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Digital fingerprinting is a method to insert user’s own ID into digital contents in order to identify illegal users who distribute
unauthorized copies. One of the serious problems in a fingerprinting system is the collusion attack such that several users combine
their copies of the same content to modify/delete the embedded fingerprints. In this paper, we propose a collusion-resistant
fingerprinting scheme based on the CDMA technique. Our fingerprint sequences are orthogonal sequences of DCT basic vectors
modulated by PN sequence. In order to increase the number of users, a hierarchical structure is produced by assigning a pair of
the fingerprint sequences to a user. Under the assumption that the frequency components of detected sequences modulated by
PN sequence follow Gaussian distribution, the design of thresholds and the weighting of parameters are studied to improve the
performance. The robustness against collusion attack and the computational costs required for the detection are estimated in our
simulation.

1. Introduction

Accompanying technology advancement, multimedia con-
tent (audio, image, video, etc.) has become easily available
and accessible. However, such an advantage also causes a
serious problem that unauthorized users can duplicate digital
content and redistribute it. In order to solve this problem,
digital fingerprinting is used to trace the illegal users, where
a unique ID known as a digital fingerprint [1] is embedded
into the content assisted by a watermarking technique before
distribution. When a suspicious copy is found, the owner can
identify illegal users by extracting the fingerprint.

Since each user purchases contents involving his own
fingerprint, the fingerprinted copy slightly differs with
each other. Therefore, a coalition of users can combine
their different marked copies of the same content for the
purpose of removing/changing the original fingerprint. In
a fingerprinting system, a usual assumption is that the
colluders add white Gaussian noise to a forgery which they
create by combining (averaging) their copies in a linear
or nonlinear fashion [2–5]. Under the assumption of a
fixed correlation detector, it is reported that the uniform

linear averaging strategy is the most damaging one [6].
It is important to generate fingerprints that can identify
the colluders. A number of works on designing collusion-
resistant fingerprints have been proposed. Many of them
can be categorized into two approaches. One approach is
to exploit the spread spectrum (SS) technique [2–5], and
the other approach is to devise an exclusive code, known as
collusion-secure code [7–12], which can trace colluders.

In the former approach, spread spectrum sequences,
which follow a normal distribution, are assigned to users as
fingerprints. The origin of the spread spectrum watermark-
ing scheme is Cox’s method [2] that embeds a sequence into
the frequency components of a digital image and detects
it using a correlator. In this work, the fingerprinting is
introduced as a possible application of the spread spectrum
watermarking. Because of the quasi-orthogonality among
spread spectrum sequence used in the paper, the identifi-
cation of users from an illegal copy is possible. Hereafter,
we use the term “fingerprinting” as the application of the
watermarking scheme. Since normally distributed values
allow the theoretical and statistical analysis of the method,
modeling of a variety of attacks has been studied. Studies
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in [3] have shown that a number of nonlinear collusions
such as an interleaving attack can be well approximated by
averaging collusion plus additive noise. So far, many variants
of the spread spectrum fingerprinting schemes based on
Cox’s method have been proposed, particularly for using
a sequence whose elements are randomly selected from
normally distributed values.

There is a common disadvantage that high computa-
tional resources are required for the detection because the
correlation values with all spread spectrum sequences are
calculated at the detection. When the number of users
is increased, that of spread spectrum sequences is also
increased, hence the computational cost is linearly increased.
Wang et al. [4] presented the idea of group-oriented
fingerprinting system and proposed by a tree-structured
scheme. At the detection, firstly the groups to which colluders
belong are detected, and then only suspicious users within
the detected groups are checked if they are guilty or not.
The limitation of the number of innocent users placed under
suspicion reduces the computational costs by a factor of log
scale. The idea is based on the observation that the users
who have similar background and region are more likely
to collude with each other. Their motivation is to exploit
such a prior knowledge to assign specific fingerprints in
order to classify their groups in the system. The fingerprints
assigned to members of different groups that are unlikely to
collude with each other are statistically independent, while
the fingerprints assigned to members within a group of
potential colludes are correlated. Therefore, the reduction of
computational costs are merely the optional side effect. In
addition, since the prior knowledge is not always available,
the generation of fingerprints is not suitable from this point
of view.

In this paper, we focus on the spread spectrum finger-
printing and propose a new fingerprinting scheme based
on the CDMA technique. Our spread spectrum sequences
are theoretically quasi-orthogonal because they are DCT
basic vectors modulated by PN (pseudo noise) sequence
such as M-sequence and Gold-sequence [13], and so forth,
while those of Cox’s method are random sequences. The PN
sequence is a pseudorandom sequence of 1 and −1 values,
and is designed to retain quasi-orthogonality. Using the
quasi-orthogonality, it is possible to assign the combination
of spectrum components to each user and to provide the
hierarchical structure using two kinds of the sequences;
one is for group ID and the other for user ID. In order
to uniquely classify each user, we introduce a dependency
between the sequences by selecting a specific PN sequence
for the sequence of user ID using group ID. It specifies
the detection procedure because the detection of user ID
requires the corresponding group ID. Therefore, if we fail
to detect the group ID at the first detection, the following
procedure to detect user ID is not conducted. If no user
ID is detected from a pirated copy, it results in the false-
negative detection. By applying the statistical property, we
calculate proper thresholds according to the probability
of false-positive detection. Considering the characteristics
of the detection, we study the parameters used in the
procedure of embedding and detection, and assign weights

to the parameters. We demonstrate the performance of
the proposed scheme through computer simulation. From
the results, it is confirmed that the proposed scheme
rationally reduces the computational complexity because of
the introduction of hierarchical structure for fingerprinting
sequences and the specific designed of quasi-orthogonal
sequences that allows us to perform fast algorithm at the
detection. Furthermore, using properly selected parameters
derived from our experiments, the proposed scheme retains
high robustness against averaging collusion.

It will be required for a fingerprinting system to reveal its
algorithm because no standard tool is black box. In such a
situation, the security parameter is a secret key managed by
the author or his agent. Users only get a fingerprinted copy of
contents. Even if some of them collude to produce a pirated
version of the copy, it is necessary that no information about
the key is leaked from their fingerprinted copies. Assuming
that the embedding and detection algorithms are revealed to
colluders, the robustness against collusion attack is discussed,
and is evaluated by experiments. In the previous works [4,
5, 14], the robustness is evaluated by measuring the number
of the colluders detected from the attacked image that is
produced by collusion attack and is further distorted by other
attacks such as addition of noise and lossy compression.
The addition of noise and lossy compression distort the
whole attacked image, not only the components in which
a fingerprint is embedded. Thus, the fingerprint-to-noise
ratio has been measured in a spatial domain even if the
fingerprint is embedded in a frequency domain. When the
algorithms are revealed, it is possible for colluders to add a
noise only to those components. In this paper, we evaluate
the robustness when colluders add a Gaussian noise only to
those components by changing the fingerprint-to-noise ratio
that is measured only from the fingerprinted components.
From the experimental results, the proposed method retains
a considerable tolerance against addition of noise for the
image attacked by averaging.

This paper is organized as follows. Section 2 reviews
related works and reports the drawbacks and problems.
Section 3 describes the basic idea and approach of our
proposed scheme, and Section 4 presents the procedure
of embedding and detection introducing a hierarchical
structure. Section 5 discusses the parameters in the pro-
cedure and presents the weighting parameters considering
the characteristic of the proposed scheme. In Section 6,
computer-simulated results are provided. Finally, Section 7
concludes the paper.

2. RelatedWorks

In this section, we briefly review conventional collusion-
resistant fingerprinting schemes based on the spread spec-
trum fingerprinting.

2.1. Spread Spectrum Fingerprinting. Many fingerprinting
techniques have been recently proposed considering the
robustness against collusion attacks. Cox et al. [2] proposed
the first fingerprinting scheme based on the SS technique.
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In their scheme, a unique SS sequence w of real numbers is
assigned to each user as a fingerprint: w = {w0, . . . ,w�−1},
where each element wi is randomly generated by an inde-
pendently identically distributed source like N(0, 1) (where
N(μ, σ2) denotes a normal distribution with mean μ and
variance σ2).

Let v = {v0, . . . , v�−1} be the frequency components of a
digital image. We insert w into v to obtain a fingerprinted
sequence v∗, for example, v∗i = vi(1 + αwi), where α is
the embedding strength. At the detector side, we determine
which SS sequence is present in a pirated copy by evaluating
the similarity of sequences. From the pirated copy, a sequence
w̃ is detected by calculating the difference from the original
one, and its similarity with w is obtained as follows:

sim(w, w̃) = w · w̃√
w̃ · w̃

, (1)

If the value exceeds a threshold, the embedded sequence is
regarded as w.

In a fingerprinting scheme, each fingerprinted copy is
slightly different; hence, malicious users can collect c copies
D1, . . . ,Dc with respective fingerprints w1, . . . , wc in order to
remove/alter the fingerprints. A simple, yet effective way is to
average them because when c copies are averaged, ˜D = (D1 +
· · · + Dc)/c, the similarity value calculated by (1) is reduced
by a factor of c, which can be roughly

√
�/c [2]. Even in this

case, we can detect the embedded fingerprint and identify
the colluders by an appropriately designed threshold if the
number of colluders is small. Wang et al. [4] investigated
the error performance of pseudonoise (PN) sequences using
maximum and threshold detectors and proposed a method
to estimate the number of colluders.

The Cox’s method has excellent robustness against signal
processing, geometric distortions, subterfuge attacks, and
so forth [2]. However, the (quasi-)orthogonality of the
fingerprinting sequences is not theoretically assured. It is
well known that the cross-correlation between sequences
statistically decreases with an increase in the sequence
length. On the basis of this characteristic, conventional
fingerprinting schemes using the spread spectrum technique
provide quasi-orthogonality; hence it is probabilistic. Some
of the sequences might be mutually correlated. From the
viewpoint of robustness against attacks, it is desirable to
use real (quasi-)orthogonal sequences as a fingerprint. In
addition, this technique has a weakness that the required
number of SS sequences and the computational complexity
for the detection is increased linearly with the number of
users. A numerical example is shown in Figure 1 by changing
the number of users Nu, under the following environment.
The time consumption at the detection is evaluated on a
computer having an Intel Core2Duo E6700 CPU and 8-GB
RAM for Cox’s method with length of sequence � = 1024.
Since the detector of Cox’s method checks all candidates of
a fingerprint sequence, the time consumption is constant. It
is observed that the computing time for detecting colluders
is almost linearly increased with the number of users in a
fingerprinting system.
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Figure 1: Time consumption in the detection of colluders for Cox’s
scheme [sec].

2.2. Grouping. There is a common disadvantage in Cox’s
scheme and its variants such that high computational
resources are required for the detection because the correla-
tion values of all spread spectrum sequences must be calcu-
lated. For the reduction of computational costs, hierarchical
spread spectrum fingerprinting schemes have been proposed.
The motivation of the scheme proposed by Wang et al. [5] is
to divide a set of users into different subset and assign each
subset to a specific group whose members are more likely
to collude with each other than with members from other
groups. With the assumption that the users in the same group
are equally likely to collude with each other, the fingerprints
in one group have equal correlation. At the detection, the
independency among groups limits the amount of innocent
users falsely placed under suspicion within a group, because
the probability of accusing another group is very large.
Suppose that each group can accommodate up to M users.
The fingerprint sequence wi,j assigned to jth user within ith
group consists of two components:

wi,j =
√

1− ρei,j +
√

ρai, (2)

where {ei,1, ei,2, . . . , ei,M, ai} are the orthogonal basis vectors
of group i with equal energy and ρ is called intragroup
correlation. Due to the common vector ai, when colluders
from the same group average their copies, the energy of the
vector is not attenuated, and hence, the detector can accu-
rately identify the group. The detection algorithm consists
of two stages; one is the identification of groups involving
colluders and the other involves identifying colluders within
each suspicious group.

The idea of grouping was also applied in the finger-
printing code proposed by Lin et al. [15]. The difference of
approach is the model of attack. Generally, the performance
of fingerprinting codes is evaluated under the marking
assumption [7]. In the study of fingerprinting schemes based
on the spread spectrum fingerprinting, the attack is modeled
by averaging plus additive noise and the schemes involve the
embedding of fingerprint signal.
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3. Proposed Fingerprint Sequence

3.1. Fingerprint Sequence. Code division multiple access
(CDMA) is a form of multiplexing and a method of multiple
access to a physical medium such as a radio channel, where
each user of the medium has a different PN sequence.
Different from the sequence explained in Section 2.1, a
PN sequence which is a pseudorandom sequence of 1
and −1 values is mathematically designed to retain quasi-
orthogonality. Examples of such a sequence are an M-
sequence, Gold-sequence, and so forth [13].

One of the simple methods for fingerprinting is to assign
a unique PN sequence to each user as a fingerprint. However,
at the detection, we have to check all sequences by calculating
their correlations, which is the same problem that in the
case of spread spectrum fingerprinting. Instead, orthogonal
sequences are exploited as input signals using a well-
known orthogonal transform such as DFT and DCT before
modulating them by a PN sequence. If only orthogonal
sequences are used, the number of sequences is just equal to
the length of sequence. For the increase of the number, the
modulation by a PN sequence is employed. Thus, the spread
sequences modulated by a PN sequence do not seriously
influence each other, and the use of a fast algorithm for
calculating the orthogonal transform enables us to reduce
the computational costs. Considering such a property in our
scheme, we allocate one of the spectrum components to the
corresponding fingerprint information.

Let d = {d0, . . . ,d�−1} be a sequence constructed from
DCT coefficients and be initialized to the zero vector. We
assume that the ith element di is assigned to the ith user
as a fingerprint. At the time of embedding, the embedding
strength β is added only to an ith coefficient di = β; the
values of the other DCT coefficients are 0. After performing
IDCT on the sequence, it is multiplied by a PN sequence
to generate a specific spread spectrum sequence. Then,
the spread spectrum sequence assigned to the ith user is
represented by

wi = pn(s)⊗ dct
(

i,β
)

, (3)

where pn(s) is a PN sequence generated using an initial
value s, dct(i,β) is the ith DCT basic vector of an �-tuple
of strength β, and ⊗ implies elementwise multiplication. An
illustration of our spread spectrum sequence is shown in
Figure 2. The sequence wi is embedded into the frequency
components of a digital image.

The sequence obtained by subtracting the host sequence
from the sequence of a pirated copy is denoted by w̃i. At the
detection, instead of a similarity measurement, we multiply
each element of w̃i by the corresponding element of the PN
sequence pn(s) and perform DCT in order to obtain the
sequence ˜d = { ˜d0, . . . , ˜d�−1}

˜d = FDCT
(

pn(s)⊗ w̃i
)

, (4)

where FDCT denotes a fast discrete cosine transform algo-
rithm. Illegal users can be determined if the corresponding
coefficients exceed a threshold T. The procedure to detect the
embedded fingerprint information is depicted in Figure 3. If

Fingerprint information
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pn(s)
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Figure 2: Generation of the spread spectrum sequence.
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Figure 3: Detection of the fingerprint information.

a pirated copy is composed of c colluders’ ones, c spikes can
be detected by the detector.

The advantage of the above detection method is its
lower computational complexity because FDCT requires
O(� log �) multiplications [16] and the multiplication by the
PN sequence requires O(�) operations. Therefore, the total
computational complexity is much lower than that of Cox’s
method because the similarity function given in (1) requires
O(�2) operations for � users.

3.2. Design of Threshold. In conventional fingerprinting
schemes [2, 3], illegal users are detected by calculating the
correlations with the original fingerprint. If the original data
is available, the reliability of the detector can be increased.
Here, it is strongly required for the detector to detect only
illegal users, and not innocent ones. Therefore, the design
of a threshold is inevitable to guarantee low probability
of false-positive detection. In this subsection, we exploit
statistical properties to obtain the proper threshold for a
given probability of false-positive detection.

The sequence obtained by subtracting the host sequence
from the sequence of a pirated copy is denoted by w̃, and
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the DCT coefficients of the sequence modulated by the

PN sequence pn(s) are denoted by ˜d = { ˜d0, . . . , ˜d�−1}.
Remember that our fingerprint sequence is a DCT basic
vector modulated by a PN sequence. So, a base conversion
is performed to a set of PN sequences to generate new
spread spectrum sequences. For convenience, the sequence
˜d is called a detection sequence. The quasi-orthogonality of
our sequence is based on that of original PN sequence. In
the spread spectrum communication, the energy of a signal is
spread over a much wider band, and it resembles white noise.
Except for the synchronized signal, namely, an embedded
fingerprint, the other ones also resembles white noise. Hence,
the noise introduced by attacks may behave like a white
Gaussian injected in the sequence. From the preliminary

experiment shown in Figure 4, the distribution of ˜d can be
modeled by a Gaussian distribution.

Suppose that the distribution of ˜d is N(0, σ2) except for

a fingerprinted component ˜dk . If we insert a fingerprint by
adding a strength β to dk in order to satisfy the inequality

˜dk > max
i /= k

{

˜di
}

. (5)

We can detect the embedded fingerprint by setting a

threshold T to be imposed: ˜dk > T > ˜di. Then, T can
be calculated according to the probability of false detection,
which is illustrated in Figure 4. The probability that a

random variable dk exceeds T, Pr( ˜di > T), is equal to the
marked area in Figure 4. If ˜di > T, the detector decides

that ˜di is fingerprinted; hence, it detects an innocent user

by mistake. Therefore, Pr( ˜di > T) is the probability of false-
positive detection. Then, we can say that

Pr
(

˜di > T
)

≤ 1
2

erfc
(

T√
2σ2

)

, (6)

from the study in [17], where erfc(·) stands for the comple-
mentary error function.

The knowledge of the variance σ2 enables a fingerprint
detector to obtain a proper threshold corresponding to a
given probability of false detection. The estimation of the
variance σ2 is discussed in Section 5.1.

4. Hierarchical Scheme

4.1. Hierarchical Structure. In our technique, we assume that
each user’s fingerprint information consists of two parts:
“group ID” that identifies the group to which a user belongs,
and “user ID” that represents an individual user within the
group.

A fingerprint sequence is produced from one of the
DCT coefficients and a PN sequence in order to make
the fingerprint sequences quasi-orthogonal to each other.
However, in such a case the allowable number of users
is equal to the number of spectrum components. One
simple approach to increase the number of users is to use
two sequences, one for group ID and the other for user
ID. We assume that dg = {dg,0, . . . ,dg,�−1} and du =

T0
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Figure 4: Distribution of ˜d is approximated to N(0, σ2).

Table 1: Example of assigned fingerprint to 9 users.

dg ,0 dg ,1 dg ,2

du,0 user 1 user 4 user 7

du,1 user 2 user 5 user 8

du,2 user 3 user 6 user 9

{du,0, . . . ,du,�−1} are the vectors for group ID and user
ID, respectively. In this case, �2 users can be allowed with
2� spectrum components because the combination of two
components has �2 candidates. However, under averaging
collusion, it causes a serious problem that the combination
of two components cannot be identified uniquely even if
the embedded signals are correctly detected from a pirated
copy. For example, we assign two components to each user
to represent fingerprint information, as shown in Table 1.
If user 1 and user 6 collude to average two fingerprinted

contents, then two components, ˜dg,0 and ˜dg,1, can be detected

from ˜dg; similarly, two components, ˜du,0 and ˜du,2, can be

detected from the other sequence ˜du. Here, even if we can
detect such fingerprinted components, we cannot identify
the users uniquely since there are two cases for the collusion
of two users: user 1 and user 6, or user 3 and user 4. Such a
problem occurs even if the number of sequences is increased.

In order to solve this problem, conventional schemes [9,
11] exploited the error correcting codes with large minimum
distance to maintain collusion resistance. Different from
such an approach, we introduce dependency between the
spread spectrum sequences wig and wiu generated from two
sequences dg and du, by exploiting the property of quasi-
orthogonality of PN sequences. Before embedding a user ID,
its corresponding DCT basic vector is multiplied by a specific
PN sequence related to the group ID. Thus, for fingerprint
information (ig , iu), two spread spectrum sequences related
to dg and du with strengths βg and βu are given by

wig = pn(s)⊗ dct
(

ig,βg

)

, (7)

wiu = pn
(

ig

)

⊗ dct
(

iu,βu

)

, (8)
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respectively. Among the sequences wig , they satisfy an
orthogonality with each other because they are basically DCT
basic vectors even if they are modulated by pn(s). Notice
that the sequences wiu are bound to the group ID ig . If ig
is equal, wiu are also orthogonal with each other; otherwise,
they are quasi-orthogonal because of the modulation by
respective pn(ig). Hence, all components of the obtained
spectrum sequence are mutually independent; further, if the
applied PN sequences are different, the detected spectrum
sequences are also mutually independent. Thus, we give a
hierarchical structure to the embedded sequences, which
increases the allowable number of users; �2 users with only 2�
spectrum components. Then, we can identify colluders from
the combination of detected IDs. The hierarchical structure
in the sequences is illustrated in Figure 5.

Two components of fingerprint sequence given by (2) are
designed by DCT basic vectors modulated by PN sequences
such as M-sequence and Gold-sequence [13] in order to
further reduce the computational costs. Because of the assis-
tance of fast DCT algorithm, the computation of correlation
values at the detector is dropped to logarithmic scale. In
Cox’s scheme, all �2 patterns of fingerprint sequences must
be tested by performing the similarity measurements, which
require O(�3) operations. On the other hand, grouping
method calculates � correlation values for detecting a group
ID, and c� times, when the number of detected group ID
is c, for the corresponding user IDs. If colluders belong to
different groups, the detection of user IDs requires respective
group IDs. Assume that the number of detected group
IDs is much smaller than � and is approximately equal
to the number of colluders c. Then, the required number
of operations for the conventional grouping method is
approximately given by O(c�2). The computational costs are
further reduced to O(c� log �) by the assistant of fast DCT
algorithm in the proposed method.

The fingerprint sequences assigned for the jth user
within the ith group are represented as follows:

wi,j = pn(i)⊗ dct
(

j,βu

)

+ pn(s)⊗ dct
(

i,βg

)

, (9)

where, pn(x) is a PN sequence of length � generated using
an initial value x, s is a secret key, dct(i,β) is the ith DCT
basic vector of strength β and length �, and ⊗ implies
elementwise multiplication. The terms pn(i)⊗dct(j,βu) and
pn(s) ⊗ dct(i,βg) in (9) are corresponding to

√

1− ρei,j

and √ρai in (2), respectively. The energy of the fingerprint
sequence is represented by β2 = β2

g + β2
u. There are also the

correspondence relationships
√

1− ρ = βu and √ρ = βg .

4.2. Embedding. We give the procedure to embed a user’s
fingerprint into an N × N image. In our scheme, the
allowable number of users is �2 for a sequence of 2� spectrum
components, and the fingerprint is denoted by (ig , iu), where
ig and iu represent group ID and user ID, respectively.

The hierarchical embedding procedure is based on the
two spread spectrum sequences, wig and wiu , given by (7)
and (8) using a secret key s, respectively. One simple method

is to embed each sequence into the selected frequency
components of an image. The procedure to embed a user’s
fingerprint into an image is described as follows.

(1) Perform full-domain DCT on an image.

(2) Select 2� DCT coefficients from low- and middle-
frequency domains on the basis of a secret key
key. We denote the selected coefficients by vg =
{v0, . . . , v�−1}, vu = {v� , . . . , v2�−1}.

(3) Generate two spectrum sequences wig and wiu by
using a secret key s, fingerprint information (ig , iu),
and fingerprint signal strengths βg and βu.

(4) Embed the spectrum sequences into vg and vu

v∗g = vg + wig ,

v∗u = vu + wiu .
(10)

(5) Perform full-domain IDCT to obtain a fingerprinted
image.

Note that we have to decide the signal strengths βg and
βu carefully since a larger fingerprint energy increases the
robustness against attacks but also causes more degradation
of the fingerprinted image. The selection of the signal
strengths βg and βu can be further investigated in Section 6.1.

As mentioned in (7) and (8), wig and wiu are mutually
quasi-orthogonal. From the viewpoint of the CDMA tech-
nique, it is possible to embed them into one sequence v =
{v0, . . . , v2�−1} as follows:

v∗ = v + wig + wiu . (11)

In this case, the signals of the group ID and user ID
slightly interfere in spite of the quasi-orthogonality of the
PN sequence. This increases the interference in the detection
sequence of group ID, which is assumed to be modeled as
a Gaussian noise with zero mean. In the simple method,
the interference does not arise at the detection of a group
ID because the assigned signals for the group ID are DCT
coefficients multiplied with pn(s). It is noted that pn(s)
spreads a noise injected by attacks and improve the secrecy of
wig . In general, the effect of a noise decreases with an increase
in the length of a spread spectrum sequence. When (11) is
applied, the interference in the detection sequence of group
ID increases by the multiplexed sequence wiu , but that of
user ID decreases because the length is doubled. Under the
same number of users as the simple method, the robustness
against attacks can be superior. In addition, the allowable
number of users is 4�2, which is four times larger than that
in the simple method, while the false-positive probability
is degraded. The performance evaluation is discussed in
Section 6. For convenience, we call the simple method ����

�, and the latter ���� ��. The procedure to generate the
proposed spread spectrum sequence is depicted in Figure 6.
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Spectrum sequence (group ID)

· · ·

Group 1

· · ·

Group 2

· · ·
Spectrum sequence (user ID)

User 3 in group 1

User 2 in group 1

User 1 in group 1

Spectrum sequence (user ID)

User 3 in group 2

User 2 in group 2

User 1 in group 2

· · ·

Figure 5: Hierarchical structure of two sequences.

Fingerprint information (ig , iu)

Group ID

ig dg

IDCT
Secret key s

PN generator dct(ig ,βg)

pn(s)

wig

SS sequence of type I

User ID

iu du

IDCT

PN generator dct(iu,βu)

pn(ig)

wiu

SS sequence of type II

Figure 6: Procedure of generating the proposed spread spectrum
sequence.

4.3. Detection. At the detector side, a host image (host
frequency components) and secret keys s and key are
required. Since the group ID and the user ID that comprise
a user’s fingerprint are embedded separately, the detection
method consists of two stages. The first stage focuses on
identifying the groups involving colluders, and the second
one involves identifying colluders within each guilty group.
The latter operation is performed on the sequence using
the PN sequence generated from the identified group ID
as a seed. At the detection of each ID, we compare the
components in the detection sequence with a threshold. The
overview of the detection procedure is illustrated in Figure 7.

For the detection of ���� �, we denote two sequences
extracted from a pirated copy by ṽg and ṽu, which are selected
from frequency components on the basis of a secret key key.

(1) Perform full-domain DCT on a pirated copy.

(2) Select 2� DCT coefficients from low- and middle-
frequency domains on the basis of a secret key key,
which are denoted by two sequences ṽg and ṽu.

Original copy Pirated copy

Extraction Secret key

Detection of
group ID

ig,1 ig,2 · · · ig,k

Detection of
user ID

Detection of
user ID

· · · Detection of
user ID

(ig,1, iu,1) (ig,2, iu,1), · · · , (ig,2, iu,h)

Figure 7: Illustration of the detection procedure.

(3) Detect a group ID by the following operations.

(3-1) Generate a PN sequence pn(s) using a secret key
s.

(3-2) Perform 1D-DCT to obtain the detection se-
quence dg:

˜dg = FDCT
(

pn(s)⊗
(

ṽg − vg

))

. (12)

(3-3) Calculate the variance of ˜dg by considering the
property of its distribution and determine a
threshold Tg with a given false-positive proba-
bility Peg .

(3-4) If ˜dg,k ≥ Tg , (0 ≤ k ≤ � − 1), determine k as
group ID.

(4) Detect a user ID using the detected group ID by the
following operations.

(4-1) Generate a PN sequence pn(ig,k) using a detect-
ed group ID ig,k.

(4-2) Perform 1D-DCT to obtain the detection se-

quence ˜d
(ig,k)
u :

˜d
(ig,k)
u = FDCT

(

pn
(

ig,k

)

⊗ (ṽu − vu)
)

. (13)
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(4-3) Calculate the variance of ˜d
(ig,k)
u and determine a

threshold Tu with a given false-positive proba-
bility Peu.

(4-4) If ˜d
(ig,k)
u,h ≥ Tu, (0 ≤ u ≤ � − 1), determine h as

the user ID.

Note that when some group IDs are detected, we examine
each user ID corresponding to each detected group ID in
order to identify all colluders. Therefore, our scheme is
designed for catch many-type fingerprinting [1].

For the detection of ���� ��, ṽ is selected from the
frequency components of a pirated copy on the basis of a
secret key key. By a procedure similar to that for ���� �,
fingerprint information is detected as follows:

(i) group ID

˜dg = FDCT
(

pn(s)⊗ (ṽ − v)
)

. (14)

If the strength of the kth DCT coefficient ˜dg,k exceeds a
threshold Tg , we determine k as the group ID.

(ii) user ID

˜d
(ig,k)
u = FDCT

(

pn
(

ig,k

)

⊗ (ṽ − v)
)

. (15)

If ˜d
(ig,k)
u,h exceeds a threshold Tu, we determine h as the user

ID.
The performance of the detector is strongly related to the

determination of the thresholds Tg and Tu. The details of
deciding these thresholds according to the probability of false
detection are provided in Section 5.

4.4. Secrecy of Embedded Sequences. One of the requirements
for a fingerprinting system is to disclose the algorithm for
standardization. In our scheme, if the algorithm is given,
the selected frequency components can be identified by
comparing some fingerprinted images. Although it seems a
serious problem for the secrecy of fingerprint information,
an intentional modification of the sequences wig and wiu is
extremely difficult because of the secrecy of the following
three items:

(i) the selection of DCT coefficients,

(ii) the generation of PN sequences,

(iii) the synchronization of PN sequences.

The order of the selected components is determined by a
secret key key. Even if a specific sequence is intentionally
inserted into the components with a random order, it
does not have a peak in the detection sequence because
it is multiplied by unknown PN sequence. Without the
knowledge of the secret key, it is also difficult to detect
the sequences wig and wiu because of the characteristics of
PN sequence. It is well known that the autocorrelation of
an M-sequence, which is used for the modulation of DCT
basic vectors in our scheme, shows a peak for zero lag,

and is nearly zero for all other lags. Hence, the complete
knowledge of the applied PN sequence is inevitable for the
alteration/removal of fingerprint signals. So, an intentional
modification/injection of fingerprint information is still
difficult for attackers. What they can do is to find the DCT
coefficients selected for embedding a fingerprint, and to
inject a noise on them without seriously degrading the image.

As another collusion attack, we assume that colluders
subtract a fingerprinted image from the other fingerprinted
ones and exploit the obtained differences to add a noise to
the fingerprinted signal in order to eliminate a fingerprint.
However, since the additive noise is spread over the finger-
printed sequence by exploiting a PN sequence, it is difficult
for attackers to seriously alter a particular component in the
fingerprinted sequence [3, 4]. The addition of a noise merely

increases the variances of ˜dg and ˜d
(ig,k)
u .

5. Considerations of Parameters

In this section, we propose an improved method that obtains
a proper threshold and the corresponding parameters. First,
we describe the specific technique employed for setting a
threshold and consider the parameters used in the finger-
printing scheme. The idea of our improved scheme is to
assign weights to fingerprint strengths βg and βu for group
and user IDs and to also provide a basis for setting the
corresponding thresholds Tg and Tu used in a two-level
detection.

5.1. Threshold. In this subsection, we apply the statistical
property discussed in Section 3.2 to our basic scheme. In
order to obtain a threshold that guarantees a given proba-
bility of false-positive detection, we focus on the distribution
of the detection sequence. Considering the property of the
sequence, we obtain an approximation of the variance σ2

required for setting a threshold. In Figure 8, for instance,
we illustrate the detection sequence ˜dg where a group ID is
embedded with the following conditions. For the adoption
of FDCT, we choose � = 210(= 1024). A fingerprint is
embedded into different groups with strength βg = βu =
500 in order to estimate the effects of averaging attack.
For the evaluation of its practicality, we perform JPEG
compression with a quality factor of 35% and averaging
attack. Figure 8 depicts the detected signals from the attacked
image, where the numbers in parentheses represent group
IDs. Both fingerprint strengths are dropped to 1/10 of their
original values by averaging and additional noise interfered
with both fingerprinted components. It is observed that
10 spikes indicate the presence of 10 group IDs. Thus,
the appropriately calculated threshold enables us to detect
10 groups to which the colluders belong. Further, we can
similarly detect the embedded users IDs, and finally identify
the colluders. In this preliminary experiment, we observed

Gaussian distribution with 0 mean of the sequence ˜dg except
for 10 spikes. We also observed that additional noise caused
by the JPEG compression shown in the nonfingerprinted
components approximately follows a normal distribution.
Using 100 different combinations of 10 colluders, the
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frequency distribution of the signals in ˜dg is illustrated
in Figure 9. We can see that the frequency distribution,
except for the fingerprinted signal, is approximated to
Gaussian distribution with zero mean. If we know σ2 of the
distribution of nonfingerprinted signals, then we can set the
ideal threshold using (6). In order to estimate σ2, we focus
on the symmetry of the distribution of nonfingerprinted
components.

Let ˜dg,min be the minimum component in ˜dg,

˜dg,min = min
i
˜dg,i, (16)

and Dg be the range from ˜dg,min to − ˜dg,min. If a component is
within the range Dg , it is assumed as nonfingerprinted signal.
Hence, the variance of the distribution of nonfingerprinted
signals is given by

σ2
g =

1
n

∑

˜dg,k∈Dg

(

˜dg,k − ˜dg

)2

, (17)

where ˜dg denotes the detection sequence whose components
are within the range Dg for detecting the group ID; n, the

number of components in ˜dg; ˜dg, the mean of ˜dg. Therefore,
we can set a threshold according to the probability of false

detection Peg . Similarly, for the detection sequence ˜d
(ig,k)
u , we

can apply the same estimation as that applied for group ID.

It is possible to estimate the variance σ2
g using the ˜dg,k that

have negative values because of the symmetric distribution.

However, since the number of such ˜dg,k is �/2 in average, the
precision of the estimation is degraded.

For given false-positive probabilities Peg and Peu, the
thresholds Tg and Tu can be calculated by the derived
variances σ2

g and σ2
u as follows:

Tg =
√

2σ2
g erfc−1

(

2Peg
)

,

Tu =
√

2σ2
uerfc−1(2Peu),

(18)

where erfc−1(·) stands for the inverse complementary error
function.

5.2. Weight. In this subsection, we consider the parameters
in our scheme in order to improve the accuracy of detection
of fingerprints under averaging collusion. Our improved
method is to assign weights to the fingerprint strengths
βg and βu to the probabilities Peg and Peu for setting the
thresholds Tg and Tu, respectively.

First, we review the procedure to detect a fingerprint, in
which a two-level detection scheme is conducted. After the
detection of group IDs, we detect each user ID corresponding
to a group ID since a group ID is necessary for the detection
of user ID within the group. Therefore, if we fail to detect
a group ID at the first detection, the following procedure to
detect a user ID is not conducted; hence, the probability of
correctly detecting a user’s fingerprint decreases. In order to
solve this problem, we assign weights to Peg and Peu, which
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Figure 8: Detected signals in the detection sequence ˜dg under
averaging attack and JPEG compression with a quality factor of
35%.
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Figure 9: Distribution of the detection sequence ˜dg under averaging
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are closely related to the thresholds Tg and Tu, respectively.
By setting Tg lower, the detection rate of a group ID can be
increased; however, the false-positive detection rate can also
be increased. Considering the false detection of a user ID,
we set Tu higher in order not to detect the ID of innocent
users. Even if wrong group IDs are accidentally detected, the
associated user IDs can be excluded with high probability.
Thus, in our improved scheme, we set Peg > Peu in the
detecting procedure.

In our technique, we add a fingerprint with the strengths
βg and βu to each embedded sequence. If the strengths
are increased, the robustness against intentional or unin-
tentional attacks can be improved, but they also cause
degradation of image. Hence, there is a limitation on
the fingerprint strength that can be used and we should
apportion the limited energy between β2

g and β2
u. In other

word, the fingerprint energy is to be constant, and the value is
β2
g+β2

u . If high energy is allocated to the sequence of a user ID,
its detection rate is increased. However, a larger βu reduces
the detection capability of a group ID because βg becomes
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small and makes it harder to narrow down an individual
user in the group. From the above discussion, a threshold
Tg should be low even if the false detection of a group ID
is increased. With a small βg , we could expect to archive
the maximum performance because a large βu improves the
detection of a user ID. Thus, we set βg < βu in the embedding
procedure of our improved method. The optimal parameters
are estimated by computer simulation in Section 6.

5.3. Number of False-Positive Detection. The analysis on the
probability of false-positive detection is considered. First, we
define the number of false-positive detection Nfp as follows.

Definition 1. The number of false-positive detection Nfp is
the number of innocent users expected to be detected in a
detection process.

It is remarkable that the probability of false-positive is
Nfp/�2 if the number of detected innocent users is at most 1 in
a detection. We assume the conditions such that the number
of colluders is c, the sequence length is �, and colluders
belong to different groups. Then, for a given probability Peg ,
the expected number of false-positive detection for group
ID is Peg · (� − c). Similarly, at the detection of user ID,
the number of false-positive detection is Peu · (� − 1) for
a given probability Peu if the corresponding group ID is
correct, otherwise, it is Peu · �. If the number of detected
colluders is c′ ≤ c, the expected number of detected group
ID is estimated as c′ + Peg · (� − c). Hence, the number of
false-positive detection Nfp is

Nfp = c′Peu(� − 1) + Peg (� − c)Peu�. (19)

We can choose Peg and Peu for a desired Nfp in our finger-
printing system. By doing so, the corresponding thresholds
Tg and Tu are calculated during the detection process.

The group-oriented design reduces the number of candi-
dates from �2 users to c′� users. This feature contributes on
the reduction of the false positive probability as well as the
computational complexity at the detection.

6. Simulation Results

For the evaluation of the proposed detection method,
we implement the algorithm and measure the number
of detected colluders from a pirated copy with averaging
collusion. As a host signal, we use 10 standard images “lena,”
“aerial,” “baboon,” “barbala,” “bridge,” “f16,” “peppers,”
“sailboat,” “splash,” and “tiffany” that have a 256-level gray
scale with 512× 512 pixels. For the evaluation of robustness
against attacks, the energy of embedding signals is fixed in
our simulation from the viewpoint of PSNR. The probability
of false-positive detection is also fixed by Peg = 10−3 and
Peu = 10−8. The detection of the fingerprint is performed
with the knowledge of the host image.

In the proposed CDMA-based fingerprinting scheme,
two sequences of � elements are multiplexed using the
CDMA technique. In such a case, the allowable number
of users is �2. If � is doubled, the false-positive detection

Table 2: Weighting parameters for a maximum detection rate.

�
���� � ���� ��

βg βu βg βu

512 — — 400 602

1024 370 616 400 598

2048 400 597 400 600

4096 390 604 400 597

rate also becomes double because the rate is proportionally
increased. For the evaluation of the positive detection rate
under the same conditions, the number of users is fixed
to 220 (= 1024 × 1024) for different �. In such a case, the
number of false detection for a group ID is Peg (� − c) =
10−3 · (1024− c) ≈ 1, and Nfp ≈ 10−5 × (c′ + 1). Note that �
must be a power of 2 because of the characteristic of FDCT.

6.1. Weighting of Signal Strength. In the improved scheme
discussed in Section 5, we assign weights to the strengths,
βg and βu. The difference of the detection rate of colluders
is evaluated for various kinds of combination of them with
a constant distortion level, which is measured by PSNR =
45 [dB]. Under the limitation of PSNR, the energy of
fingerprint signals wig and wiu is β2

g + β2
u ≈ 520000. It is

noted that the degradation of fingerprinted image is slightly
varying because of the rounding error caused by the IDCT
operation.

In the simulation, fingerprinted images are averaged and
compressed by JPEG algorithm with a quality factor of 35%.
Using 103 patterns of colluders, the number of detected
colluders are determined by changing the strength βg by
setting PSNR= 45 [dB]. Figure 10(a) shows the result of
���� � and indicates that the maximum detection rate is
obtained by setting βg = 370 and βu = 616 with � = 1024.
For ���� ��, the maximum detection rate is obtained by
setting βg = 400 and βu = 598. For the evaluations of the
perceptual degradation with such parameters, the original
image and fingerprinted images are shown in Figure 11.
Since PSNR is 45 [dB], the degradation is not perceived. The
weighting parameters which derive the maximum detection
rate are enumerated in Table 2 for different values of �. It
is noticed that an embedded fingerprint signal spread over
DCT coefficients is finally rounded by the quantization of
pixel values after DCT. Thus, the rounding-off errors are
slightly different for fingerprint signals of equal strengths,
which causes the differences in the values of PSNR. We
simply set the parameters enumerated in Table 2 in the
following simulation. From Table 2, we can see that the
optimal values are not sensitive to the length �. It is because
the attenuation of the embedded signals is dependent not on
the length, but on the number of colluders. It is noted that
the similar results are derived for other images.

6.2. Robustness against Collusion. The robustness of our
scheme against collusion attack is evaluated for two methods.
In the method ���� �, 2� DCT coefficients are used to
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Figure 10: Number of detected colluders for each fingerprint signal strength βg with � = 1024. The maximum detection rate is obtained by
βg = 370 and βu = 616 for ���� �, and by βg = 400 and βu = 598 for ���� ��, where the value of PSNR for fingerprinted images is set to
45 [dB].

(a) original (b) ���� � (βg = 370, βu = 616) (c) ���� �� (βg = 400, βu = 598)

Figure 11: Perceptual quality of “lena” with PSNR = 45 [dB].

embed the fingerprint information (ig , iu), and the coeffi-
cients assigned to group ID and user ID are partitioned into
two sequences avoiding the overlap. In the method of ����
��, two sequences of 2� elements are multiplexed using the
CDMA technique. In such a case, the allowable number
of users is 4�2, but the false-positive detection rate can be
doubled because the number of elements is 2� and the rate is
proportionally increased by the number. In order to evaluate
the positive detection rate under the same false detection rate
as ���� �, only half of the 1D-DCT coefficients computed
from the 2� coefficients are assigned for each of (ig , iu) when
� = 1024.

By changing the length of a spectrum sequence, the
number of detected colluders using an image “lena” is
measured under the conditions such that fingerprinted
images are averaged and compressed by JPEG with a quality
factor of 35% using 104 patterns of colluders. Figure 12
shows the results, where the dotted line is for ���� � and
the solid line is for ���� ��. From this figure, the robustness
against averaging collusion is improved with an increase in
�, and ���� �� is more robust than ���� �; these results
are because of the characteristics of the CDMA technique.
The robustness is also evaluated for other images with � =

4096 using 103 patterns of colluders. Since the distortions
caused by JPEG compression depend on the characteristics
of an image, the difference in the variances of detection
sequences affect the number of detected colluders. In spite of
the effects, very similar results are obtained for some images;
hence, only six typical results are shown in Figure 13. As the
noise caused by JPEG compression which depends on the
characteristic of an image, the number of detected colluders
differs in the results. From the above results, the robustness of
���� �� is higher than that of ���� � under the conditions
that the lengths of selected DCT sequence are equal and
the number of users is 220. Remember that the allowable
number of users in ���� �� are 4 times larger than that
in ���� � if the detection rate or the probability of false-
positive is sacrificed. By changing the quality factor of JPEG
compression, the robustness is measured for ���� �� with
length � = 8192, which results are depicted in Figure 14.
Due to the increase of the quality factor, the amount of noise
is reduced, and hence, the number of detectable colluders
is increased. If the fingerprint sequences are completely
orthogonal, all colluders will be detected from a pirated
copy no matter how many colluders are involved. Because
of the quasi-orthogonality, the mutual interference prevents
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Figure 12: Number of detected colluders from pirated copy under
averaging collusion and JPEG compression with a quality factor of
35% for an image “lena,” where the number of users is 220.
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Figure 13: Number of detected colluders from pirated copy under
averaging collusion and JPEG compression with a quality factor of
35% with � = 4096.

our detector from catching all colluders. It is observed from
Figure 14 that almost all colluders are correctly detected from
a pirated copy when the quality factor is 100% that means no
distortion occurred. According to the decrease of the quality
factor, the number of detected colluders is reduced.

Although the robustness can be improved with the
increase of length �, it is limited by the image size.
Because selected DCT coefficients involve high-frequency
components, they are vulnerable to attacks such as filtering
operations and JPEG compression, which implies a trade-off
problem.

6.3. False Detection. In the proposed detection method, the
detection of user ID is performed repeatedly for the detected

1009080706050403020100

Number of colluders

0

10

20

30

40

50

60

70

80

90

N
u

m
be

r
of

de
te

ct
ed

co
llu

de
rs

JPEG 50%
JPEG 75%
JPEG 100%

Figure 14: Number of detected colluders for various kinds of JPEG
quality factor when � = 8192.
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Figure 15: Number of detected group ID, c′, including false-
positive detections for an image “lena” with � = 1024.

group IDs. However, this repetition can increase the false-
positive detection. So, the average number of innocent users
detected under the same conditions as the evaluation of
positive detection is evaluated.

At the detection of group ID, the values of dg,k , (0 ≤ k <
1024) are checked if they exceed a threshold Tg or not. Since
the given false-positive probability for a group ID is Peg =
10−3 in our simulation, one wrong group ID, in average,
can be detected by mistake. The number of detected group
IDs including false-positive ones is shown in Figure 15. The
number of detected group IDs for ���� � is much larger, but
it does not imply that the false detection is also much larger.
Remember that even if a wrong group ID is detected, the
following user ID is excluded with high probability; hence,
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Table 3: Number of false-positive Nf p for an image “lena”.

�
Nfp [×10−4]

���� � ���� ��

512 — 1.41

1024 1.91 1.71

2048 1.58 1.71

4096 1.58 2.04

Table 4: Comparison of Nfp with � = 4096.

image
Nfp [×10−4]

���� � ���� ��

aerial 2.1 2.5

baboon 2.9 5.4

barbala 1.7 0.8

bridge 2.9 2.9

couple 1.7 4.2

f16 2.1 3.3

peppers 2.9 0.8

sailboat 0.8 1.3

splash 1.3 0.4

tiffany 0.8 0.8

the false-positive detection of group ID does not seriously
increase Nfp.

A statistical distribution is just measured from the detec-
tion sequence of length �. It is not sufficiently long from the
viewpoint of statistical analysis; hence, it causes differences
in the results. The detection operation is performed one time
for group ID and c′ times for user ID. In this simulation, c′ is
at most 16 from Figure 15. Thus, for the given false-positive
probability Peu = 10−8, the number of false detection Nfp

is approximately 1.6 × 10−4. In average, we can detect 1.6
innocent users by mistake in our trials using 104 patterns of
colluders. Due to the limitation of computational resources,
the precision of our experimental values is not assured. We
show the average number of falsely detected innocent users
in our 104 trials for the number of colluders from 7 to 40.
The results are shown in Tables 3 and 4. From the viewpoint
of data precision, the results virtually reflect the designed
false probability in our simulation. It is worth mentioning
that the number of detected innocent users derived in this
experiment is at most 1 in each trial. It means that the
probability of false-positive is equal to Nfp/�2.

6.4. Robustness against Additive Noise. It is a well-known
fact that in spread spectrum fingerprinting, the distortions
caused by attacks such as compression and filtering are mod-
eled as an additive noise. Due to the lack of the knowledge
about the embedding/detection algorithm, the best strategy
for colluders is to degrade the entire fingerprinted image.
Here, as discussed in Section 4.4, if the algorithm used in our
system is revealed for colluders, the selected DCT coefficients
can be easily identified by comparing some fingerprinted
images. In such a case, colluders can effectively insert an

Table 5: Number of false-positive detection Nf p under an additive
Gaussian noise for an image “lena”.

FNR [dB]
Nfp [×10−4]

���� � ���� ��

−5.0 0.13 0.09

−2.5 0.63 0.21

0.0 1.54 1.38

2.5 2.58 1.50

5.0 3.13 4.04

Table 6: Number of false-positive detection Nf p in Cox’s scheme.

� Nfp [×10−4]

1024 1.27

2048 0.73

additive noise into these coefficients to remove/modify their
fingerprint signals. Therefore, we estimate the robustness of
our scheme against the addition of noise in the following
way. After averaging fingerprinted images, additive white
Gaussian noise is added only to the DCT coefficients into
which the fingerprint is embedded.

Fingerprinted images are averaged by colluders and
additive white Gaussian noise is inserted only into the
selected DCT coefficients using 104 patterns of colluders;
the results are shown in Figure 16. The noise energy is
given by Fingerprint-to-Noise Ratio (FNR) measure, which
is calculated by the ratio of the variance of wig and wiu to the
additive noise inserted into the selected DCT coefficients. Let
σ2
w be the variance of a fingerprint signal, and σ2

ε be that of
the additive noise. Then, the FNR is given by the following
equation:

FNR = 10 log10
σ2
w

σ2
ε
. (20)

We also evaluate the number of false-positive detection Nfp.
The average of Nfp for the number of colluders from 7
to 40 are shown in Table 5. From the above results, it is
confirmed that the exposure of our fingerprinting system
does not seriously degrade the positive and false detection
rates. It is observed that the number of false-positive is
slightly increased with the FNR. Because the number c′

of candidates of colluders detected at detection of group
ID is increased when the amount of noise is small, while
the number of innocent users detected by mistake at the
detection of group ID is Peg(� − c). Namely, the number
of false-positive Nfp given by (19) is decreased when FNR
is decreased. The robustness are also evaluated for other
images using the length � = 4096 and the similar results
are obtained; hence, they are omitted. These results indicate
that the proposed fingerprinting scheme is robust even if
colluders know the selected DCT coefficients for embedding
fingerprint signals. Consequently, our scheme retains high
robustness against collusion attack, and the fingerprinting
system could be made public.
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Figure 16: Robustness against selective addition of noise for an
image “lena” with � = 4096.
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Figure 17: Performance comparison of Cox’s scheme for an image
“lena” with number of users 104 under averaging collusion plus
JPEG compression with a quality factor of 35%.

6.5. Comparison. For a comparison of our scheme with
conventional one, the basic Cox’s scheme described in
Section 2.1 is implemented. Using an embedding strength
of α = 0.1, a fingerprint x = {xi | xi ∈ N(0, 1), (0 ≤
i ≤ � − 1)} is embedded into frequency components which
are � highest-magnitude DCT coefficients, excluding the DC
component. For the detection, on the basis of the method
proposed in Section 5.1, the threshold for determining the
existence of the fingerprint is calculated using the variance
of similarity measurements of all candidates. Because of the
computational complexity in the calculation of similarity
measurements, the number of candidates is 104 in the sim-
ulation. Figure 17 shows the number of detected colluders
in Cox’s scheme and the proposed ���� ��, where the total
number of coefficients for embedding a fingerprint is 1024
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Figure 18: Performance comparison of Cox’s scheme for an image
“lena” with number of users 104 under averaging collusion when
the length of sequence is 2048.

and 2048. The number of false-positive Nfp for Cox’s scheme
is also shown in Table 6.

We can see that the performance of our scheme is
much better than that of Cox’s method when the length
of sequence is 2048, and it can be further improved if the
length is increased. It is interesting that the performance
of Cox’s method is not so improved by increasing the
length of a sequence. This is because the magnitude of
DCT coefficients is too small to embed them when the
length is increased. In general, it is advisable to embed a
fingerprint by considering the characteristics of the original
contents from the viewpoint of imperceptibility. However,
in this case it degrades the performance. On the other
hand, our scheme does not utilize the characteristics of the
original contents. Instead, the embedding energy used to
fingerprinting is much smaller in order not to degrade the
quality of fingerprinted image. For example, PSNR of our
scheme is about 45.0 [dB] and that of Cox’s method is
about 37.7 [dB]. By changing the quality factor of JPEG
compression, the behavior of the performance is measured
for Cox’s method with � = 2048 and ���� ��with � = 1024,
which results are shown in Figure 18. It is observed that
the traceability of Cox’s method is slightly better than the
proposed method when the quality factor is 100%. However,
with the decrease of the quality factor, the traceablity of
proposed method outperforms from that of Cox’s one. It
means that the proposed method is less sensitive to the
addition of noise.

One of the advantages of our scheme is its scalability
for movie files. In [18], the collusion resistance and the
computational complexity of existing fingerprinting schemes
[2, 7–9, 14] are summarized using two parameters, the signal
length N and the number of users Nu. It shows that the
orthogonal fingerprinting [2], ACC [8], and joint coding-
embedding [14] can be scaled to hold 10 million users with
a collusion resistance of 100. On the detection complexity
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Figure 19: Time consumption in the detection of colluders for the
proposed ���� �� scheme, Cox’s scheme [2], and Wang’s scheme
[4] [sec].

of those schemes, the number of host signals, for instance
frames, is a dominant term because a fingerprint signal
is modulated depending on the host signal. On the other
hand, the independent fingerprint sequences enable us to
omit the term. During a detection, our detector first collects
the differences between an original frame and the pirated
copy’s one, and sums the differences. Then, it checks if
colluders’ fingerprint signals are included. This suggests that
it is sufficient for the detector to perform our detection
operation only one time. Note that the computational costs
required for calculating the sum of difference is much smaller
than that of the detection operation.

For a comparison of the computational complexities, the
time consumption is evaluated on a computer having an
Intel Core2Duo E6700 CPU and 8-GB RAM. By changing
the number of users Nu, the time consumptions of Cox’s
scheme [2] and Wang’s scheme [4] are plotted in Figure 19.
The result of the proposed ���� �� scheme with a constant
Nu = 106 is also plotted in the figure. Since the detector of
Cox’s scheme checks all candidates of a fingerprint sequence,
the time consumption is constant. On the other hand,
our scheme and Wang’s scheme depend on the number of
detected group IDs, and its hierarchical detection procedure
reduces the total trails for detecting user ID. The proposed
scheme further reduces the execution time by applying the
fast DCT algorithm to get correlation scores. We can see
that the proposed scheme consumes much less time than the
conventional schemes.

7. Conclusion

In this paper, we proposed a collusion-resistant finger-
printing scheme based on the CDMA technique. In the
proposed scheme, each user’s fingerprint consists of a
group ID and a user ID, and we assigned these IDs to
the combination of spectrum components. By exploiting
the hierarchical structure provided by PN sequences, we
can allow a larger number of users than conventional
fingerprinting schemes. During the fingerprint detection, we

can calculate a threshold according to the given probability
of false-positive detection. Instead of a similarity function,
the use of FDCT algorithm for detecting colluders rationally
reduces the computational complexity. We then study the
parameters in the scheme in order to obtain the maximum
performance. By assigning weights to the probabilities for
setting thresholds, we improved the correct detection rate
of colluders. Moreover, using this improvement we can
effectively assign a weight to the fingerprint strength and
improve the collusion resistance. We showed the effectiveness
of the proposed scheme through experimental results.

One of the future works is to extend our fingerprinting
system with multiple layers in order to further increase the
allowable number of users.

Acknowledgment

This research was partially supported by the Ministry of
Education, Culture, Sports Science and Technology, Grant-
in-Aid for Young Scientists (B) (21760291).

References

[1] M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu, “Collusion-
resistant fingerprinting for multimedia,” IEEE Signal Process-
ing Magazine, vol. 21, no. 2, pp. 15–27, 2004.

[2] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure
spread spectrum watermarking for multimedia,” IEEE Trans-
actions on Image Processing, vol. 6, no. 12, pp. 1673–1687, 1997.

[3] H. V. Zhao, M. Wu, Z. J. Wang, and K. J. R. Liu, “Forensic
analysis of nonlinear collusion attacks for multimedia finger-
printing,” IEEE Transactions on Image Processing, vol. 14, no. 5,
pp. 646–661, 2005.

[4] Z. J. Wang, M. Wu, W. Trappe, and K. J. R. Liu, “Group-
oriented fingerprinting for multimedia forensics,” EURASIP
Journal on Applied Signal Processing, vol. 2004, no. 14, pp.
2153–2173, 2004.

[5] Z. J. Wang, M. Wu, H. V. Zhao, W. Trappe, and K. J. R.
Liu, “Anti-collusion forensics of multimedia fingerprinting
using orthogonal modulation,” IEEE Transactions on Image
Processing, vol. 14, no. 6, pp. 804–821, 2005.

[6] N. Kiyavash, P. Moulin, and T. Kalker, “Regular simplex fin-
gerprints and their optimality properties,” IEEE Transactions
on Information Forensics and Security, vol. 4, no. 3, pp. 318–
329, 2009.

[7] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for
digital data,” IEEE Transactions on Information Theory, vol. 44,
no. 5, pp. 1897–1905, 1998.

[8] W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu, “Anti-collusion
fingerprinting for multimedia,” IEEE Transactions on Signal
Processing, vol. 51, no. 4, pp. 1069–1087, 2003.

[9] Y. Yacobi, “Improved boneh-shaw content fingerprinting,” in
Proceedings of the Conference on Topics in Cryptology: The
Cryptographer’s Track at RSA (CT-RSA ’01), vol. 2020 of
Lecture Notes in Computer Science, pp. 378–391, Springer, San
Francisco, Calif, USA, 2001.

[10] J. N. Staddon, D. R. Stinson, and R. Wei, “Combinatorial prop-
erties of frameproof and traceability codes,” IEEE Transactions
on Information Theory, vol. 47, no. 3, pp. 1042–1049, 2001.

[11] Y. Zhu, D. Feng, and W. Zou, “Collusion secure convolutional
spread spectrum fingerprinting,” in Proceedings of the 4th



16 EURASIP Journal on Information Security

International Workshop on Digital Watermarking (IWDW ’05),
vol. 3710 of Lecture Notes in Computer Science, pp. 67–83,
Springer, Siena, Italy, 2005.

[12] G. Tardos, “Optimal probabilistic fingerprint codes,” in Pro-
ceedings of the 35th Annual ACM Symposium on Theory of
Computing, pp. 116–125, June 2003.

[13] R. Gold, “Maximal recursive sequences with 3-valued recur-
sive cross-correlation functions,” IEEE Transactions on Infor-
mation Theory, vol. 14, no. 1, pp. 154–156, 1968.

[14] S. He and M. Wu, “Joint coding and embedding techniques for
multimedia fingerprinting,” IEEE Transactions on Information
Forensics and Security, vol. 1, no. 2, pp. 231–247, 2006.

[15] Y. T. Lin, J. L. Wu, and C. H. Huang, “Concatenated con-
struction of traceability codes for multimedia fingerprinting,”
Optical Engineering, vol. 46, no. 10, Article ID 107202, 15
pages, 2007.

[16] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,
Advantages, Applications, Academic Press, Boston, Mass, USA,
1990.

[17] M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based
watermarking through pixel-wise masking,” IEEE Transactions
on Image Processing, vol. 10, no. 5, pp. 783–791, 2001.

[18] S. He and M. Wu, “Collusion-resistant video fingerprinting for
large user group,” IEEE Transactions on Information Forensics
and Security, vol. 2, no. 4, pp. 697–709, 2007.


	1. Introduction
	2. Related Works
	3. Proposed Fingerprint Sequence
	4. Hierarchical Scheme
	5. Considerations of Parameters
	6. Simulation Results
	7. Conclusion
	Acknowledgment
	References

