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Abstract

Many papers have already provided models to formally specify security policies. In this paper, security policies are
modeled using deontic concepts of permission and obligation. Permission rules are used to specify access control
policies, while obligation rules are useful to specify other security requirements corresponding to usage control
policies as the availability of information in its allotted time. However, when both permission and obligation concepts
are used to express security policies, several different types of conflict can be raised and should be detected and
managed. We are interested in this work in managing conflicts between obligations with deadlines and permissions.
Thus, we first begin by formally defining the conflicting situations using the situation calculus. Afterwards, we provide
an algorithm for searching a plan of actions, when it exists, which fulfills all the active obligations in a given situation in
their deadlines with respect to the permission rules. The length of the plan is set in advance and can be calculated in
the case where the sets of actions and fluents are finite to ensure the decidability of the solution search. Furthermore,
in the plan search, the choice of the execution time of the elected actions obeys to equations and inequalities which
need to be solved. For this purpose, we need a component allowing these equations and inequalities resolution. To
illustrate our approach, we take an example inspired from existing laws in hospitals regulating deadlines for
completion of patient medical records. The example is formally specified in our language and implemented in ECRC

Common Logic Programming System ECLIPSE 3.5.2, which is equipped with Simplex algorithm for solving linear
equations and inequalities over the reals. In the implementation, we show how the plan search can be optimized
through the use of some heuristics and make some evaluation tests.
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Introduction

A security policy is often defined as permission, prohibi-
tion, obligation, and exemption rules. Permission and pro-
hibition rules are used to specify access control policies.
Obligation and exemption rules are useful to specify other
security requirements corresponding to usage control
policies [1,2]. In the usage control literature, two different
types of obligation are generally considered called sys-
tem obligation and user obligation [3]. When the security
policy includes user obligation, these obligations should
be associated with deadlines. When these obligations are
activated, these deadlines provide the user with some time
to enforce the obligation before violation occurs.
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The application of these rules to the same object may
lead to conflicting situations. Preliminary work on the
classification of conflicts are reported in [4], where sev-
eral types of conflicts have been defined (see also [5,6]).
Benferhat et al. [7] presents an approach based on possi-
bilistic logic to deal with conflicts in prioritized security
policies. However, there is another type of conflict which
is not managed yet, namely, the conflict between obliga-
tions with deadlines. This kind of conflict could happen
in the case of overlapping deadlines. For example: (i) The
doctor is obliged to fill in the summary sheet within 1 h
after the patient leaves. (ii) The surgeon must be vigilant
in the operating room. If the doctor is a surgeon and he is
in the operating room during a patient’s leaving, and if the
duration of the surgery ends 2 h after the patient’s leaving,
the surgeon cannot fill in the summary sheet of the patient
because the surgery could end after the deadline associ-
ated with filling the summary sheet. Thus, there may be
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situations where it is impossible to meet certain obligation
requirements of the security policy before their deadlines.

Conflicts between obligations with deadline are more
complex to detect and manage. We need a model which
manages how the information system evolves over the
time. In this paper, we use a language based on deontic
logic to specify security policies that include obligations
with deadline. The advantage of deontic logic is that it
provides means to consistently reason about deontic con-
cepts as obligation and permission. Then, we suggest an
approach based on the sequential temporal situation cal-
culus [8] to give semantic to our language. The Situation
Calculus allows us to analyze decidability and complexity
of several useful problems:

e Temporal projection problem [9]: asks whether a
formula holds after a sequence of actions is
performed in the initial situation. This is useful to
decide which rule can be applied to a given situation
and detect violation.

® Planning [10]: given a goal formula, planning consists
in finding a sequence of actions so that the goal is
satisfied after executing this sequence of actions. We
show how to detect, using planning task, if there is
conflict between obligation with deadline rules. Then,
we introduce the concept of legal plan to detect
conflict between obligation and permission rules.

To illustrate our approach, we take the example of com-
pletion of medical records inspired from existing laws
in hospitals [11]. This completion is regulated by obliga-
tion rules with deadline. Each rule specifies the associated
deadline to complete each document in the patient record.
Any latency on writing patient record could affect the
information availability time for each patient which neg-
atively impacts the quality of provided care. This has led
some hospitals to specify sanctions when these deadlines
are not respected, see for example the Ontario regulations
[11]. The example shows a real need to have obligations
with deadline in security policy and a real need to manage
the conflicts between them.

The present work is an extended version of a previ-
ous conference paper [12]. The main contributions with
respect to this extended version are the following:

e The initial proposed formalism is extended with two
new modalities for expressing permissions and
system obligations.

e Managing permissions induces a new type of
conflict which occurs when it is impossible to find a
sequence of permitted actions which leads to a
situation where obligations are fulfilled in their
deadlines. We formally define the situations which
correspond to such conflicts by introducing the
concept of a legal plan.
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e The algorithm for detection of conflict between
obligations with deadline initially proposed in the
previous paper is extended to allow the detection of
conflicts between permissions and obligations with
deadlines.

e The previous implementation is extended to support
the search for a legal plan. And finally, we made some
evaluation tests and propose some optimization tools
using heuristics.

This article is organized as follows. In Section 1, we give
a motivation example. Section 2 presents the situation cal-
culus. Section 3 explains how to define security policies
that include obligations with deadline. This model is based
on deontic logic, and a security policy is viewed as a set
of deontic norms. Section 5 extends situation calculus to
formally derive which actual norms apply in a given sit-
uation. In this section, we also formally define when an
obligation with deadline is violated. Section 5 shows how
to detect the presence of conflicting norms in the policy.
In Section 6, we give the specification of the motivation
example. In Section 7, we make the implementation of our
model using the programming language GOLOG [13]. In
this section, we make assessment on different situations
that we built to simulate our model on the use case and
discuss some performance evaluation. The related work is
presented in Section 8. Finally, we present the conclusion
and perspectives.

1 Motivation example

In the medical community, patient’s record contains infor-
mation about care provided to the patient during his stay
in the hospital. The medical records are regulated by
hospitals through legal texts [11]. These laws specify, in
particular, the time given to doctors to complete patient
records assigned to them. In hospitals where medical
records are digitally stored, these rules may be expressed
as obligations with deadlines. These rules aim to ensure
the availability of medical information in expected time. In
this section, we describe the impact of availability of med-
ical information in expected time on the quality of patient
care, and we give an example of obligations with deadline
concerning completion of medical records.

1.1 Impact of deadlines to complete medical records on
the availability of information

Studies have shown that patient care can be improved
by timely sending a complete and accurate information
on patient hospitalization to the practitioner [14-17]. In
contrast, a breakdown of communication, due to delays
in the transfer of information or incomplete information,
can have serious consequences. For example, the physi-
cian who does not have access to the summary sheet of
a patient hospitalization prepared by acute care services
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is in an uncomfortable situation when the patient’s life is
in danger. Despite what has been raised by these stud-
ies on the importance of time when transferring patient
information, other studies have noticed that in practice,
there is a lag in the transfer of this information. Some of
these studies noticed a significant delay between the time
when the patient receives his leave and when the gen-
eralist physician received the advice [18,19]. Therefore,
the hospitals are required to establish regulations so that
the medical records are filled timely to ensure continuity
of patient care. In what follows, we give some examples
of rules concerning the deadline assigned to doctors to
complete certain elements of patient’s records.

1.2 Rules regarding the completion of patient’s medical
record

The law on public hospitals specifies that medical records
must be filled for any person registered or admitted to
a health facility [11]. Also, it specifies the elements that
a medical record must contain. The law may specify the
deadline given to doctors so that each element is present
in the patient’s record, and the appropriate measures when
these deadlines are not respected, see for example the
Ontario regulations [11]. Among the documents that must
be found in the medical records are as follows: summary
sheet, admission note, medical observation, operating
protocol, and discharge note. The time to make these doc-
uments present in the folder of the user differs from one
document to the other:

¢ The medical summary/summary sheet: When a
doctor authorizes the patient assigned to him to leave
the hospital, he must complete the medical summary
of this patient before this latter leaves the hospital.

e Admission note: The doctor must complete the
admission note of the patient assigned to him when
he is admitted in the hospital within 30 min following
his admission.

e Medical observation: The doctor must complete the
medical observation of the patient assigned to him
when he is admitted in the hospital within 40 min
following his admission.

e Operating Protocol: The doctor who did a surgery for
a patient assigned to him must complete the
operating protocol of this patient within 100 min
following the intervention.

e Discharge note: If a doctor authorizes the patient
assigned to him to leave the hospital, he must
complete his discharge note. The discharge note
must be completed before the patient’s leaving.

2 Situation calculus
The situation calculus [20] is a second-order logic lan-
guage specially designed to represent the change in
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dynamic worlds. The ontology and axiomatization of the
sequential situation calculus was extended to include time
[8], concurrency, and natural actions [21]. However, in
all cases, the basic elements of language are actions, sit-
uations, and fluents. The situation language used in this
paper is described below.

2.1 Thelanguage
The language consists of the following ontology:

e All changes in the world are the results of actions.
They are designated by terms of first-order logic. To
represent the time in the situation calculus, we add a
time argument in all instantaneous actions which is
used to specify the exact time or time range in which
the actions occur in world history. For example,
sign(Jean, dischargeNote(Mary), 100) is the
instantaneous action of signing the discharge note of
Mary by Jean at the moment 100. The actions are
instantaneous, but we can express actions with
duration. For example, consider the following two
instantaneous actions, startConsultation(d, p, t),
meaning d starts consultation of p at time t, and
endConsultation(d, p, t'), meaning d ends
consultation of p at time ¢’. The fluent
inConsultation(p, s), expressing the patient p is in
consultation in the situation s, turns from false to
true if there exists a time t and doctor d when the
action startConsultation(d, p, t) is performed, and
turns to false if there exists a time ¢’ when the action
endConsultation(d, p, t') is performed. Thus, in
situations where fluent inConsultation(p, s) is true,
we can describe the properties of the world, such as
the heartbeat of p per unit time, as a function of time
that must be true during advancement of
consultation.

e A possible history of the world, which is a sequence
of actions is represented by the first-order terms
denoted situation. The constant Sy is the initial
situation.

e There is a binary function symbol do; do(«, s)
denotes the situation resulting from the execution of
the action « in the situation s. For example,
do(write(Jean, dischargeNote(Mary), 5),
do(write(Jean, consultationReport(Mary), 8),
do(write(Jean, admissionNote(Mary), 10), Sp))) is the
situation indicating the history of the world which
consists of the execution of the sequence of actions
[write(Jean, admissionNote(Mary), 10), write(Jean,
consultationReport(Mary), 8), write(Jean,
dischargeNote(Mary), 5)].

® Fluents describing the facts of a state. There are two
types of fluents: relational fluents and functional
fluents. Relational fluents are symbols of predicates
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which take a term of type situation as the last
argument, which their truth values may vary from
one situation to another. For example,
inConsultation(Mary, s), means that Mary is in
consultation at situation s. Functional fluents are
denoted by function symbols that take a situation as
the last argument, which the truth of their function
values changes from one situation to another. For
example, heartbeat(Mary, s) denotes the number of
heartbeats of Mary in situation s.

e There are also symbols of predicates and functions
(including constants) denoting relations and
functions independent of situations.

e A particular binary predicate symbol <, defines a
strict order relation on situations; s < s’ means that
we can reach s’ by a sequence of actions starting from
s. For instance, do(ay, do(a1, So )) < do(ay, do(as,
do(az, do(ai, S0 ))))-

e A second particular binary predicate symbol Poss,
defines when an action is possible. Poss(a, s) means
that the action a can be executed in the situation s.

e A function symbol time: time(a) denotes the time
when the action a occurs.

e A function symbol start: start(s) denotes the start
time of the situation s.

2.2 Fundamental axioms
The basic axioms for the situation calculus, as defined in
[22] and [23] are as follows:

e The second-order induction axiom:
(YP).[P(So) A (Ya,0)(P(0) — P(do(a,0)))] — (Yo )P(o)

The induction axiom says that to prove that property
P is true in all situations, it is sufficient to prove that
P is true in the initial situation Sy (initialization step)
and for all actions a and situations o, if P is true in
the situation o, then P is still true in the situation
do(a, o) (induction step). The axiom is necessary to
prove properties true in all situations [24].

e The unique name axioms:

So # do(a, s),

do(a,s) =do(d,s') >a=d As=5
e Axioms that define an order relation < on situations:

s < So,
s < do (a, s’) DI (Poss (a, s’) A start (s’) < time(a)As < S’).
® The axiom: start(do(a, s)) = time(a).

In addition to the axioms described above, we need to
describe a class of axioms when we formalize an applica-
tion domain:
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e Action precondition axioms, one for each action:
Poss (A (1) ,s) < ¢ (%, 1,5),

where ¢ (%, ¢, s) characterizes the preconditions of
the action A, it is any first-order formula with free
variables among %, t, and whose only term of sort of
situation is s.

For example, a patient can leave the hospital if he is
in the hospital.

Poss (leave (p, t) ,s) <> inpatient(p, s)

Using predicate poss(a), we can then recursively
specify that a given situation s is executable.

Executable(s) <
(Va,s') .do (a,s') <s — (Poss (a,s") A start (s') < time(a)).

® Successor state axioms, one for each fluent. These
axioms characterize the effects of actions on fluents
and they embody a solution to the frame problem®
for deterministic actions [23].
The syntactic form of successor state axiom for a
relational fluent F is

Poss(a,s) —

[F (%,do(a, ) < v (%,a,5) v

(F ®s) A=vp (%a9))],
where y; (%,4,s) and y; (%, a,s) indicate the
conditions under which if the action a is executed in
situation s, F(x, do(a, s)) becomes true and false,
respectively.
For example, the succession state axiom of fluent
assigned(p, d, s), meaning a patient p is assigned to a
doctor d can be defined as follows:

Poss(a,s) —

assigned (p,d, do (a,s)) < [(Elt)u = assign(p,d, )V
(assigned(p, d, s) A —(3t)a = revokeAssignment(p, d, t) A
—(3t)a = leave(p, t))]

Here, )/1_3L (%, a,s) corresponds to the formula:

(3t)a = assign(p,d, t) and y; (56, a, s) is the formula:
(3t)a = revokeAssignment(p, d, t) vV (3t)a =
leave(p, ). The action assign makes the fluent
assigned true, and the actions revokeAssignment and
leave turn the fluent assigned to false.

It is assumed that no action can turn F to be both
true and false in a situation, i.e.,

ﬁEIsEIayFJr(fc, a,s) A yp (%, a,s).

For a functional fluent, the syntactic form of
successor state axiom is

Poss(a,s) —
[F (%,do(a,9)) =y < vi (%y.a,5)V
=F@Es) A=) (%5.a9))],
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where, yr (fc, ¥, 4, s) is any first-order formula with
free variables among ¥, , a, t, and whose only term of
sort of situation is s.

e Axioms describing the initial situation.
In each application involving a particular action
A (%, ), an axiom that gives the time of the action A:
time (A (%,£)) = ¢.

In the following, we denote Axioms = X UAgUA,pUAS,,
where

e Y is the foundational axiomatic of the situation
calculus.

® A is a set of successor state axioms.

® A, is a set of action precondition axioms.

e Ag, is a set of initial situation axioms. Ag, is a set of
sentences with the property that Sy is the only term of
sort situation mentioned by the fluents of a sentence
of As,. Thus, no fluent of a formula of A5, mentions a
variable of sort situation or the function symbol do.

We denote Axioms I p the fact that the sentence p can
be derived from the set of axioms Axioms. This kind of
domain theories provides us with various reasoning capa-
bilities, for instance planning [25]. Given a domain theory
Axioms as above and a goal formula G(s) with a single
free-variable s, the planing task is to find a sequence of
actions 4 such that

Axioms F so < do(a, sg) A Executable(do(4, s9)) A G(do(a, sg)),

where do([ay,...,a,],s) is an abbreviation for do(ay,
do(a,—1,...,do(ay,s)...)).

3 Security policy specification

The language we define to specify permissions and obli-
gations in security policies is based on deontic logic of
actions. We consider two modalities: permissions and
obligations with deadline. They are called normative
modalities in the following. Normative modalities are rep-
resented as dyadic conditional modalities. Permissions are
specified using dyadic modality P(x|p), where « is an
action of A and p is the condition of the permission. The
condition is any formula built using fluents of F with-
out situation. P(«|p) means that the action « is permitted
when condition p holds. Obligations with deadline are
specified using modality O(¢ < d|p) which intuitively
means that when formula p starts to hold, there is an obli-
gation to execute action « before the deadline condition d
starts to hold. In the following, we assume that the dead-
line condition must be an atomic fluent predicate of F. If
the action « is executed before the deadline condition d
starts to hold, then we shall say that the obligation is ful-
filled. Else, we shall consider that the obligation is violated.
We call norm a formula corresponding to a conditional
permission or obligation with deadline. A security policy,
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P is a finite set of norms. We shall now use the situation
calculus to formally define the semantics of these different
modalities.

4 Actual norm derivation and violation detection
The situation calculus is extended with fluents Perm(«)
(there is an actual permission to do «) and Ob(a < d)
(the obligation to do « before deadline d starts to be effec-
tive), where « is an action of A and d is a fluent of F.
We first extend the set of axioms previously defined with
a permission definition axiom for every fluent predicate
Perm(a), @ € A. For this purpose, let P, be the set of con-
ditional permissions having the form P(«|p). We denote
Yp, =P1V...Vpy, whereeachp; fori e [1,...,n] corre-
sponds to the condition of a permission in P,. If P, = 0,
then we assume that yp, = false. Using v/p,, the successor
state axiom for Perm(c, o) is defined as follows:

Poss (a,0) —

Perm («,do (a,0)) < [ylz'm (a,0)V (1)

<Perm (a,0) A Vi, (61,0))}

This axiom specifies that the permission to do an action
becomes effective after the action that activates the con-
text of the permission rule is executed. This permission
remains effective until an action that turns the activation
context to false is executed.

We can specify a predicate permitted which specifies
that a given situation is secure with respect to access
control requirements as follows:

Permitted(Sp) A
(VaVo) [Permitted (do (a,0)) <> (Perm (a,0) A Permitted (0))]

We can then specify a condition to prove that the sys-
tem specification represented by a given set of Axioms
is secure with respect to access control requirements as
follows:

Axioms - (Vo) (Executable (o) — Permitted (o))

which corresponds to proving that predicate permitted is
an integrity constraint in every executable situation. We
call this integrity constraint the ‘close policy requirement’.
It is easy to show that a sufficient condition to prove
the close policy requirement consists in strengthening
the action precondition axiom of every action o with the
guarded condition that this action must be permitted:

Vo, poss (a,0) <> (¢ (0) A Perm (v, 0))

Using permitted situations, we introduce a notion of
legal plan. Given a goal formula G, a legal plan consists of
finding a permitted situation that satisfies G.

Let us now turn to the obligation definition axiom for
every fluent predicate Ob(e < d), where @ € Aandd €
F. Notice that since the sets .4 and F are finite, we have
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a finite set of successor state axioms to define for Ob(a <
d). We define O, 4 to be the set of conditional obligations
with deadline in P having the form Ob(a’ < d’|p), such
that « = o’ and d and d’ are logically equivalent. We say
that two fluent predicates d and d’ are logically equivalent
with respect to a set of Axioms if we can prove that d <> d’
is an integrity constraint of Axioms. We denote Vo,, =
p1V ...V py, whereeach p; fori €[1,...,n] corresponds
to the condition of an obligation in O, 4. If O, 4 = @, then
we assume that ¥o, , = false. Using ¥o, ,, the successor
state axiom for Ob(a < d) is defined as follows:

Poss (a,0) —

Ob (a < d,do(a,0)) < [yJO . (a,0) Vv (2)
<Ob (x <d,o) A= (a=0a) A —-y; (a,0) A —-yl;o d(u, a))]

This axiom says that the obligation to do « before dead-
line d is activated when v, , starts to be true. This
obligation is deactivated when it is fulfilled (i.e., action « is
done) or it is violated (i.e., deadline d starts to be true) or
condition o, , ends to be true (i.e., it is no longer relevant
to do «).

We can characterize situations where the obligations are
fulfilled by the following fluent:

Poss(a,0) —
Fulfil (@ < d,do(a,0)) < [(Ob((x <d,c)hNa=aA —wj(a,a)) Y
Fulfil (o < d,0) | ®3)

Notice that if in a given situation o, it simultaneously
happens that the obligatory action is executed and the
associated deadline is activated, then the decision is to
consider that the obligation is violated and not fulfilled.
This is called obligation with strict deadline. We can also
define O(a¢ < d|p) so that in the same situation, the
obligation is fulfilled and not violated.

Finally, we define the succession state axiom of the
fluent Violated(a < d,0):

Poss(a,0) —
Violated (& < d,do(a,0)) < [(Ob(a <d,0) Ay} (@,0))V
Violated (« < d,0) | (4)

This axiom specifies that an obligation to do « is vio-
lated, when the associated deadline comes true when it
was still active, and it was never executed. The axiom
also specifies that in a given situation o, if it simultane-
ously happens that the obligatory action is executed and
the associated deadline is activated, then the decision is to
consider that the obligation is violated.

Concerning system obligations, we consider them as
a special case of obligations with deadline, written as
follows: O(a). As there is no deadline associated with
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these obligations, we assume that y; (a,0) =y, (a0) =
false. Thus, we can derive the succession state axiom
characterizing the situations when system obligations are
active using axiom 2.

Poss(a,0) — (Ob(a, do(a,0)) < 7/1;“0 (a,cr)) (5)

This axiom says that the system obligation to do « is
activated only in the situations when o, starts to be
true and they are deactivated immediately after. Thus,
a system obligation should be fulfilled immediately after
its activation. This can be derived using the axiom 3 as
follows:

Poss(a,0) —
Fulfil (@, do(a, 0)) <> [(Ob(a,0) A a = «) V Fulfil(a, 0)]

When an obligation system is not executed immedi-
ately after its activation, a violation is detected using the
following axiom:

Poss(a,0) —

Violated («, do(a, 0)) <> [(Ob(«, 0) A —(a = ) Vv Violated(«, 0)]

5 Policy conflict detection
In this section, we define two kinds of conflict:

e conflict between obligation with deadline rules
¢ conflict between permission and obligation with
deadline rules

The conflict between obligations is detected through the
definition of the following situations:

e situation locally enforceable is defined in relation
with a particular obligation and characterizes the fact
that this obligation can be fulfilled by following the
executable plan.

e situation globally enforceable characterizes the fact
that all the active obligations can be enforced in an
executable plan without violating the associated
deadlines.

The conflict between permission and obligation with
deadline rules is detected through the definition of the
following situations:

e situation legal locally enforceable is defined in
relation with a particular obligation and characterizes
the fact that this obligation can be fulfilled by
following an executable plan constituted of permitted
actions (legal plan).

e situation legal globally enforceable characterizes the
fact that all the active obligations can be enforced in
an executable and legal plan without violating the
associated deadlines.
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5.1 Obligation conflicts
In a given situation, an active obligation is enforceable if it
can be fulfilled following an executable plan.

Enforceable(a < d,0) <> [Ob(a < d,0)A
(30',0 < o) (Fulfil(e < d,0”) A Executable(c”))]

It may happen that in one situation, every active obli-
gation is enforceable, but it is still not possible to enforce
all of them without violating the associated deadlines. If
all the active obligations in a situation o can be executed
without violating at least one of them, we say that this
situation is globally enforceable. To characterize this, we
introduce the formula G-Enforceable(o).

G-Enforceable(o) <> (3o’,0’ > o)

(Yo, d) (Ob (a <d,o0) — (Fulﬁl (a < d,cr/) A Executable (a/)))

Proving that a given situation o is globally enforceable,
amounts to proving the existence of an executable situa-
tion where all the active obligations in o are fulfilled. If
such a situation does not exist, we say that the policy is fea-
sibility conflictual in o. If the set of actions and the set of
fluents are finite, we can prove that the existence of such
a situation is decidable and can be solved in NEXPTIME
complexity. This complexity of planning in the situation
calculus is high but is similar to other planners, like Strips
for example [26].

5.2 Conflict between permission and obligation rules

In traditional deontic logic like Standard Deontic Logic
(SDL), obligation implying permission is an an axiom of
the logic. However, if the obligation is associated with a
deadline, then Ob(«¢ < d, 0) A—Perm(«, o) may be satisfi-
able in some situation o. As we consider the close security
requirement, then every executed action must be explic-
itly permitted. Thus, we define the legal local requirement
as follows:

L-Enforceable (¢ < d,0) < [Ob (¢ <d,o) N
(Ela/,o < 0/) (Fulfil (oc < d,o/) A Permitted (O'/))]

This means that there is a legal path that allows filling
the active obligation. If in addition the path is executable,
then the obligation is strongly enforceable.

S-Enforceable(a < d, o) < [Ob(ot <d,o)A
(EIU’, o< a’) (Fulfil (cx <d, o’) A Permitted (a/) A Executable (a’))]

If all the active obligations in a situation ¢ can be exe-
cuted in a permitted situation without violating at least
one of them, we say that this situation is legal globally
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enforceable. The legally global requirement is defined as
follows:

LG-Enforceable(s) <> (307,06 < o)
(Va,Vd) [Ob(a < d,0) — (Fulfil (¢ < d,0") A Permitted (o))]

The policy is considered legally conflictual in situa-
tion o if it is not legally enforceable. If in addition the
plan is executable, the situation is called strongly globally
enforceable.

SG-Enforceable(s) < (3s,s < §')
(Yo, ¥d) [Ob(a < d,s) — (Fulfil (o« <d,s) A Legal ') A Executable (5'))]

In what follows, we assume the existence of a temporal
reasoning component that allows us to infer, for example,
that T7 = T, when T7 < T7 and T < T5, and we are able
to solve linear equations and inequalities over the reals
using the Simplex algorithm [27]. Algorithm 1 detects the
different types of conflict we have defined using recursive
search as defined in Algorithm 2. Note that in Algo-
rithm 2, we allow the execution of parallel actions; other-
wise, we can use constraints to specify the actions which
cannot be done in parallel. These constraints can be com-
piled into precondition axioms of these actions [22]. In
this work and to simplify, we omit the use of constraints.
Note that we suppose that if a situation we check is glob-
ally enforceable (respectively legally globally enforceable),
then this situation must be executable (respectively per-
mitted). Proving that a situation is executable (respectively
permitted) can be done using regression [23], where test-
ing is reduced to proving first-order theorem in the initial
situation.

Algorithm 1 ConflictDetection(s, N, conflictType)
Require: s: the situation to check
N: the maximal depth
conflictType: the type of the searched conflict,
“FC” for feasibility conflict,
“LC” for legally conflict and
“SC” for strong conflict
Ensure: No: if there is no conflict of type conflictType in
the policy at situation s; otherwise, Yes.

O = {a € A such that Ob(x < d,s)} {set of active

obligations in s}

s < recursiveSearch(s, N, O, conflictType)

if ~(s' = NULL) then
return No {there is no conflict of type conflictType
in the policy at s and s’ is the plan which leads to fulfill
all the active obligations in s}

else
return Yes {there is a conflict of type conflictType in
the policy at situation s}

end if
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Algorithm 2 recursiveSearch(s, N, O, conflictType)

Require: s: the current situation
N: the current depth (initially the given
maximum depth)
O: set of active obligations in s
conflictType: the type of the searched conflict,
“FC” for feasibility conflict,
“LC” for legally conflict and
“SC” for strong conflict
Ensure: Null: if the depth of the current path exceeds the
given maximum depth or,
situation when all obligations in O are fulfilled
if it exists otherwise,
the next situation to give to the next call for
recursion

switch (conflictType)
case “FC”:
E <« {a € A,Poss(a,s) A Start(s) < Time(a)} {the
set of actions that can lead from s to an eventual
executable situation}
case “LC”:
E <« {a € A, Perm(a,s)} {the set of actions that can
lead from s to an eventual legal situation}
case “SC”:
E <« {a € A,Poss(a,s) A Start(s) < Time(a) A
Perm(a, s)} {the set of actions that can lead from s to
an eventual legal and executable situation}
end switch
while true do
if N < 0 then
return NULL
end if
foralla € £ do
s < do(a,s)
N« N-1
if Va,d € O)Fulfil(a < d,s’) then
return s
end if
s” < recursiveSearch(s’, N, O, conflictType)
if =(s” = NULL) A (Yo, d € O)Fulfil(a < d,s"))
then
return s’
end if
N« N+1
end for
return NULL
end while

6 Formal specification of the case study’s security
policy

To illustrate our approach, let us consider a security policy

containing the following rules:
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e Rule 1: The doctor must complete the admission
note of the patient assigned to him within 30 units of
time following his admission to the hospital.

® Rule 2: The doctor must complete the medical
observation of the patient assigned to him within 30
units of time following his admission to the hospital.

e Rule 3: End deadline for completing the admission
note of a patient must occur after 30 units of time of
his admission to the hospital.

e Rule 4: End deadline for completing the medical
observation of a patient must occur after 40 units of
time of his admission to the hospital.

e Rule 5: The doctor is permitted to start writing
observation or admission note of an inpatient
assigned to him when he is not writing another
document.

e Rule 6: The doctor is permitted to complete
observation or admission note at least 5 units of time
after he began to write it.

Normally, we should specify a permission rule for each

action in .A. But for simplicity, we quote just one permis-
sion rule regarding the action of writing documents.

To give the specification of the example policy, we

should determine the set of fluents F, the set of the
actions A, the succession state axioms of all fluents, and
the preconditions axioms of all actions.

o Set F of fluents:

— assigned(p, d, s). The patient p is assigned to a
doctor d in situation s.

— inpatient(p, t, s). The patient p is admitted to
the hospital at time t in the situation s.

— leaving(p, s). The patient p leaves the hospital
ins.

— deadline(type, p, t, s). The deadline to write
document of type type concerning patient p
created at time t is elapsed in s.

— writingDoc(d, type, p, t, t', s). d is writing the
document of type type concerning patient p
created at time ¢ and began to be written at ¢/
ins.

— writtenDoc(d, type, p, £, s). The document of
type type concerning patient p and created at
time t has been written in s by d.

— doctor(d). d is a doctor.

e Set A of actions:

— assign(p, d, t). The action to assign at time t
the patient p to the doctor d.

— revokeAssignment(p, d, £). The action to
revoke at time t assignment of the patient p
to the doctor d.
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— patientAdmission(p, £). The action to admit
at time t the patient p at the hospital.

— leave(p, t). The patient p leaves the hospital at
time t.

— EndDeadline(type, p, £, t'): The action to warn
at time ¢’ that the accorded deadline for
writing document of patient p expires.

— StartWrite(d, type, p, t),

EndWrite(d, type, p, t): d starts (respectively
ends) to write document of type
corresponding to patient p at time t; type is
one of the following elements: Observation or
AdmssionNote.

e Fluent succession state axioms: Patient p will be
assigned to doctor d when the action of assignment is
executed, since then p remains assigned to d unless
there is a revocation of assignment or the patient
leaves the hospital.

Poss(a,s) —
assigned(p, d, do(a, s)) < [(3t)a = assign(p, d, )V (6)
(assigned(p, d,s) A —~(3t)a = revokeAssignment(p, d, t)A
—(3t)a = leave(p, t))]
Patient p is hospitalized if he was admitted to the
hospital and did not leave.
Poss(a,s) —
inpatient(p, t, do(a, s)) < [a = patientAdmission(p, £)V (7)
(inpatient(p, L,S) A— (Elt/) a = leave(p, t/))]
Action EndDeadline is executed to denote that the
delay accorded to write documents is elapsed. When
the deadline is considered expired, it remains expired
forever.
Poss(a,s) — (8)
deadline(type, p, t, do(a, s)) <
[(3¢') a = endDeadline (type, p, ¢, ') Vv deadline(type, p, £, 5) |
A document is in a writing process if its writing
began before and is not completed yet.
Poss(a,0) — 9)
writingDoc (d, type, p, £, ¢, do(a, s)) PN
[u = startWrite(d, type, p, Yyv (writingDoc(d, type, p, t, t,s)A
= (3¢") a = endWrite (d, type, p, ")) |
A document is considered written if the writing
process is completed.
Poss(a,0) — (10)
writtenDoc(d, type, p, t,do(a, s)) <
[(Elt/) a = endWrite (d, type, p, t/) V writtenDoc (d, type, p, t, s)]
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e Action precondition axioms: In what follows, all
action precondition axioms are written using
equivalent conditions except startWrite action. This
is because we consider that all these actions are
always permitted (even if we did not mention the
permission rules associated with them for simplicity).
In contrast, precondition axiom of actions startWrite
and end Write will be rewritten later to take into
account the permission rule associated with them.

It is assumed that a patient can be assigned at any
time to a doctor except if the patient is already
assigned to him.

Poss (assign(p, d, t),cr) PR (ﬁassigned(p, d,o) A start(o) < t)

The assignment revocation of patients is necessarily
applied to a patient who is already assigned to a
doctor.

Poss (revokeAssignment(p, d,t), O‘) PR (assigned(p, d, o) A start(o) < t)

It is assumed that a patient assigned to a doctor can
be admitted at any time to a hospital except if he is
already hospitalized.

Poss(patientAdmission(p, t), o) <> (assigned(p,d, o) A
= (3¢) inpatient (p, ', o) A start(o) < £)

Leaving the hospital concerns patients which are
hospitalized.

Poss (leave(p, t),0) <> ((3¢') inpatient (p, ¢’, o) A start(o) < ¢)

Action EndDeadline(type, p, t, teq) is executed when
the accorded deadline to write document of type type
is elapsed since the moment t of a patient
hospitalization; deadline is 30 units of time when type
is admission note and 40 units of time when it is
medical observation. It is assumed in addition that it
is not possible to execute the end of deadline for the
same document more than once.
Poss (endDeadline(type, Pt ted), a) <
[inpatient (p, t, O’) A ((ted =t +40 A type = observation) \Y
(ted =t + 30 A type = admissionNote)) A —deadline(type, p, t, 0)]
It is assumed that the action to start writing a
document is necessarily executed on a document that
is not in a writing process.
Poss (start\X/rite (d, type, p, t, tsw) ,0) —
—writingDoc (d, type, p, t, t, o) A —writtenDoc (d, type, p, t, o) A
start(o) < tgw
The writing end is applied to an ongoing writing
document.
Poss (end\X/rite (d, type, p, £, tew) ,a) PAN
[(3¢') writingDoc (&', type, p, £, ', &) A start(o) < few]
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We can now give the specification of the aforemen-
tioned security rules.

Rule1: O (write (d, type, p, t, ¢’ ) < deadline(type, p, t)| doctor(d)A

assigned(p, d) A inpatient(p, ) A type = admissionNote)

o (write (d, type, p, t,t’ ) < deadline(type, p, t)| doctor(d)A

assigned(p, d) A inpatient(p, £) A type = observation)

O (endDeadline (admissionNotes, ptt )| inpatient(p, H) A

f =1+ 30)

(0] (endDeadline (observation, ptt )| inpatient(p, t)A

¢ =t+40)

: P (start\X/rite (d, type, p, t, tsw) | doctor(d) A assigned(p, d)A
inpatient(p, t,s) A type = (observation V admissionNote) A
- (Eltype’,p/, t, t”) writingDoc (d, type’,p',t, t”))

: P(endt\X/rite (d, type, p, t, tew) | writingDoc(d, type, p, t, £ )A
few >t +5)

Rule 2 :
Rule 3 :
Rule 4 :

Rule 5

Rule 6

According to the specification of obligation rules, we
can see that we have one set of conditional obliga-
tions with deadlines: Oyrite(d,type,p,t, ) deadline(type,p,t,s)- LNe
corresponding formula Yo, iype s deadine(ype o 2ELET
simplification, is as follows:

wowrite(d,type,p,t.tw).deadline(type,p,t.rr) <
doctor(d) A assigned(p,d, o) A inpatient(p, t,0) A

type = (observation v admissionNote))

According to axiom (2), to derive concrete obligations,
we should calculate the following formulas:

1; (a,0) <
Owrite(d,type,p,t,tw).deadline(type,p,t,zr)

assigned(p, d, o) A a = patientAdmission(p, £)

Y. (a,0) <
owrite(d,type,p,t,tw),deadline(type,p,t,c)

a = revokeAssignment(p,d, t') v a = leave(p, t')

The above formula is calculated using the succession
state axiom of fluent assigned (6). Finally, the formula
ydtadline(type,p,t) (a,0) is calculated using succession state
axiom of fluent deadline (8).

tha dline(type,p,0) (a,0) <> a = endDeadline(type, p, ¢, )

Thus, the concrete obligations concerning rules 1 and 2
are as follows:

Poss(a,0) —

Ob(write(d, type, p, t, ty), do(a, o)) <
[(assigned(p, d,o) A a = patientAdmission(p, £))V
(Ob(write(d, type, p, t), o)A

—(3t)a = endWrite(d, type, p, t, ') A

-(3)a
—(3t')a = revokeAssignment(p, d,t') A —(3t')a = leave(p, t))]

endDeadline(type, p, t, ') A
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Similarly, we can derive the situations where the system

obligations are active.

Poss(a,0) —

Ob (endDeadline(type, p, t, ', do(a, o)) <

[(a = patientAdmission(p, £)A

((type = admissionNote A £’ = £ + 30) V type = observationA

' =t+40)) v

(Ob(endDeadline(type, p, t, ), 0) A

- (Elt’) a = endDeadline (type,p, t, t/) A= (Elt’) a = leave (p, t’))]

Using rule 5 and succession state axiom of fluent
assigned (6), the actions and the conditions under which
startWrite will be permitted are given by the following
formula:

yl;rp (a,0) <
startWrite (d,type,p,t,tsw)

[assigned(p, d,o) A type = (observation V admissionNote) A
- (3type’,p', ¢, t},,) writingDoc (d, type', p', ', 5, &) A
a = patientAdmission(p, t)] \
[inpatient(p, t,o)N (Eltype/, p/, t, t;w)writingDoc(d, type/, p/, t, t;w, O’)/\
a = endWrite (d, type’,p',t, tew)]
On the other side, the actions and the conditions under

which startWrite will be no longer permitted are given by
the following formula:

T ‘ (a,0) <
startWrite(d, type,p,t.tsw)

(Elt/) a = revokeAssignment (p, d, t’) v (E!t') a = leave (p, t’) v
(3type’,p', ¢, ") a = startWrite (d, type’, p', ', ")

Then, the active permission for startWrite is calculated
using axiom (1).

Poss(a,0) —

Perm (startWrite (d, type, p, £, tsw) , do(a, a)) DI

[assigned(p, d, o) Atype = (observation V admissionNote) A (11)
[(-=@type’,p, ¥, £, writingDoc(d, type’, p', t, t,, ) A (12)
a = patientAdmission(p, t)) V (13)
(inpatient(p, t, o)A (14)
(Eltype/,p’, t, t;w) writingDoc (d, type/,p’, t, t;w, U) A (15)
a = endWrite(d, type’, p', ', tew)) | v (16)

(Perm (startWrite (d, type, p, t, tsw) ,a) A

- (Elt/ ) a = revokeAssignment (p, d, t') A

= (3t) a =leave (p,t') A

- (Eltype/ Pt ) a = startWrite (d, type’,p', ¢, tgw))

The lines 11, 12, and 13 of the axiom above express the
fact that a doctor which is not writing a document is per-
mitted to write the observation and the admission note of
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a patient assigned to him as soon as this patient is admit-
ted in the hospital. The lines 11, 14, 15, and 16 express
the fact that when a patient is hospitalized and his doc-
tor is writing a document, the doctor will be permitted
to write the observation and the admission note of this
patient after he completes the writing document. Finally,
the precondition axiom for starting writing documents is
as follows:

Poss(startWrite(d, type, p, t, tew), 0) <
Perm(startWrite(d, type, p, t, tew), o) A
—writingDoc(d, type, t, o) A —writtenDoc(d, type, p, t, o)

Using rule 6 and the succession state axiom (10) of writ-
ingDoc, we can calculate the situation when the end for
writing document is permitted.

Poss(a,o0) —
Perm(endWrite(d, type, p, t, t.), do(a, o)) <
a = startWrite(d, type, p, L, ts) A te > ts+ 5V

Perm(endWrite(d, type, p, t, t.), o) A
—a = endWrite(d, type, p, ¢, t,)

7 Implementation

We implement our model using the logic programming
language Golog [8,13], based on the situation calculus.
Regarding our need to solve linear equations and inequal-
ities, we use the Common Logic Programming System
ECLIPSE 3.5.2, which provides a built-in Simplex algo-
rithm for solving linear equations and inequalities over the
reals.

The point of departure for the implementation is to
get the list of all active obligations in a given situa-
tion S. This is given using the predicate activeObliga-
tions(ActiveObligationsList,S):

activeObligations
(ActiveObligationsList,S) :-findall (Rule, ob(Rule, S),
ActiveObligationsList) .

Given the list of active obligations, seeking the situation
where all these obligations are fulfilled is made using the
procedure plan.

proc (plan(N,L),

? (all (r, member (r,L) =>
fulfil(r))) :? (reportStats)#
?(N > 0):

pi(a,? (primitiveAction(a)) :a):
? (-badSituation) :

pi(n,?(n is N-1):plan(n,L))).

Here, primitiveAction is a predicate characterizing all
the actions of the domain. If N = 0, the execution of the
procedure ends. If N > 0, a primitive action 4 is selected.
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The Golog interpreter checks if the selected action a is
possible and verifies that start(s) < time(a), where s is the
current situation. If so, a is executed and do(a, s) becomes
the new current executable situation.

We can change the following instruction of Golog:

do(E,S,do(E, S)) :- primitiveAction(E), poss(E,S),

start (S,T1l),time(E, T2),T1l <= T2.

and replace it with the following statement for searching a
legal plan:

do(E,S,do(E, S)) :- primitiveAction(E),perm(E, S),

start (S,T1),time(E,T2),Tl <= T2.

In our implementation, we make no change in the Golog
interpreter, but every precondition axiom of an action
includes the fact that this action is permitted using the
fluent perm. Thus, we test whether a situation is strongly
enforceable or not using the predicate sEnforceable(N,S1).

sEnforceable(N,S1) :- initializeCPU,
activeObligations
(ActiveObligationsList,S1),
do (plan (N,
ActiveObligationsList),S1,S),
prettyPrintSituation(S) .

Let us start by seeing how we can write some axioms
of our example using Golog. The complete description of
axioms is described in Additional file 1.

7.1 Examples of succession state axioms

ob (write (D, Type,P,T),
do(A,S)) :- (assigned(P,D,S),

A=patientAdmission(P,T)) ;

(ob(write (D, observation,P,T),S),

not A=endWrite (D,observation,P,T,T1),

not A=endDeadline (observation,P,T,T2),

not A=leave(P,T3),

not A=revokeAssignation(P,D,T4)) .

fulfil (write (D, Type,P,T),
do(A,S)):- (ob(write(D,Type,P,T),S),
(A=endWrite (D, Type,P,T,T2)) ;

fulfil (write (D, Type,P,T),S)) .

7.2 Examples of action precondition axioms
poss (startWrite (D, observation,
P,T,T1),S):- inpatient(P,T,S),
assigned(P,D,S),
not writingDoc (D, Typel,P1,T3,T4,S),

not writtenDoc (D, observation,P,T,S).

poss (endWrite (D, Type,P,T,T1l),S) :- writingDoc
(D, Type,P,T,T2,S),

Tl $>= T2+5.
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In addition to the succession state axioms and precon-
dition axioms of actions, we suppose having the following
axioms in the initial situation sg.

start (s0, 0).
doctor (jean) .

7.3 Description of bad situations
The badSituation test is used to remove partial plans
which are known in advance to be unsuccessful. For exam-
ple, a branch resulting from the execution of an action
that disables an active obligation can be eliminated. A
branch resulting from the execution of an action that
activates the deadline corresponding to an active obli-
gation may also be removed. We will see in the follow-
ing how this can be done in the implementation of our
example.

If a violation of an active obligation occurs after the exe-
cution of an action, it is no longer necessary to continue
searching a solution from the resulting situation.

badSituation(do(A,S)) :- A=endDeadline (Type,P,T,T1),
not fulfil (write
(D, Type,P,T),S),!.
badSituation(do(A,S)) :- A=endDeadline (Type,P,T,T1),
poss (endDeadline (Typel,
P1,T2,T3),S),T3 $< T1,!.
:- ob(endDeadline (Type,P,T,T1),S),
(T1$>=T2),!.

badSituation (S)
start (S,T2), not

If an active obligation is deactivated after the execu-
tion of an action, it is no longer necessary to continue
searching a solution from the resulting situation.

badSituation(do(A,S)) :- A=leave(P,T),!.

badSituation(do(A,S)) :- A=revokeAssignation(P,D,T),!.

The construction of these bad situations can be done
using the succession state axioms of fluent Ob and
Fulfil. Thus, these optimizations can be generalized to
any policy without losing the completeness of the plan-
ning search. In our example, the execution of actions
patientAdmission and assign activates other obligations
and have no impact on the fulfillment of obligations
which are already active. Therefore, the path resulting
from their execution can be eliminated in the solution
search.

badSituation(do(A,S)):- A=assign(P,D,T),!.

badSituation(do(A,S)):- A=patientAdmission(P,T),!.

This optimization is closely related to our example
because there is nothing that prevents to have actions
in the policy that are necessary to fulfill obligations,
but their execution leads to activate other obligations
simultaneously.
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We have performed tests that check the strongly
enforceability of situations constructed as follows: the first
situation checked by the first test, denoted s1 is the result
of the assignment of a single patient pl to the doctor
jean at time 4 followed by his admission in the hospital at
time 5.

testl:- sEnforceable(6,do(patientAdmission(pl,5),
do (assign(pl,jean,4),s0))).

The next situation s2 is the assignment of another
patient p2 to jean at time 6 from the situation s1 followed
by the admission of p2 in the hospital at time 7.

test2:- sEnforceable(12,do(patientAdmission (p2,7),
do (assign(p2,jean,6),
do (patientAdmission(pl,5),
do (assign(pl,jean,4),s0))))).

We build 20 tests. Their complete description is in
Additional file 2. The planning depth research is calcu-
lated as follows. In our application domain, there are
seven actions, four of them are removed from the plan-
ning through the specification of badSituation. The remain-
der actions are startWrite, endWrite, and endDeadline. In the
database, there is one doctor Jean and two types of doc-
uments, so for each patient, these actions are possible
twice, one for each type of document. When one of these
actions is executed, it is not possible to execute it again
according to their precondition axioms. Thus, when all
these actions are performed one after the other, it is no
longer possible to perform other actions except those
which are discarded from the planning search. Thereby,
whenever a patient is added, the minimum depth ensur-
ing the decidability of solution research is increased by
six.

We conducted two series of tests depending on the
deadlines associated with the obligations to write docu-
ments. The experiment was run on a machine equipped
with an Intel 32 bit, 2.60 GHz, x4 processor, and 3.8
GB RAM, running ECLIPSE 3.5.2 on ubuntu Linux
(v.13.04).

7.4 The first series of tests

The deadline for writing admission note is 30 units
of time, and the observation is 40 units of time (see
Additional file 3). In this series of tests, the maximum
number of patients, who can be admitted in the hospital
and assigned to jean, without causing conflict between the
obligations is 4. Indeed, the policy is not conflictual in the
first four situations. As example, the following legal plan
generates a situation when all the active obligations in the
situation s1 are fulfilled which means that s1 is strongly
globally enforceable.
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[eclipse 2]: testl.

CPU time (sec): 0.00

[assign(pl, jean,4),patientAdmission (pl,5),
startWrite (jean, admissionNote,pl,5, {3}74),
endWrite (jean,admissionNote,pl,5, {1}095),
{2}264),
}112),

startWrite (jean,observation,pl,5,
endWrite(jean,observation,pl,5,_{3
endDeadline (admissionNote,pl,5,35)
endDeadline (observation,pl,5,45)]
more? n.

Linear Store:

_{3}112 $>= 15+1x {2}321+1% {1}187+1x {4}31
_{2}264 $>= 10+1x {1}187+1% {4}31

_{1}095 $>= 10+1x {4}31

_{3}74 $>= 5

The above plan contains uninstantiated temporal vari-
ables. The value of these variables is just constrained
by the inequalities in ECLIPSE’s linear constraint store,
although there may be cases when plans are fully spec-
ified like the following third test which proves that the
policy remains consistent after the admission of three
patients.

[eclipse 4]: test3.

CPU time (sec): 0.03

[assign(pl, jean,4),patientAdmission (pl,5),
assign(p2,jean,6),patientAdmission (p2,7),
assign(p3, jean, 8) ,patientAdmission(p3,9),
startWrite (jean,admissionNote,p3,9,9),
endWrite (jean,admissionNote,p3,9,14),
startWrite (jean,admissionNote,p2,7,14),
endWrite (jean,admissionNote,p2,7,19),
startWrite (jean,admissionNote,pl,5,19),
endWrite (jean,admissionNote,pl,5,24),
startWrite (jean, observation,p3,9,24),
endWrite (jean, observation,p3,9,29),
startWrite (jean, observation,p2,7,29),
endWrite (jean,observation,p2,7,34),
startWrite (jean,observation,pl,5,34),
endDeadline (admissionNote,pl,5,35),
endDeadline (admissionNote,p2,7,37),
endWrite (jean,observation,pl,5,39),
endDeadline (admissionNote,p3,9,39),
endDeadline (observation,pl,5,45),
endDeadline (observation,p2,7,47),
endDeadline (observation,p3,9,49)]
more? n.
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Finally, the fifth test shows how the admission of a fifth
patient produces a conflict.

[eclipse 6]: tests.

No (1460.33s cpu)

7.5 The second series of tests

The deadline for writing admission note is 1,000 units
of time, and the observation is 1,100 units of time (see
Additional file 4).

In this series of tests, we check 20 situations. Table 1
summarizes the results obtained and the execution time
for each tested situation. Figure 1 shows how the execu-
tion time for finding a plan is increasing with the number
of active obligations in these situations. On average, there
are 2xnb actions, which can be executed from a given situa-
tion, where »b is a number of admitted patients. Moreover,
the plan to achieve the desired goal is made up of nb x 6
actions. Then, the number of worlds to explore is the order
of 2 x nby"*>¢. This explains the increment in the time
duration, each time a patient is admitted.

8 Related work

Most traditional security models are static and respond to
access requests just by yes (accept) or no (deny). Recently,
there are more and more works on security models that
model obligations [3,28-31]. Formalization of obligations
differs from one model to another. In XACML [32],
obligations are all operations that must be met in con-
junction with the application of the authorization deci-
sion. In [3,28,33], distinction is made between provisions
and obligations. Provisions are actions or conditions that
must be met before authorizing access. Obligations are
actions that must be executed by users or system after the
access is given. The ABC model (authorization, obligation,
and condition) [34] was specifically designed to express
security policies including usage control constraints. The
expression of a constraint to be satisfied before the use
of an object can be expressed as contextual authorization.
However, constraints to meet during or after the use of an
object relate to obligations that the user must follow. The
NOMAD model [35] is based on a formalization in tem-
poral and deontic logic to express contextual obligations
which should be met before, during, or after the execution
of an action. It is also possible to specify a deadline after
which some obligation will be considered violated if the
action was not performed. Authors in [36], define a core
language to specify the access and usage control require-
ments and then give a formalism based on the logic of
temporary actions (TLA) [37] to specify the behavior of
the policy controller in charge of evaluating such policy. In
this approach, a permission is associated with two condi-
tions, the first must be true at the time of query evaluation,



Essaouini et al. EURASIP Journal on Information Security 2014, 2014:13 Page 14 of 16
http://jis.eurasipjournals.com/content/2014/1/13

Table 1 The summary of second series of tests

Tests Patient Active obligation The minimum CPU time (s) Strongly globally
number number research depth enforceable?
sl 1 4 6 0 Yes
s2 2 8 12 0.01 Yes
s3 3 12 18 0.03 Yes
s4 4 16 24 0.06 Yes
s5 5 20 30 0.1 Yes
6 6 24 36 0.2 Yes
s7 7 28 42 0.36 Yes
s8 8 32 48 0.66 Yes
s9 9 36 54 1.1 Yes
s10 10 40 60 1.78 Yes
s M 44 66 278 Yes
s12 12 48 72 4.16 Yes
s13 13 52 78 6.03 Yes
s14 14 56 84 6.04 Yes
s15 15 60 90 8.60 Yes
516 16 64 96 11.95 Yes
s17 17 68 102 1643 Yes
518 18 72 108 21.75 Yes
s19 19 76 114 28.89 Yes
520 20 80 120 37.97 Yes

This table describes the most important parameters influencing the time of executions: the number of active obligations and the depth of the solution search.

40 T T T T T T T

30

25

CPU time(sec)
N
o

O L 1 1 1 1
0 10 20 30 40 50 60 70 80

Number of active obligations in the tested situations

Figure 1 CPU utilization vs. Number of active obligations in the tested situations. This figure shows the cpu time elapsed before giving a first
solution where all active obligations in the situations tested are fulfilled.
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and the second must always be true as long as access is in
progress. The authors also introduce a concept to reset a
current access. Regarding obligations, they are associated
with two conditions. Once the first condition is satisfied,
the obligation is triggered, then the controller sends a
notification to the user to perform the appropriate obliga-
tion, the second condition determines when the obligation
should be considered violated. If the user does not sat-
isfy the obligation before the second condition becomes
true, a penalty is applied to him. The authors in [38] talk
about what they called deontic conflicts. The types of
conflict that the authors have classified in this category
are those that occur between permission and prohibition
and those which occurs between obligation and obligation
waiver. As in the used formalism, the authors do not use
prohibition and obligation waiver modalities, they do not
deal with these conflicts in their work. But in this cate-
gory, there is another kind of conflict which is the conflict
between the obligations with deadlines and permissions.
In our work, this conflict is detected when there is no plan
consisting of permitted actions that lead to fulfilling an
obligation requirement in its deadline. In other words, it
is possible that in a given situation, a mandatory action
is permitted and it can be fulfilled in its deadline, but it
is not possible to execute because it is necessary to first
execute other actions which are not permitted. Certainly,
the authors define another type of conflict called tempo-
ral conflicts which occur when two deontic assignments at
the same time initiate and terminate obligation. This is a
particular case of what we detect in what we call the global
conflict between the obligations with deadlines. Indeed, in
a given situation, it may be possible to fulfill an active obli-
gation in its deadline but given that there are other active
obligations, at the same time it is not possible to fulfill
them together without violating one of them. The con-
flict in the temporal constraints is actually a special case
of a ‘logical’ conflict which we detect with the concept of
executable plan.

9 Conclusions

In this paper, we use deontic modalities to specify
close security policies including obligations with deadline.
Then, we use the temporal sequential situations calculus
to derive concrete permissions and obligations. Further-
more, we show how the situation calculus allows us to
detect if there is a policy conflict in a given situation
using the planning task. Moreover, we have illustrated our
approach by using a case study from the health care com-
munity. Specifically, we are interested in obligations with
deadlines concerning completion of the patients’ medical
records. We show how we can use our language to express
the obligations of this example. In addition, we present the
implementation that we did, using the logic programming
language based on Golog.
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On the other hand, obligations are generally associated
with penalties when their violation occurs. The regula-
tion of a hospital may specify the penalties triggered when
medical records are not completed on due time. For exam-
ple, if medical folders are not completed on time, the
medical records department can establish for the presi-
dent of the Executive Committee of the Medical Council
of doctors the list of doctors and the number of folders
that remain incomplete for each of them. While receiving
this list, the director of professional services can inform by
warning all doctors of the list that their privileges are auto-
matically suspended until they complete their late folders.
Our ongoing work along these lines consists, when we
have a conflict, to specify whether the subject is account-
able for this conflict. Furthermore, when we have several
subjects, it is important to specify whether the violation
of an obligation is not due to a violation of another sub-
ject obligation that has indirectly delayed fulfillment of the
first obligation.

Our future work also includes conflict resolution. A
conflicting situation means that there are subjects who
cannot accomplish their active obligations one after
another without violation. In such a situation, it will
be interesting to know if there are active obligations of
another subject in the same situation that could solve this
conflict and then derive if this subject has enough free
time to perform some active obligations of the first sub-
ject. This is one of the possible solutions to solve the
conflict. We can also detect the rules responsible for the
conflict and then update the policy with new deadlines for
these rules.

Endnote

2The difficulty in logic of expressing the dynamics of a
situation without explicitly specifying everything that is
not affected by the actions.

Additional files

Additional file 1: conflictualSituation.pl. This is a prolog file which
contains the description of the implementation of the studied example.
Additional file 2: test.pl. This is a prolog file which contains the
description of the 20 performed tests. Each test represent a situation. Each
situation is the result of an admission of another patient relative to the
previous situation.

Additional file 3: deadlines_30_40.pl. This is a prolog file which
initializes the deadline values for the first series of tests.

Additional file 4: deadlines_1000_1100.pl. This is a prolog file which
initializes the deadline values for the second series of tests.
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