social network analysis [1], fraud detection
[4], and computer vision [5].
BP is typically used for computing the marginal distri-

bution (or so-called ‘hidden’ distribution) for the nodes
in the graph, based on the prior knowledge (or ‘observed’
distribution) about the nodes and from its neighbors. In
our case, the algorithm infers the probabilistic distribu-
tion of an entity’s reputation in the graph based on two
sources of information: 1) the prior knowledge about the
entity itself and 2) information about the neighbor entities
and relationship between them. The inference is accom-
plished by iteratively passingmessages between all pairs of
entities ni and nj. Let mi,j denote the ‘message’ sent from
i to j. The message represents i’s influence on j’s reputa-
tion. One could view it as if i, with a certain probability of
being risky, passes some ‘risk’ to j. Additionally, the prior
knowledge about i (e.g., importance of the assets and a
user’s anomalous behavior) is expressed by node potential
function φ(i) which plays a role in determining the mag-
nitude of the influence passed from i to j. In details, edge
ei,j is associated with message mi,j (and mj,i if the mes-
sage passing is bi-directional). The outgoingmessage from
i to neighbor j is updated at each iteration based on the

incoming messages from i’s other neighbors and node
potential function φ(i) as follows.

mi,j(xj) ←
∑

xi∈{xR,xNR}
φi(xi)ψij(xi, xj)

∏

k∈N(i)\j
mk,i(xi)

(1)

where N(i) is the set of i’s neighbors, and ψi,j is the edge
potential which is a transformation function defined on
the edge between i and j to convert a node’s incoming
messages into its outgoing messages. Edge potential also
controls how much influence can be passed to the receiv-
ing nodes, depending on the properties of the connections
between i and j (e.g., the number of connections and vol-
ume of traffic). ψ(xi, xj) is typically set according to the
transition matrix shown in Table 1, which indicates that
a low-reputation entity (e.g. a less reputable user) is more
likely to be associated with low-reputation neighbors (e.g.
compromised devices). The algorithm runs iteratively and
stops when the entire network is converged with some
thresholdT, i.e., the change of anymi,j is smaller thanT, or
amaximumnumber of iterations are done. Convergence is
not theoretically guaranteed for general graphs; however,
the algorithm often does converge for real-world graphs
in practice. At the end of the propagation procedure, each
entity’s reputation (i.e. marginal probability distribution)
is determined by the converged messages mi,j and the
node potential function (i.e. prior distribution).

p(xi) = kφi(xi)
∏

j∈N(i)
mj,i(xi); xi ∈ {xR, xNR} (2)

where k is the normalization constant.

Incorporating domain knowledge
One of the major challenges in adopting a BP algorithm
is to properly determine its parameters, particularly, the
node potential and the edge potential function. In this
section, we briefly discuss how we leverage the available
data sources in a typical enterprise network and incor-
porate specific domain knowledge (unique to each entity
type) to infer the parameters.

Characteristics of external servers
We develop an intrusion detection system that leverages
several external blacklists to inspect all the HTTP traffic.
It flags different types of suspicious web servers to which
internal devices try to connect; this which allows us to

Table 1 Edge potential function

ψ(xi , xj) xi = xNR xi = xR

xj = xNR 0.5 + ε 0.5 − ε

xj = xR 0.5 − ε 0.5 + ε



Hu et al. EURASIP Journal on Information Security 2014, 2014:17 Page 5 of 9
http://jis.eurasipjournals.com/content/2014/1/17

assign the node potential function according to the mali-
ciousness of the external servers. Specifically, we classify
suspicious servers into the following five types:

• Spam websites: servers that are flagged by external
spam blacklists like Spamhaus, SpamCop, etc.

• Malware websites: servers that host malicious
software including virus, spyware, ransomware, and
other unwanted programs that may infect the client
machine.

• Phishing websites: servers that try to purport to be
popular sites such as bank sites, social networks,
online payment, or IT administration sites in order to
lure unsuspecting users to disclose their sensitive
information e.g., user names, passwords, and credit
card details. Recently, attackers started to employ
more targeted spear phishing attacks which use
specific information about the target to increase the
probability of success. Because of its potential to
cause severe damage, we assign a high risky value to
its node potential.

• Exploit websites: servers that host exploit toolkits,
such as Blackhole and Flashpack, which are designed
to exploit vulnerabilities of the victims’ web browsers
and install malware on victims’ machines.

• Botnet C&C servers: are connected with bot
programs to command instructions, update bot
programs, or to extrude confidential information. If
an internal device makes an attempt to connect to
any known botnet C&C servers, the device is likely to
be compromised. In addition to blacklists (e.g., Zeus
Tracker), we also design models to detect fast fluxing
and domain name generation botnets based on their
distinct DNS request patterns.

Using the categorization of suspicious servers, we
determine initial node potential values according to the
severity of their categories. We assign (φ(xR),φ(xNR)) =
(0.95, 0.05) for the high-risk types, such as botnets and
exploit servers. For the medium-risk (Phishing and mal-
ware) and low-risk (Spam) types, we assign (0.75, 0.25)
and (0.6, 0.4), respectively.

Characteristics of internal entitiesD,U ,C,A
For internal entities, e.g., devices, users, credentials, and
assets, rich information can be obtained from the internal
asset management systems and IPS/IDS systems. Avail-
able information include device’s status (e.g., OS version,
patch level), device behavior anomalies (e.g., scanning),
suspicious user activities (e.g., illegal accesses to sensi-
tive data, multiple failed login attempts), and creden-
tial anomalies (e.g., unauthorized accesses). For instance,
from the IPS system deployed in our enterprise network,
we are able collect over 500 different alert types, most of

which are various attack vectors such as SYN port scan,
remote memory corruption attempts, bruteforce logon,
XSS, SQL injection, etc. Based on these information, we
adjust node potential for the internal entities by assign-
ing a severity score (1 to 3 for low, medium, and high-risk
alerts)to each type of suspicious activities exemplified
above and summing up the severities of all suspicious
activities associated with an entity i to get total severity
Si. Since an entity i may be flagged multiple times for the
same or different types of suspicious behaviors, to avoid
being overshadowed by a few outliers, we transform the
aggregated severity score using the sigmoid function

Pi = 1
1 + exp(−Si)

The node potential for i is then calculated as
(φ(xR),φ(xNR)) = (Pi, 1 − Pi). The key benefit of using a
sigmoid function is that if no alerts have been reported for
an entity (e.g. Si = 0), its initial node potential will auto-
matically be set to (0.5, 0.5) i.e. equal probability of being
risky and non-risky, implying that no prior information
exist for the particular entity.
Although the parameters inMUSE require some level of

manual tuning by domain experts, it is valuable to secu-
rity analysts in several aspects. First, the output of MUSE
is the ranking of high-risk entities whose absolute risk
values are less important. As long as the parameters are
assigned based on reasonable estimation of the severi-
ties of different types of alerts, MUSE will able to derive
a ranking of entities based on their potential risks, thus
providing useful information to help analysts prioritize
their investigation. Second, MUSE offers the flexibility to
incorporate diverse types of entities and thus can be eas-
ily adapted in a wide variety of other domains. Finally, it
is possible to automatically learn the appropriate parame-
ter values through machine learning techniques, provided
that proper labeled training sets are available. We leave
this as our plan for future exploration.

Scale up propagation algorithm to big data
Another major challenge of applying BP algorithm in a
large enterprise network is the scalability. Even though
BP itself is a computationally efficient algorithm: the run-
ning time scales quadratically with the number of edges
in the graph, for large enterprises with hundred of thou-
sands nodes and edges, the computation cost can become
significant. To make the MUSE practical for large-scale
graphic models, we observe that the main computation
in belief propagation is localized, i.e. message passing is
performed between only a specific node and its neigh-
bors. This means that the computation can be efficiently
parallelized and distributed to a cluster of machines.
One of the most prominent parallel programming

paradigms is MapReduce, popularized by its open-source
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implementation of Apache Hadoop [6]. MapReduce
framework consists of the map and the reduce stage that
are chained together to perform complex operations in a
distributed and fault-tolerant fashion. However, MapRe-
duce is notoriously inefficient for iterative algorithms
where the intermediate results are reused across multiple
rounds of computations. Due to the lack of abstraction
for leveraging distributed memory, the only way to reuse
data across two MapReduce jobs is to persist them to an
external storage system e.g. HDFS and load them back via
another Map job. This incurs substantial overheads due
to disk I/O and data synchronization which can domi-
nate the execution times. Unfortunately, the BP algorithm
underlying MUSE is a typical example of iterative com-
putation where the same set of operations i.e. message
update in Equation 1 are repeatedly applied to multiple
data items. As a result, instead of MapReduce, we leverage
a new cluster computing abstraction called Resilient Dis-
tributed Datasets (RDDs) [7] that achieves orders of mag-
nitude performance improvement for iterative algorithms
over existing parallel computing frameworksa.
RDDs are parallel data structures that are created

through deterministic operations on data in stable stor-
age or through transformations from other RDDs. Typical
transformations include map, filter, join, reduce, etc. The
major benefit of RDDs is that it allows users to explicitly
specify which intermediate results (in the form of RDDs)
they want to reuse in the future operations. Keeping those
persistent RDDs in memory eliminates unnecessary and
expensive disk I/O or data replication across iterations,
thus making it ideal for iterative algorithms. To abstract
BP algorithm into RDDs, our key observation is that the
message update process Equation 1 can bemore efficiently
represented by RDDs on an induced line graph from the
original graph which represents the adjacencies between
edges of original graph. Formally, given a directed graph
G = (V ,E), a directed line graph or derived graph L(G) is
a graph such that:

• each vertex of L(G) represents an edge of G. We use
following notations to denote vertices and edges in G
and L(G): let i, j ∈ V denote two vertices in the
original graph G, we use (i, j) to represent the edge in
G and the corresponding vertex in L(G)

• two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint (‘are
incident’) in G and they form a length two directed
path. In other words, for two vertices (i, j) and (m, n)

in L(G), there is an edge from (i, j) to (m, n) if and
only if j = m in the original G.

Figure 3 shows the conversion of original graph G to its
directed line graph. Since an edge (i, j) ∈ E in the origi-
nal graph G corresponds to a node in L(G), the message

passing process in Equation 1 is essentially an iterative
updating process of a node in L(G) based on all of this
node’s adjacent nodes. On each iteration, each node in
L(G) sends a message (or influence)mi,j to all of its neigh-
bors and at the same time, it updates its own message
based on the message it received from the neighbors. This
can be easily described in RDDs as follows:

Algorithm 1Message passing algorithm using RDDs
1: // Load line graph L(G) as an RDD of (srcNode,

dstNode) pair
2: links = RDD.textFile(graphFile).map(split).persist()
3:
4: // load initial node potential function in original graph

G as (node, φi) pairs
5: potentials = RDD.textFile(potentialFile).map(split)

.persist()
6:
7: messages = // initialize RDD of messages as (Node,

mi,j) pairs
8:
9: for iteration in xrange(ITERATIONS):

10: // Build an RDD of (dstNode, msrc) pairs with
messages sent by all node to dstNode

11: MsgContrib = links.join(messages).map(
12: lambda(srcNode, (dstNode, msrc):

(dstNode,msrc))
13:
14: // Multiplication of all incoming messages by

dstNode
15: AggContrib = MsgContrib.reduceByKey(labmda

(m1,m2):m1 ∗ m2)
16:
17: // Get New updatedMessages for the next iteration

18: messages = potentials.join(AggContrib).map(
19: labmda(dstNode, (φi, magg )):

φi ∗ ψi,j ∗ magg)
20:
21: //After iterations, compute final belief according to

Eq. 2
22: belief = potentials.join(messages).mapValues(lambda

(φi,magg): k ∗ φi ∗ magg)
23:
24: // and save to external storage
25: belief.saveAsTextFile(“Beliefs.txt”)

The above algorithm leads to the RDD lineage graph in
Figure 4. On each iteration, the algorithm create a new
messages dataset based on the aggregated contributions
AggContrib and messages from previous iteration as well
as the static links and potential datasets that are persisted
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Figure 3 Converting a directed graph G to a directed line graph.

in memory. Keeping these static datasets and intermedi-
ate messages in memory and making them readily avail-
able in the subsequent iterations avoids unnecessary I/O
overhead and thus significantly speed up the computation.

Evaluation
Datasets
We evaluated MUSE with datasets collected from mul-
tiple data sources in the entire USNorth IBM network.
The data sources included DNS messages from local DNS
servers, network flows from edge routers, proxy logs, IPS
alerts, and HTTP session headers (for categorization of
websites). The size of the raw data per day was about 200
GB and the average data event rates are summarized in
Table 2.

Experiment results
We first evaluate MUSE using data collected over 1 week
period of time. The resulting graph consists of 11,790
nodes and 44,624 edges. The number of different entity
typesb are shown in Table 3.

Figure 4 Linage graph for BP algorithms.

We applied MUSE to the graph, and our algorithm con-
verged at the 5th iteration. We manually inspected top
ranked entities (i.e., with higher P(xR)) in each entity type
and were able to confirm that they were all suspicious or
malicious entities including infected devices, suspicious
users, etc. Here, we show one example of user reputa-
tion among our findings. We selected five top risky users
based on the output of MUSE. Figure 5 shows their risk
values at each iteration. Note that all the users started
with neutral score (0.5, 0.5), meaning that these users had
not been flagged by anomalous behaviors. However, due
to their interaction with low-reputation neighbors, their
associated risks increased. Further investigation showed
that user332755 owned five devices which made 56 times
of connections to spam websites, four times of connec-
tions to malware websites, and two times of connec-
tions to exploit websites during our monitoring period.
user332755 inherited low reputation from his neighbors
including the user’s devices, causing his risk to quickly rise
to the top.
We also measured the running time of MUSE at each

iteration against different size of the graph in terms of the
number of edges. Experiments are performed in a server
blade with 2.00 GHz Intel(R) Xeon(R) CPU and 500 G
memory (the memory usage of MUSE is less than 1 G).
The experiment results are shown in Figure 6. From the
figure, one can see that BP is efficient in handling small-
to-medium-sized graphic models. Even for 1 week worth
of traffic data, MUSE is able to finish each iteration in
less than 1 min. However, we also notice that the running

Table 2 Average traffic rate for IBM US North network

Data type Data rate

Firewall logs 950 M/day

DNS messages 1,350 M/day

Proxy logs 490 M/day

IPS/IDS events 4 M/day

Overall: 2.5 billion events/day
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Table 3 Number of different entities for one week data

Server
Device User Assets

Spam Malware Phishing Exploit Botnet

5,500 124 10 26 16 3,823 2,191 100

time quadratically increases with the number of edges,
which can be a bottleneck to handle large graphs as we will
demonstrate in the next section.

Scalability of MUSE using RDDs
To compare the scalability of non-parallelized BP algo-
rithm with that of the distributed version using RDDs
abstraction, we collected half month worth of network
traffic to stress test MUSE. The resulting graph consists of
24,706 nodes and 123,380 edges. The number of different
entities are listed in Table 4. As a baseline benchmark, we
ran the non-distributed version ofMUSE against this large
dataset for five iterations on the same server blade. The
overall experiment took 1,641 s to finish and each iteration
on average required 328 s.
We implement a distributed version of MUSE on

Apache Spark [8] which is the open source implemen-
tation of RDDs. We deploy Spark on our blade center
with three blade servers. We vary the number of CPU
cores available for the Spark framework from 10 to 30 and
submit the same workload to it. Figure 7 illustrates the
comparison results. From the figure, we can notice that
MUSE is able to leverage RDDs’ in-memory cluster com-
puting framework to achieve 10× to 15× speed up. For
instance, with 30 CPU cores, MUSE is able to complete
five iterations in 104 s with each iteration requiring less
than 20 s. Although the algorithm does not scale linearly
with the number of cores due to fixed I/O and com-
munication overhead, the results demonstrate that with

Figure 5 Risk scores of top five risky users at the end of each
iteration.

Figure 6 Running time for each iteration with varying sizes of
graphs.

moderate hardware configuration, MUSE is scalable and
practical for large enterprise networks.

Related work
With the cyber threats rapidly evolving towards large-
scale and multi-channel attacks, security becomes crucial
for organizations of varying types and sizes. Many tradi-
tional intrusion detection and anomaly detectionmethods
are focused on a single entity and applied rule-based
approaches [9]. They were often too noisy to be useful
in practice [10]. Our work is inspired by the prominent
research in the social network area that used a link struc-
ture to infer knowledge about the network properties.
Previous work demonstrated that social structure was
valuable to find authoritative nodes [11], to infer indi-
vidual identities [12], to combat web spam [13], and to
detect security fraud [14]. Among various graph min-
ing algorithms, the belief propagation algorithm [2] has
been successfully applied in many domains, e.g., detect-
ing fraud [4], accounting irregularities [15], and malicious
software [3]. For example, NetProbe [4] applied a BP algo-
rithm to the eBay user graph to identify subgraphs of
fraudsters and accomplices.

Conclusion
In this paper, we proposedMUSE, a framework to system-
atically quantify and rank risks in an enterprise network.
MUSE aggregated alerts generated by traditional IPS/IDS
on multiple data sources, and leveraged the link structure

Table 4 Number of different entities for half a month data

Server
Device User Assets

Spam Malware Phishing Exploit Botnet

8,924 171 103 33 22 10,809 4,527 116
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Figure 7 Comparison of running time between non-distributed
MUSE and distributed version implemented using RDDs.

among entities to infer their reputation. The key advan-
tage of MUSE was that it derived the risk of each entity
not only by considering its own characteristics but also
by incorporating the influence from its neighbors. This
allowed MUSE to pinpoint a high-risk entity based on
its interaction with low-reputation neighbors, even if the
entity itself was benign. By providing risk rankings, MUSE
helps security analysts to make an informed decision on
allocation of resources and prioritization of further inves-
tigation to develop proper defense mechanisms at an
early stage. We have implemented and tested MUSE on
real world traces collected from large enterprise network,
demonstrating that the efficacy and scalability of MUSE.

Endnotes
a10x-100x speedup as compared to Hadoop [8].
bDue to the privacy issues, we were not able to include

authentication logs to incorporate user credentials in our
experiments.
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