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Dimension reduction techniques, such as singular value decomposition (SVD) and nonnegative matrix factorization (NMF), have
been successfully applied in image hashing by retaining the essential features of the original image matrix. However, a concern of
great importance in image hashing is that no single solution is optimal and robust against all types of attacks. The contribution
of this paper is threefold. First, we introduce a recently proposed dimension reduction technique, referred as Fast Johnson-
Lindenstrauss Transform (FJLT), and propose the use of FJLT for image hashing. FJLT shares the low distortion characteristics
of a random projection, but requires much lower computational complexity. Secondly, we incorporate Fourier-Mellin transform
into FJLT hashing to improve its performance under rotation attacks. Thirdly, we propose a new concept, namely, content-based
fingerprint, as an extension of image hashing by combining different hashes. Such a combined approach is capable of tackling
all types of attacks and thus can yield a better overall performance in multimedia identification. To demonstrate the superior
performance of the proposed schemes, receiver operating characteristics analysis over a large image database and a large class of
distortions is performed and compared with the state-of-the-art image hashing using NMF.
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1. Introduction

Digital media has profoundly changed our daily life during
the past decades. However, the massive proliferation and
extensive use of media data arising from its easy-to-copy
nature also pose new challenges to effectively manage such
abundance of data (e.g., fast media searching, indexing)
and protection of intellectual property of multimedia data.
Among the various techniques proposed to address these
challenges, image hashing has been proven to be an efficient
tool because of its robustness and security.

An image hash is a compact and exclusive feature descrip-
tor for a specific image. Robustness and security are its
two desired properties [1, 2]. Different from traditional
hash, image hash does not suffer from the sensitivity to
minor degradations of original data because of its perceptual
robustness. Such a property requires two images that are
perceptually identical in human visual system (HVS) and are
mapped to similar hash values. Obviously, the more robust

a hash is, the less sensitive it is to large distortions upon
the original images, which in turn inevitably incurs another
problem that distinct images may be misclassified to the same
group. Hence, tradeoff between robustness and anticollision
of distinct images is of great concern. Additionally, by
incorporating the pseudorandomization techniques, a hash
is hardly obtained by unauthorized adversaries without the
secret key. Therefore, the unpredictability encrypts the image
hash and guarantees its security against illegal access.

Behaving as a secure tag for image data, image hashing
facilitates significant developments in many areas such as
image and video watermarking [3]. It is worth mentioning
that different applications may impose different require-
ments in a hashing design. For the purpose of image authen-
tication, it is required that minor unmalicious modifications
which do not alter the content of the data should preserve the
authenticity of the data [4, 5]. The robustness of image hash
assures its capability to authenticate the content by ignoring
the effect of minor unmalicious modifications on the original
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data. For the management of large image databases [6],
image hashing allows efficient media indexing, identification,
and retrieval by avoiding exhaustively searching through all
the entries, thus reducing computational complexity of sim-
ilarity measurements. Moreover, specific hashing designed
based on some specific features of image data, such as
color, edges, and other information, obviously contributes to
the content-based image retrieval (CBIR) system [7] at the
semantic level. In this paper, we are particularly interested
in image identification and explore the application of image
hashing in this direction.

Although there exist various frameworks to design
robust and secure hashes [8–10], a hashing scheme gen-
erally consists of two aspects: one is feature extraction
and the other is pseudorandomization technique. Most
hashing schemes combine both aspects to generate an
intermediate hash as the first step and then incorporate
a compression operation in postprocessing to generate
the final hash [1, 10, 11]. Obviously, the robustness and
security, two principal properties of hashing, lie in the first
step. In order to resist routine unmalicious degradations
(e.g., noising, compression) and other malicious attacks
(e.g., cropping, rotation), the more invariant features are
extracted, the more robust a hash scheme is. However,
using features directly makes the scheme susceptible to
forgery attacks. Therefore, pseudorandomization techniques
should be employed in the hash schemes to assure the
security.

Aiming at resisting both routine unmalicious degra-
dations and malicious attacks, various approaches have
been proposed in literatures for constructing image hashes,
although there is no universallyoptimal hashing approach
that is robust against all types of attacks. For example,
Radon Soft Hash algorithm (RASH) [12] shows robustness
against geometric transformation and some image process-
ing attacks using Radon transform and principle component
analysis (PCA). Swaminathan’s hashing scheme [8] incorpo-
rates pseudorandomization into Fourier-Mellin transform to
achieve better robustness to geometric operations. However,
it suffers from some classical signal processing operations
such as noising. It was also proposed in [9] to generate
the hash by detecting invariant feature points, though
the expensive searching and removal of feature points by
malicious attacks such as cropping and blurring limit its
performance in practice. Other content-preserving features
based on statistics [1] and spectrum information [2, 13] have
also contributed to the development of image hashing and
enlightened some novel directions.

Recently, several image hashing schemes based on
dimension reduction have been developed and reported to
outperform previous techniques. For instance, using low-
rank matrix approximations obtained via singular value
decomposition (SVD) for hashing was explored in [14]. Its
robustness against geometric attacks motivated other solu-
tions in this direction. Monga introduced another dimension
reduction technique, called nonnegative matrix factorization
(NMF) [15], into their new hashing algorithm [16]. The
major benefit of NMF hashing is the structure of the basis
resulting from its nonnegative constraints, which lead to

a parts-based representation. In contrast to the global rep-
resentation obtained by SVD, the non-negativity constraints
result in a basis of interesting local features [17]. Based on
the results in [16], the NMF hashing possesses excellent
robustness under a large class of perceptually insignificant
attacks, while it significantly reduces misclassification for
perceptually distinct images. Note that, for simplicity, we
sometimes refer the NMF-NMF-SQ hashing scheme, which
was shown to provide the best performance among NMF-
based hashing schemes investigated in [16], simply as NMF
hashing in this paper.

Inspired by the potential of dimension reduction tech-
niques for image hashing, we introduced Fast Johnson-
Lindenstrauss transform (FJLT), a dimension reduction
technique recently proposed in [18], into our new robust and
secure image hashing algorithm [19]. FJLT shares the low-
distortion characteristics of a random projection process but
requires a lower computational complexity. It is also more
suitable for practical implementation because of its high
computational efficiency and security due to the random
projection. Since we mainly focus on invariant feature extrac-
tion and are interested in image identification applications,
the FJLT hashing seems promising because of its robustness
to a large class of minor degradations and malicious attacks.
Considering the fact that NMF hashing was reported to
significantly outperform other existing hashing approaches
[16], we use it as the comparison base for the proposed
FJLT hashing. Our preliminary experimental results in [19]
showed that FJLT hashing provides competitive or even bet-
ter identification performance under various attacks such as
additive noise, blurring, and JPEG compression. Moreover,
its lower computational cost also makes it attractive.

However, geometric attacks such as rotation could
essentially tamper the original images and thus prevent the
accurate identification if we apply the hashing algorithms
directly on the manipulated image. Even for the FJLT
hashing, it still suffers from the rotation attacks with low
identification accuracy. To address this concern, motivated
by the work [8, 20], we plan to apply the Fourier-Mellin
transform (FMT) on the original images first to make them
invariant to geometric transform. Our later experimental
results show that, under rotation attacks, the FJLT hashing
combined with the proposed FMT preprocessing yields a
better identification performance than that of the direct FJLT
hashing.

Considering that a specific feature descriptor may be
more robust against certain types of attacks, it is desirable to
take advantage of different features together to enhance the
overall robustness of hashing. Therefore we further propose
an extended concept, namely, content-based fingerprinting,
to represent a combined, superior hashing approach based
on different robust feature descriptors. Similar to the idea
of having the unique fingerprint for each human being, we
aim at combining invariant characteristics of each feature
to construct an exclusive (unique) identifier for each image.
Under the framework of content-based fingerprinting, the
inputs to the hashing algorithms are not restricted to the
original images only, but can also be extendable to include
various robust features extracted from the images, such
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as color, texture, and shape. An efficient joint decision
scheme is important for such a combinational framework
and significantly affects the identification accuracy. Our
experimental results demonstrate that the content-based
fingerprinting using a simple joint decision scheme can
provide a better performance than the traditional one-
fold hashing approach. More sophisticated joint decision-
making schemes are worth further being investigated in
the future.

The rest of this paper is organized as follows. We first
introduce the background and theoretic details about FJLT in
Section 2. We then describe the proposed hashing algorithm
based on random sampling and FJLT in Section 3. In
Section 4, we propose the RI-FJLT hashing by combining
the Fourier-Mellin transform and FJLT hashing to achieve
better geometric robustness. To combine the advantages
of both FJLT and RI-FJLT hashing algorithms, a general
framework and experimental results of content-based fin-
gerprinting using FJLT hashing for multimedia identification
are presented in Section 5. The analytical and experi-
mental results are exhibited in Section 6 to demonstrate
the superior performance of the proposed schemes. The
conclusion and suggestions for future work are given in
Section 7.

2. Theoretical Background

Based on the literature review in Section 1, the current
task of image hashing is to extract more robust features
to guarantee the identification accuracy under manifold
manipulations (e.g., noising, blurring, compression, etc.)
and incorporate the pseudorandomization techniques into
the feature extraction to enhance the security of the hash
generation. According to the information theory [21], if we
consider the original image as a source signal, similar to a
transmission channel in communication, the feature extrac-
tion process will make the loss of information inevitable.
Therefore, how to efficiently extract the robust features as
lossless as possible is a key issue that the hashing algorithms
such as SVD [14], NMF [16], and our FJLT hashing want to
tackle.

2.1. Fast Johnson-Lindenstrauss Transform. The Johnson-
Lindenstrauss (JL) theorem has found numerous applica-
tions, including searching for approximate nearest neighbors
(ANNs) [18] and dimension reduction in database, and so
forth, by the JL lemma [22], n points in Euclidean space can
be projected from the original d dimensions down to lower
k = O(ε−2 logn) dimensions while just incurring a distortion
of at most ±ε in their pairwise distances, where 0 < ε < 1.
Based on the JL theorem, Alion and Chazelle [18] proposed
a new low-distortion embedding of ldp into lkp(p = 1 or 2),
called Fast Johnson-Lindenstrauss transform (FJLT). FJLT
is based on preconditioning of a sparse projection matrix
with a randomized Fourier transform. Note that we will only
consider the l2 case (p = 2) because our hash is measured by
the l2 norm. For the l1 case, interested readers please refer to
[18].

Briefly speaking, FJLT is a random embedding, denoted
as Φ = FJLT(n,d, ε), that can be obtained as a product of
three real-valued matrices:

Φ = P ·H ·D, (1)

where the matrices P and D are random and H is determin-
istic [18].

(i) P is a k-by-d matrix whose elements Pi j are drawn
independently according to the following distribu-
tion, where N (0, q−1) means a Normal distribution
with zero-mean and variance q−1,

Pi j ∼ N
(
0, q−1) with probability q,

Pi j = 0 with probability
(
1− q

)
,

(2)

where

q = min

{
c log2n

d
, 1

}

, (3)

for a large enough constant c.

(ii) H is a d-by-d normalized Hadamard matrix with the
elements as

Hij = d−1/2(−1)〈i−1, j−1〉, (4)

where 〈i, j〉 is the dot-product of the m-bit vectors of i, j
expressed in binary.

(iii) D is a d-by-d diagonal matrix, where each diagonal
element Dii is drawn independently from {−1, 1}
with probability 0.5.

Therefore, Φ = FJLT(n,d, ε) is a k-by-d matrix, where
d is the original dimension number of the data and k is
the lower dimension number, which is set to be c′ε−2 log n.
Here, n is the number of data points, ε is the distortion
rate, and c′ is a constant. Given any data point X from a d-
dimension space, it is intuitively mapped to the data point X ′

at a lower k-dimension space by the FJLT and the distortion
of their pairwise distances could be illustrated by Johnson-
Lindenstrauss lemma [18].

2.2. The Fast Johnson-Lindenstrauss Lemma

Lemma 1. Fix any set X of n vectors in Rd, 0 < ε < 1, and let
Φ = FJLT(n,d, ε). With probability at least 2/3, the following
two events occur.

(1) For all x ∈ X ,

(1− ε)k‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)k‖x‖2. (5)

(2) The mapping Φ : Rd → Rk requires
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Figure 1: An example of random sampling. The subimages selected
by random sampling with size m×m.

O
(
d log d + min

(
dε−2 log n, ε−2log3n

))
(6)

operations.

Proofs of the previous theorems can be found in [18].
Note that the probability of being successful (at least 2/3)
arises from the random projection and could be amplified
to (1 − δ) for any δ > 0, if we repeat the construction
O(log(1/δ)) times [18]. Since the random projection is
actually a pseudorandom process determined by a secret
key in our case, most of the keys (at least 2/3) are satisfied
with the distortion bound described in FJLT lemma and
could be used in our hashing algorithm. Hence, the FJLT will
make our scheme widely applicable for most of the keys and
suitable to be applied in practice.

3. Image Hashing via FJLT

Motivated by the hashing approaches based on SVD [14]
and NMF [16], we believe that dimension reduction is a
significantly important way to capture the essential features
that are invariant under many image processing attacks. For
FJLT, three benefits facilitate its application in hashing. First,
FJLT is a random projection, enhancing the security of the
hashing scheme. Second, FJLT’s low distortion guarantees
its robustness to most routine degradations and malicious
attacks. The last one is its low computation cost when
implemented in practice. Hence, we propose to use FJLT for
our new hashing algorithm. Given an image, the proposed
hashing scheme consists of three steps: random sampling,
dimension reduction by FJLT, and ordered random weight-
ing. Due to our purpose, we are only interested in feature
extraction and randomization. The hash generated by FJLT
is just an intermediate hash. For readers who are interested
in generating the final hash by compression step, as in the
frameworks[8, 9], they are suggested to refer [1, 11] for
details.

3.1. Random Sampling. The idea of selecting a few subimages
as original feature by random sampling, as shown in Figure 1,
is not novel [14, 16]. However, in our approach, we treat each
subimage as a point in a high-dimensional space rather than
a two-dimensional matrix as in SVD hashing [14] and NMF

hashing [16]. For instance, the subimage in Figure 1, which
is a m-by-m patch, is actually a point in the m2-dimensional
space in our case, where we focus on gray images.

Given an original color image, we first convert it to a gray
image and pseudorandomly select N subimages depending
on the secret key and get {Ri}, for 1 ≤ i ≤ N . Each Ri

is a vector with length m2 by concatenating the columns of
the corresponding subimage. Then we construct our original
feature as.

Feature = {R1,R2, . . . ,RN}, with size m2 ×N. (7)

The advantage of forming such a feature is that we can
capture the global information in the Feature matrix and
local information in each component Ri. Even if we lose some
portions of the original image under geometric attacks such
as cropping, it will only affect one or a few components in
our Feature matrix and have no significant influence on the
global information. However, the Feature matrix with the
high dimension (e.g., m2, when m = 64) is too large to
store and match, which motivates us to employ dimension
reduction techniques.

3.2. Dimension Reduction by FJLT. Based on the theorems
in Section 2, FJLT is able to capture the essential features
of the original data in a lower-dimensional space with
minor distortion, if the factor ε is close to 0. Recall the
construction Φ = FJLT(n,d, ε), our work is to map the
Feature matrix from a high-dimensional space to a lower-
dimensional space with minor distortion. We first get the
three real-valued matrices P, H , and D in our case, which
is Φ = FJLT(N ,m2, ε), where H is deterministic but P and D
are pseudorandomly dependent on the secret key. The lower
dimension k is set to be c′ε−2 logN and c′ is a constant. Then
we can get our intermediate hash (IH) as

IH = Φ(Feature) = P ·H ·D · Feature, with size k ×N.
(8)

Here, the advantage of FJLT is that we can determine the
lower dimension k by adjusting the number of data points,
which is the number of image blocks by random sampling
in our case, and the distortion rate ε. This provides us with
a good chance to get a better identification performance.
However, the smaller ε is, the larger k is. Hence we need to
make a tradeoff between ε and k in a real implementation.

3.3. Ordered Random Weighting. Although the original fea-
ture set has been mapped to a lower-dimensional space with
a small distortion, the size of intermediate hash can still be
large. For instance, if we set N = 20, ε = 0.1, and c′ = 2,
the size of IH will be 600-by-20. To address this issue, similar
to the NMF-NMF-SQ hashing in [16], we can introduce the
pseudorandom weight vectors {wi}Ni=1 with wi ∈ Rk drawn
from the uniform distribution U(x | 0, 1) by the secret key,
and we can calculate the final secure hash as

Hash = {〈IH1,w1〉, 〈IH2,w2〉, . . . , 〈IHN ,wN〉}, (9)

where IHi is the ith column in IH , and 〈IHi,wi〉 is the inner
product of the vectors IHi and wi. Hence, the final hash is
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Figure 2: An example of the correlations between the final hash distance and the intermediate hash distance based on 50 images under Salt
and Pepper noise attacks (with variance level: 0 ∼ 0.1) when employing ordered random weighting and unordered random weighting.

obtained as a vector with length N for each image, which is
compact and secure. However, the weight vector wi drawn
from U(x | 0, 1) could diminish the distance between the
hash components IHi and IH′

i from two images and degrade
the identification accuracy later. Here we describe a simple
example to explain this effect. Suppose we have two vectors
A = {10, 1} and A′ = {1, 1}, the Euclidean distance is 9. In
the first case, if we assign the weight vector w = {0.1, 0.9} to
A and A′, after the inner product (9), the hash values of A
and A′ will be 1.9 and 1, respectively. Obviously, the distance
between A and A′ is significantly shortened. However, if we
assign the weight w = {0.9, 0.1} to A and A′ in the second
case, after the inner product (9), the hash values of A and A′

will be 9.1 and 1, respectively. The distance between A and A′

is still 8.1. We would like to maintain the distinction of two
vectors and avoid the effect of an inappropriate weight vector
as the first case.

To maintain this distance-preserving property, a possible
simple solution, referred as ordered random weighting,
is to sort the elements of IHi and wi in a descending
order before the inner product (9) and make sure that a
larger weight value will be assigned to a larger component.
In this way, the perceptual quality of the hash vector is
retained by minimizing the influence of the weights. To
demonstrate the effects of ordering, we investigate the
correlation between the intermediate hash distances and the
final hash distances when employing the unordered random
weighting and ordered random weighting. Intuitively, for
both the intermediate hash and the final hash, the distance
between the hash generated from the original image (without
distortion) and the hash from its distorted copy should
increase when the attack/distortion is more severe. One
example is illustrated in Figure 2, where we investigate 50
nature images and their 10 distorted copies with Salt and
Pepper noise attacks (with variance level: 0 ∼ 0.1) from

our database described in Section 5.1. We observe that the
normalized intermediate hash distance and the final hash
distance are highly correlated when using ordered random
weighting, as shown in Figure 2(a), while the distances are
much less correlated under unordered random weighting,
as shown in Figure 2(b). In Figure 2, one example of
distance correlation based on one of the 50 nature images is
indicated by the solid purple lines, where a monotonically
increasing relationship between the distances is clearly
noticed when using ordered random weighting. Figure 2
suggests that the ordered random weighting in the proposed
hashing approach maintains the property of low distortion
in pairwise distances of the FJLT dimension reduction
technique.

Furthermore, we also investigate the effect of ordering
on the identification performance by comparing the ordered
and unordered random weighting approaches. One illus-
trative example is shown in Figure 3, where the distances
between different hashes are reported. Among 50 original
images, we randomly pick out one as the target image and
use its distorted copies as the query images to be identified.
To compare the normalized Euclidean distances between the
final hashes of the query images and the original 50 images,
the final hash distances between the target image and its
distorted copies are indicated by red squares, and others
are marked by blue crosses. For the Salt and Pepper noise
attacks (with variance level: 0 ∼ 0.1) as shown in Figures
3(a) and 3(b), we can see that, when using both ordered
random weighting and unordered random weighting, the
query images could be easily identified as the true target
image based on the identification process described in Sec-
tion 3.4.1. It is also clear that the ordered random weighting
approach should provide a better identification performance
statistically since the distance groups are better separated. For
the Gaussian blurring attacks (with filter size: 3 ∼ 21) as
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Figure 3: Illustrative examples to demonstrate the effect of ordering on the identification performance. The final hash distances between
the query images and the original 50 images are shown for comparing the ordered random weighting and the unordered random weighting
approaches. (a) and (b) The query images are under Salt and Pepper noise attacks. (c) and (d) The query images are under Gaussian blurring
attacks.

shown in Figures 3(c) and 3(d), it is clear that the correct
classification/identification can only be achieved by using
the ordered random weighting. Based on the two examples
illustrated in Figure 3 and the tests on other attacks described
in Section 6.1, we notice that the identification performance
under the blurring attacks is significantly improved using
the ordered random weighting when compared with the
unordered approach. The improvement is less significant
under noise and other attacks. In summary, we observe that
ordered random weighting maintains better the distance-
preserving property of FJLT compared with the unordered
random weighting and thus yields a better identification
performance.

3.4. Identification and Evaluation

3.4.1. Identification Process. Let S = {si}Ni=1 be the set of
original images in the tested database and define a space
H(S) = {H(si)}Ni=1 as the set of corresponding hash vectors.
We use Euclidean distance as the performance metric to
measure the discriminating capability between two hash
vectors, defined as

Distance = ‖H(s1)−H(s2)‖2 =
√
√√
√

n∑

i=1

(hi(s1)− hi(s2))2,

(10)
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where H(si) = {h1(si),h2(si), . . . ,hn(si)} means the corre-
sponding hash vector with length n of the image si. Given
a tested image D, we first calculate its hash H(D) and then
obtain its distances to each original image in the hash space
H(S). Intuitively, the query image D is identified as the îth
original images which yields the minimum corresponding
distance, expressed as

î = arg min
i

{‖H(D)−H(si)‖2
}

, i = 1, . . . ,N. (11)

The simple identification process described above can be
considered as a special case of the K-nearest-neighbor
classification approach with K = 1. Here K is set as 1 since
we only have one copy of each original image in the current
database. For a more general case, if we have K multiple
copies of each original image with no distortion or with only
slight distortions, we could adopt the K-nearest neighbor
(KNN) algorithm for image identification in our problem.

3.4.2. Receiver Operating Characteristics Analysis. Except
investigating identification accuracy, we also study the
receiver operating characteristics (ROC) curve [23] to visual-
ize the performance of different hashing approaches, includ-
ing NMF-NMF-SQ hashing, FJLT hashing, and Content-
based fingerprinting proposed later. The ROC curve depicts
the relative tradeoffs between benefits and cost of the identi-
fication and is an effective way to compare the performances
of different hashing approaches.

To obtain ROC curves to analyze the hashing algorithms,
we may define the probability of true identification PT(ξ)
and probability of false alarm PF(ξ) as

PT(ξ) = Pr(‖H(I)−H(IM)‖2 < ξ),

PF(ξ) = Pr
(∥∥H(I)−H(I′M)

∥
∥

2 < ξ
)
,

(12)

where ξ is the identification threshold. The images I and I′

are two distinct original images and the images IM and I′M
are manipulated versions of the image I and I′, respectively.
Ideally, we hope that the hashes of the original image I
and its manipulated version IM should be similar and thus
be identified accurately, while the distinct images I and I′M
should have different hashes. In other words, given a certain
threshold ξ, an efficient hashing should provide a higher
PT(ξ) with a lower PF(ξ) simultaneously. Consequently,
when we obtain all the distances between manipulated
images and original images, we could generate a ROC curve
by sweeping the threshold ξ from the minimum value to the
maximum value, and further compare the performances of
different hashing approaches.

4. Rotation Invariant FJLT Hashing

Although the Fast Johnson-Lindenstrauss transform has
been shown to be successful in the hashing in our pre-
vious preliminary work [19], the FJLT hashing can still
be vulnerable to rotation attacks. Based on the hashing
scheme described in Section 3, random sampling can be
an effective approach to reduce the distortion introduced

by cropping, and scaling attack can be efficiently tackled
by upsampling and downsampling in the preprocessing.
However, to successfully handle the rotation attacks, we
need to introduce other geometrically invariant transform to
improve the performance of the original FJLT hashing.

4.1. Fourier-Mellin Transform. The Fourier-Mellin trans-
form (FMT) is a useful mathematical tool for image
recognition and registration, because its resulting spectrum
is invariant to rotation, translation, and scaling [8, 20]. Let
f denote a gray-level image defined over a compact set of
R2, the standard FMT of f in polar coordinates (log-polar
coordinates) is given by

Mf (k, v) = 1
2π

∫ 2π

0

∫∞

0
f (r, θ)r−ive−ikθdθ

dr
r
. (13)

If we make r = eγ, dr = eγdγ, (13) is clearly a Fourier
transform like

Mf (k, v) = 1
2π

∫ 2π

0

∫∞

−∞
f (eγ, θ)e−ivγe−ikθdγdθ. (14)

Therefore, the FMT could be divided into three steps,
which result in the invariance to geometric attacks.

(i) Fourier Transform. It converts the translation of
original image in spatial domain into the offset
of angle in spectrum domain. The magnitude is
translation invariant.

(ii) Cartesian to Log-Polar Coordinates. It converts the
scaling and rotation in Cartesian coordinates into the
vertical and horizontal offsets in Log-Polar Coordi-
nates.

(iii) Mellin Transform. It is another Fourier transform
in Log-Polar coordinates and converts the vertical
and horizontal offsets into the offsets of angles in
spectrum domain. The final magnitude is invariant
to translation, rotation, and scaling.

However, the inherent drawback of the Fourier transform
makes FMT only robust to geometric transform, but vulner-
able to many other classical signal processing distortions such
as cropping and noising. As we know, when converting an
image into the spectrum domain by 2D Fourier transform,
each coefficient is contributed by all the pixels of the
image. It means that the Fourier coefficients are dependent
on the global information of the image in the spatial
domain. Therefore, the features extracted by Fourier-Mellin
transform are sensitive to certain attacks such as noising
and cropping, because the global information is no longer
maintained. To overcome this problem, we have modified
the FMT implementation in our proposed rotation-invariant
FJLT (RI-FJLT) hashing.

4.2. RI-FJLT Hashing. The invariance of FMT to geometric
attacks such as rotation and scaling has been widely applied
in image hashing [3, 8] and watermarking [20, 24]. It also
motivates us to address the deficiency of FJLT hashing by
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incorporating FMT. Here, we propose the rotation-invariant
FJLT hashing by introducing FMT into the FJLT hashing.
Specially, the proposed rotation-invariant FJLT hashing (RI-
FJLT) consists of three steps.

Step 1. Converting the image into the Log-Polar coordinates

I
(
x, y

) −→ G
(
log ρ, θ

)
, (15)

where x and y are Cartesian coordinates and ρ and θ are
Log-Polar coordinates. Any rotation and scaling will be
considered as vertical and horizontal offsets in Log-Polar
coordinates. An example is given in Figure 4.

Step 2. Applying Mellin transform (Fourier transform under
Log-Polar coordinates) to the converted image and return the
magnitude feature image.

Step 3. Applying FJLT hashing in Section 3 to the magnitude
feature image derived in Step 2.

For the conversion in Step 1, since the pixels in Cartesian
coordinates are not able to be one-to-one mapped to pixels
in the Log-Polar coordinates space, some value interpo-
lation approaches are needed. We have investigated three
different interpolation approaches for the proposed RI-FJLT
hashing, including nearest neighbor, bilinear and bicubic
interpolations, and found that the bilinear is superior to
others. Therefore we only report the results under bilinear
interpolation here. Note that we abandon the first step of
FMT in RI-FJLT hashing, because we only focus on rotation
attacks (other translations are considered as cropping) and
it is helpful to reduce the influence of noising attacks
by removing the Fourier transform step. The performance
will be illustrated in Section 6. However, since Step 2 can
inevitably be affected by attacks such as noising, some
preprocessing such as median filtering can help improve the
final identification performance.

5. Content-Based Fingerprinting

5.1. Concept and Framework. Considering that certain fea-
tures can be more robust against certain attacks, to take
advantage of different features, we plan to propose a new
content-based fingerprinting concept. This concept com-
bines benefits of conventional content-based indexing (used
to extract discriminative content features) and multimedia
hashing. Here we define content-based image fingerprinting
as a combination of multiple robust feature descriptors and
secure hashing algorithms. Similar to the concept of image
hash, it is a digital signature based on the significant content
of image itself and represents a compact and discriminative
description for the corresponding image. Therefore, it has
a wide range of applications in practice such as integrity
verification, watermarking, content-based indexing, iden-
tification, and retrieval. The framework is illustrated in
Figure 5.

Specially, each vertical arrow in Figure 5 represents an
independent hashing generation procedure, which consists

of robust feature extraction and intermediate hash gener-
ation proposed by [8, 10]. Because it is the combination
of various hash descriptors, the content-based fingerprint-
ing can be considered as an extension and evolution of
image hashing and thus offers much more freedom to
accommodate different robust features (color, shape, tex-
ture, salient points, etc., [7]) and design efficient hashing
algorithms to successfully against different types of attacks
and distortions. Similar to the idea of finding one-to-one
relationships between the fingerprints and an individual
human being, the goal of content-based fingerprinting is
to generate an exclusive digital signature, which is able
to uniquely identify the corresponding media data no
matter which content-preserving manipulation or attack is
taken on.

Compared with the traditional image hashing concept,
the superiority of content-based fingerprint concept lies in its
potential high discriminating capability, better robustness,
and multilayer security arising from the combination of
various robust feature descriptors and a joint decision-
making process. Same as in any information fusion pro-
cesses, theoretically the discrimination capability of the
content-based fingerprinting with effective joint decision-
making scheme should outperform a single image hash-
ing. Since the content-based fingerprint consists of several
hash vectors, which are generated based on various robust
features and different secret keys, it is argued that the
framework of content-based fingerprinting results in a
better robustness and multilayer security when an effi-
cient joint decision-making is available. However, com-
bining multiple image hashes approaches requires addi-
tional computation cost for the generation of content-
based fingerprinting. The tradeoff between computation cost
and performance is a concern with great importance in
practice.

5.2. A Simple Content-Based Fingerprinting Approach. From
the experimental results in Section 6, we note that FJLT
hashing is robust to most types of the tested distortions and
attacks except for rotation attacks and that RI-FJLT hashing
provides a significantly better performance for rotation
attacks at the cost of the degraded performances under other
types of attacks. Recall an important fact that it is relatively
easy to find a robust feature to resist one specific type of
distortion; however it is very difficult, if not impossible, to
find a feature which is uniformly robust to against all types
of distortions and attacks. Any desire to generate an exclusive
signature for the image by a single image hashing approach
is infeasible. Here we plan to demonstrate the advantages of
the concept of content-based fingerprinting by combining
the proposed FJLT hashing and RI-FJLT hashing. The major
components of the content-based fingerprinting framework
include hash generations and the joint decision-making
process which should take advantage of the combinations
of the hashes to achieve a superior identification decision-
making. Regarding the joint decision-making, there are
many approaches in machine learning [25] that can be
useful. Here we only present a simple decision-making
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(a) (b)

(c) (d)

Figure 4: An example of conversion from Cartesian coordinates to Log-Polar coordinates. (a) Original Goldhill. (b) Goldhill rotated by 45◦.
(c) Original Goldhill in Log-Polar coordinates. (d) Rotated Goldhill in Log-Polar coordinates.

Input image

Robust features and multiple hashings

Hash 1 Hash 2 · · · Hash i · · ·

Joint decision making

Figure 5: The conceptual framework of the content-based finger-
printing.

process in rank level [26] to demonstrate the superiority of
content-based fingerprinting.

Given an image d with certain distortion, we, respec-
tively, generate the hash vectors Hd

f and Hd
r by FJLT and RI-

FJLT hashing. Suppose that the hash values of original images
s are Hs

f and Hs
r generated by FJLT and RI-FJLT hashing,

respectively. We denote Pf (s | d) as the confidence measure
that we identify image d as image s when applying the FJLT
hashing. Similarly, Pr(s | d) is denoted for that of the RI-FJLT
hashing. Here, we simply define

Pf (s | d) =Wf

⎛

⎝1−
Norm

(
Hd

f −Hs
f

)

Norm
(
Hs

f

)

⎞

⎠,

Pr(s | d) =Wr

⎛

⎝1−
Norm

(
Hd

r −Hs
r

)

Norm
(
Hs

r

)

⎞

⎠,

(16)

where Wf and Wr are preselected weights in the case of
FJLT and RI-FJLT hashing, respectively, and Norm means the
Euclidean norm. Considering the poor performances of RI-
FJLT hashing under many other types of attacks except for
rotation ones, we intuitively introduce a weight W , where
0 ≤W ≤ 1, to the original confidence measures of FJLT and
RI-FJLT hashing to decrease the possible negative influence
of RI-FJLT hashing and maintain the advantages of both
FJLT and RI-FJLT hashing in the proposed content-based
fingerprinting under different attacks.

Regarding the identification decision making, given a
tested image d, we calculate all the confidence measures
Pf (si | d)Ni=1 and Pr(si | d)Ni=1 over the image database of
S = {si}Ni=1 by using FJLT and RI-FJLT hashing, and make
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Table 1: Content-preserving manipulations and parameter set-
tings.

Manipulation Parameters Setting Number

Additive noise

Gaussian noise Sigma: 0 ∼ 0.1 10

Salt and Pepper noise Sigma: 0 ∼ 0.1 10

Speckle noise Sigma: 0 ∼ 0.1 10

Blurring

Gaussian blurring Filter size: 3 ∼ 21, Sigma = 5 10

Circular blurring Radius: 1 ∼ 10 10

Motion blurring Len: 5 ∼ 15, θ : 0◦ ∼ 90◦ 9

Geometric attacks

Rotation Degree = 5◦ ∼ 45◦ 9

Cropping 5%, 10%, 20%, 25%, 30%, 35% 6

Scaling 25%, 50%, 75%, 150%, 200% 5

JPEG compression Quality factor = (5 ∼ 50) 10

Gamma correction γ = (0.75 ∼ 1.25) 10

the identification decision correspondingly by selecting the
highest one among Pf (si | d)Ni=1 and Pr(si | d)Ni=1. Note that if
a confidence measure P(s | d) is negative, it means that the
image d is outside the confidence interval of the image s and
the confidence measure is assigned to be zero.

6. Analytical and Experimental Results

6.1. Database and Content-Preserving Manipulations. In
order to evaluate the performance of the proposed new
hashing algorithms, we test FJLT hashing and RI-FJLT
hashing on a database of 100 000 images. In this database,
there are 1000 original color nature images, which are mainly
selected from the ten sets of categories in the content-based
image retrieval database of the University of Washington
(http://www.cs.washington.edu/research/imagedatabase/) as
well as our own database. Therefore, some of the original
images can be similar in content if they come from the
same category, and some are distinct if they come from the
different categories. For each original color image with size
256 × 384, we generate 99 similar but distorted versions
by manipulating the original image according to eleven
classes of content-preserving operations, including additive
noise, filtering operations, and geometric attacks, as listed in
Table 1. All the operations are implemented using Matlab.
Here we give some brief explanations of some ambiguous
manipulations. For image rotation, a black frame around the
image will be added by Matlab but some parts of image will
be cut if we want to keep its size the same as the original
image. An example is given in Figure 4(b). Here our cropping
attacks refer to the removal of the outer parts (i.e., let the
values of the pixels on each boundary be equal to null and
keep the significant content in the middle).

6.2. Identification Results and ROC Analysis. Our prelim-
inary study [19] on a small database showed that FJLT
hashing provides nearly perfect identification accuracy for

the standard test images such as Baboon, Lena, and Peppers.
Here we will measure the FJLT hashing and the new proposed
RI-FJLT hashing on the new database, which consists of 1000
nature images from ten categories. Ideally, to be robust to
all routine degradations and malicious attacks, no matter
what content-preserving manipulation is done, the image
with any distortion should still be correctly classified into the
corresponding original image.

It is worth mentioning that all the pseudorandomizations
of NMF-NMF-SQ hashing, FJLT hashing, and content-
based fingerprinting are dependent on the same secret
key in our experiment. As discussed in [16], the secret
keys, more precisely the key-based randomizations, play
important roles on both increasing the security (i.e., making
the hash unpredictable) and enhancing scalability (i.e.,
keeping the collision ability from distinct images low and
thus yielding a better identification performance) of the
hashing algorithm. Therefore, the identification accuracy of
a hashing algorithm is determined simultaneously by both
the dimension reduction techniques (e.g., FJLT and NMF)
and the secret keys. As shown in NMF hashing in [16], if
we generate hashes of different images with varied secret
keys, the identification performance can be further improved
significantly because the secret key boosts up the cardinality
of the probability space and brings down the probability
of false alarm. In this paper, because we mainly focus on
examining the identification capacity of hashing schemes
themselves rather than the effects of secret keys, to minimize
the effects of the factor of the secret keys, we use the same key
in generating hash vectors for different images.

6.2.1. Results of FJLT Hashing. Following the algorithms
designed in Section 3, we test the FJLT hashing with the
parameters chosen as m = 64, N = 40, ε = 0.1, key =
5, as summarized in Table 3. Note that most of the keys
could be used in FJLT hashing because of its robustness to
secret keys, which has been illustrated in [19]. Since the
NMF-NMF-SQ hashing has been shown to outperform the
SVD-SVD and PR-SQ hashing algorithms having the best
known robustness properties in the existing literature, we
compare the performance of our proposed FJLT hashing
algorithm with NMF-NMF-SQ hashing when testing on the
new database. For the NMF approach, the parameters are set
as m = 64, p = 10, r1 = 2, r2 = 1, and M = 40 according
to [16]. It is worth mentioning that, to be consistent with
the FJLT approach, we chose the same size of subimages
and length of hash vector in NMF hashing (denoted as m
and M), which facilitate a fair comparison between them
later. We also tried the setting p = 40 (with p represents
the number of subimages in the NMF approach), but it was
found that the choice of p = 10 yields a better performance.
Consequently, NMF hash vector has the same length 40 as the
FJLT hash vector. We first examine the identification accuracy
of both hashing algorithms under different attacks, and the
identification results are shown in Table 2. It is clearly noted
that the proposed FJLT hashing consistently yields a higher
identification accuracy than that of NMF hashing under
different types of tested manipulations and attacks.
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Table 2: Identification accuracy for manipulated images by NMF-NMF-SQ (NMF) hashing, FJLT hashing, and content-Based fingerprinting
(CBF) based on FJLT and RI-FJLT hashing.

Manipulations NMF FJLT CBF

Additive noise

Gaussian noise∗ 59.38% 69.5% 62.36%

Salt and Pepper noise 81.87% 96.87% 97.71%

Speckle noise 78.27% 99.83% 99.77%

Blurring

Gaussian blurring 98.31% 99.49% 99.04%

Circular blurring 98.36% 99.51% 99.09%

Motion blurring 98.88% 99.81% 99.66%

Geometric attacks

Rotation 16.43% 36.86% 86.54%

Cropping 16.75% 96.6% 96.14%

Scaling 98.47% 100% 100%

JPEG compression 99.7% 100% 100%

Gamma correction 5.22% 86.62% 74.26%
∗With the help of median filter in preprocessing, the identification accuracy of NMF hashing under Gaussian noise could be improved to 90.61% and 99.5%
for FJLT hashing.

Table 3: Parameter setting in the FJLT hashing algorithm.

Parameter Value

Size of the subimage m = 64

Length of the hash vector N = 40

Parameters of FJLT ε = 0.1, c = 250, c′ = 1.

Secret key key = 5

We then present a statistical comparison of the pro-
posed FJLT and NMF hashing algorithms by studying the
corresponding ROC curves. We first generate the overall
ROC curves for all types of tested manipulations when
applying different hashing schemes, and the resulting ROC
curves are shown in Figure 6. From Figure 6, one major
observation is that the proposed FJLT hashing outperforms
NMF-NMF-SQ hashing. To test the robustness to each type
of attacks, a ROC curve is also generated for a particular
attack and hash algorithm. Since we note from Table 2 that
the proposed FJLT hashing significantly outperforms NMF-
NMF-SQ for additive noise, cropping and gamma correction
attacks, we show the ROC curves corresponding to the six
attacks (i.e., Gaussian noise, Salt and Pepper noise, Speckle
noise, Rotation attacks, Cropping and Gamma correction)
in Figure 7. Once again, the ROC curves in Figure 7
reinforce the observation that FJLT hashing significantly
outperform the state-of-art NMF hashing. However, both of
them are still a little sensitive to Gaussian noise as shown
in Figure 7(a). The underlying reason is that we did not
incorporate any preprocessing such as median filter into FJLT
hashing or NMF hashing, because we would investigate the
robustness of FJLT and NMF hashing themselves to additive
noise. In practice, the preprocessing such as image denoising
before applying image hashing could further improve the
robustness to additive noise (referring to the annotation
below Table 2), since both FJLT hashing and NMF hashing
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Figure 6: The overall ROC curves of NMF-NMF-SQ hashing, FJLT
hashing, and content-based fingerprinting under all types of tested
manipulations.

are strongly robust to blurring. As for the attacks such as
JPEG compression and Blurring, since we observe perfect
identification performances and no false alarms in our own
experiments, we do not report the ROC curves further, which
are similar to the ROC results via NMF hashing shown in
[16].

Here we try to give some intuitive explanations regarding
the observed performances of the two hashing algorithms. In
NMF hashing, the dimension reduction technique is based
on the approximative nonnegative matrix factorization,
which factorizes the image matrix into two lower rank
matrices. However, the problem of choosing a low rank r
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(e.g., r1, r2 in the NMF hashing) is of great importance,
though it is observed to be sensitive to the data. While
for FJLT hashing, the mapping is obtained by a coefficients
matrix and a subimage is treated as a point in a high-
dimensional space (in our case, the dimension is 64 ×
64 = 4096). One advantage of FJLT hashing is that
minor modifications in the content will not affect the
integrity of the global information, which results in a better
performance. However, as illustrated in Table 2 and the ROC
curve in Figure 7(d), both FJLT hashing and NMF hashing
provide poor performances under rotation attacks, and we
shall investigate this problem further.

6.2.2. Results of RI-FJLT Hashing. In Table 2, we note that
one drawback of FJLT hashing is its vulnerability to rotation
attacks. Especially, as shown by an example in Figure 4, for a
large rotation degree of 45, FJLT hashing failed to identify the
image content. Here we apply the RI-FJLT hashing approach
presented in Section 6 to overcome this drawback.

We generated 36 rotated versions for each test image in
the database and the rotation degrees are varied from 5 to 180
with an interval of 5 degrees. Though not investigated further
here, it is worth mentioning that, before the conversion from
Cartesian coordinates to Log-Polar coordinates, some pre-
processing operations such as median filtering can be helpful
to enhance the identification performance [8], especially
under additive noise distortions. We have employed median
filter as preprocessing in RI-FJLT hashing. The identification
results under rotation attacks are shown in Table 4. We can
see from the table that FJLT hashing is obviously sensitive to
rotation attacks and thus its identification accuracy greatly
degrades with the increase of rotation degree. It is also noted
that RI-FJLT hashing still consistently achieves almost perfect
identification accuracy under rotation attacks even with large
rotation degrees.

Although the invariance of Fourier-Mellin transform
benefits the FJLT hashing with the robustness to rotation
attacks, such robustness to rotation comes at the cost of
degraded identification accuracy for other types of manipu-
lations and attacks. We have intuitively discussed the reasons
for this observation in Section 4. We argue that it may not
be feasible to be robustly against various attacks by only
depending on single feature descriptor. This observation
motivates us to look for an alternative solution that is the
content-based fingerprinting we proposed in Section 5 to
tackle this problem.

6.2.3. Results of Content-Based Fingerprinting. Since FJLT
hashing is demonstrated to be robust against a large class of
distortions except for rotation attacks and RI-FJLT hashing
achieves superior performance under rotation attacks at
the cost of sensitivity to other manipulations, it accounts
for the fact that it is very difficult to design a globally
optimal hashing approach that could handle all of the
distortions and manipulations. Hence, we combine FJLT
hashing and RI-FJLT hashing following the framework of
content-based fingerprinting proposed in Section 5 and test
its performance on the database described in Section 6.1.

Considering the poor performance of RI-FJLT hashing on
other manipulations, we need to introduce an elaborate
weight shown in Section 5.2 to the confidence measure of
RI-FJLT hashing to get rid of its negative influence and try to
maintain the advantages of both FJLT and RI-FJLT hashing
in the proposed content-based fingerprinting. Based on our
preliminary study, we set Wf = 1 to keep the advantages
of FJLT hashing and find that a good weight Wr could
be drawn from the interval range {0.85 ∼ 0.9}. We set
Wr = 0.895 in our implementation and exhibit the results in
Table 2.

To have a fair comparison between different approaches,
though we combine the FJLT hashing and the RI-FJLT
hashing in the content-based fingerprinting, the length of
the overall fingerprint vector is still chosen as 40 (with 20
components from the FJLT hashing and the left 20 from
the RI-FJLT hashing), which is the same as that of the FJLT
hashing and the NMF hashing. It is clear that the simple
joint decisionmaking complements the drawback of FJLT
hashing under rotation attacks by incorporating the RI-FJLT
hashing into the proposed content-based fingerprinting.
The ROC curves for FJLT hashing, NMF hashing, and
the proposed content-based fingerprinting under rotation
attacks are shown in Figure 7(d). Obviously, among the
three approaches, the content-based fingerprinting yields
the highest true positive rates when the same false positive
rates are considered. The ROC curves of the content-based
fingerprinting approach under other types of attacks are
also illustrated in Figure 7. We note that the robustness
of content-based fingerprinting to additive noise, cropping,
and Gamma correction slightly degrades, as shown in
Figure 7. One possible explanation could be that the current
simple decision-making process is not the theoretically
optimal one that could eliminate the negative effect of
RI-FJLT hashing under these attacks. However, the overall
performance of content-based fingerprinting as illustrated
by the ROC curve in Figure 6 demonstrates that it is
superior and more flexible than a single hashing approach,
because the selection of features and secure hashes can be
adapted to address different practical application concerns.
Therefore, the proposed content-based fingerprinting can be
a promising extension and evolution of traditional image
hashing.

6.3. Unpredictability Analysis. Except for the robustness
against different types of attacks, the security in terms of
unpredictability that arises from the key-dependent ran-
domization is another important property of hashing and
the proposed content-based fingerprinting. Here we mainly
focus on the unpredictability analysis of FJLT hashing,
because the unpredictability of the RI-FJLT hashing and the
content-based fingerprinting proposed arise from the FJLT
hashing. Higher amount of the randomness in the hash
values makes it harder for the adversary to estimate and
forge the hash without knowing the secret keys. Since it
is believed that a high differential entropy is a necessary
property of secure image hashes, we evaluate the security
in terms of unpredictability of FJLT hashing by quantifying
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(c) ROC curves under Salt and Pepper noise
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(d) ROC curves under Rotation attacks
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(e) ROC curves under Cropping
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(f) ROC curves under Gamma correction

Figure 7: The ROC curves of NMF-NMF-SQ hashing, FJLT hashing, and content-based fingerprinting under six types of attacks,
respectively. (a) Gaussian noise; (b) Speckle noise; (c) Salt and Pepper noise; (d) Rotation attacks; (e) Cropping; (f) Gamma correction.
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Figure 8: (a) The histogram of a typical FJLT hash vector component for image Lena from 3000 different secret keys. (b) The covariance
matrix of the FJLT hash vector for image Lena from 3000 different secret keys.

the differential entropy of the FJLT hash vector, as proposed
in [8]. The differential entropy of a continuous random
variable X is given by

H(X) =
∫

Ω
f (x) log

1
f (x)

dx, (17)

where f (x) means the probability density function (pdf)
of X and Ω means the support area of f (x). Since
the analytical model of the pdf of the FJLT hash vector
component is generally not available, we carry out the
practical pdf approximation using the histograms of the
hash vector components. Figure 8(a) shows the histogram
of a typical component from the FJLT hash vector of image
Lena resulting from 3000 different keys. It is noted that
it approximately follows a Gaussian distribution. Similarly,
we can obtain the histograms of other components. Based
on our observations, we state that the FJLT hash vector
approximately follows a multivariate Gaussian distribution.
Therefore, similar to the hash in [16], we have the differential
entropy of the FJLT hash vector X as

H(X) = 1
2

log (2πe)N |Cov|bits, (18)

where |Cov|means the determinant of the covariance matrix
of the hash vector, and N means the length of the FJLT hash
vector.

From Figure 8(b) where an example of the covariance
matrix of the FJLT hash vector is shown, we can see that
the covariance matrix is approximately a diagonal matrix,
meaning that the components are approximately statistically
independent. Therefore, |Cov| can be approximately esti-
mated as

|Cov| =
N∏

i=1

σ2
i , (19)

where σ2
i means the variance of the component hi in the FJLT

hash vector. Since from information theory, the differential
entropy of a random vector X ∈ Rn is maximized when
X follows a multivariate normal distribution N (0, Cov)

[21], we argue that the proposed FJLT hashing is highly
secure (unpredictable) as it approximately follows [18].
We note that NMF-NMF-SQ hashing also was shown to
approximately follow a joint Gaussian distribution and a
similar statement in terms of differential entropy was given
in [16]. Hence, we state that the proposed FJLT hash is
comparably as secure as NMF hashing, which was shown
to be presumably more secure than previously proposed
schemes that are based on random rectangles alone [16].

However, the security of image hashing does not only lie
on a higher differential entropy, which is only one aspect of a
secure image hashing [8, 16], but also includes other factors
such as key diversity and prior knowledge possessed by
adversaries. Therefore, how to comprehensively evaluate the
security of image hashing is still an open question. Interested
readers could refer to the literatures [8, 27] regarding the
security analysis issues.

6.4. Computational Complexity. We analyze the computa-
tional complexity of the proposed FJLT hashing and RI-
FJLT algorithms (the computational cost of content-based
fingerprinting is the sum of FJLT and RI-FJLT hashing) when
compared with the NMF-NMF-SQ hashing algorithm.

(i) NMF. In [16], the computational complexity of
NMF-NMF-SQ hashing has been given as follows. It
does a rank r1 NMF on nm ×m matrices and then a
rank r2 approximation from the resulting m × 2pr1

matrix in [16]. At last, pseudorandom numbers are
incorporated in the NMF-NMF vector of lengthmr2+
2pr1r2, and the total computation cost is

CNMF = n ·O(m2r1
)

+ O(2mnr1r2) + O(mr2 + 2nr1r2).
(20)

(ii) FJLT. Based on the analysis in [18], given a x ∈ Rd,
the computation cost of FJLT on x is calculated as
follows. Computing D(x) requires O(d) time and
H(Dx) requires O(d logd). For computing P(HDx),
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Table 4: Identification accuracy under rotation attacks by FJLT and
RI-FJLT.

Rotation degree FJLT RI-FJLT

5◦ ∼ 45◦ 30.43% 94.57%

50◦ ∼ 90◦ 0.67% 96.03%

95◦ ∼ 135◦ 0.58% 94.62%

140◦ ∼ 180◦ 1.13% 96.06%

Overall 8.2% 95.32%

Table 5: Computational time costs for Lena with 256×256 by FJLT,
RI-FJLT and NMF-NMF-SQ hashing algorithms.

Computational cost FJLT RI-FJLT NMF-NMF-SQ

time (s) 1.93 2.43 5.55

it takes O(p), where the p is the number of nonzeros
in P, we know that the p satisfies the Binomial dis-
tribution B(dk, q), therefore we take the mean value
of p as dkq that equals klog2n, where k is ε−2 logn.
Then, take the random weight incorporation into
account, we have the total computation cost of the
FJLT hashing as (d = m2 in our case)

CFJLT = O
(
m2(1 + 2 logm

))
+ O

(
k
(

1 + log2n
))

. (21)

(iii) RI-FJLT. Except for the cost of FJLT hashing, we need
to take the bilinear interpolation that requires O(m2)
and Fourier transform that takes O(m2 logm) by FFT
into account. Consequently, the cost of RI-FJLT is

CRI−FJLT = O
(
m2(2 + 3 logm

))
+ O

(
k
(

1 + log2n
))

. (22)

Here, we specify that k ≈ 5m in our case and also take
other parameters into account. Obviously the FJLT and RI-
FJLT hashing roughly require a lower computational cost
than that of NMF-NMF-SQ. To have an intuitive feeling of
the computational costs required by different algorithms,
we also test on a standard image Lena with size 256 × 256
by using a computer with Intel Core 2 CPU (2.00 GHz)
and 2 G RAM. The required computational time is listed
in Table 5, which shows that the FJLT and RI-FJLT hashing
are much faster than NMF-NMF-SQ hashing. Note that
the costs are based on a length 20 of the hash vectors in
our experiments. Increasing the length of hash vectors will
enhance the identification accuracy but will require more
computational costs. This trade-off will be further studied in
the future.

7. Discussions and Conclusion

In this paper, we have introduced a new dimension reduction
technique—FJLT, and applied it to develop new image
hashing algorithms. Based on our experimental results, it is
noted that the FJLT-based hashing is robust to a large class of

routine distortions and malicious manipulations. Compared
with the NMF-based approach, the proposed FJLT hashing
can achieve comparable, sometimes better, performances
than that of NMF, while requiring less computational cost.
The random projection and low distortion properties of FJLT
make it more suitable for hashing in practice than the NMF
approach. Further, we have incorporated Fourier-Mellin
transform to complement the deficiency of FJLT hashing
under rotation attacks. The experimental results confirm the
fact that generating a hash descriptor based on a ceratin type
of features to resist all types of attacks is highly unlikely in
practice. However, for a particular type of distortion, it is
feasible to find a specific feature to tackle it and obtain good
performance. These observations motivate us to propose the
concept of content-based fingerprinting as an extension of
image hashing and demonstrate the superiority of combining
different features and hashing algorithms.

We note that the content-based fingerprinting approach
by using FJLT and RI-FJLT still suffers from some distortions,
such as Gaussian noise and Gamma correction. One solution
is to further find other features that are robust to these
attacks/manipulations and incorporate them into the pro-
posed scheme to enhance the performance. Future work will
include how to incorporate other robust features (such as the
popular SIFT-based features) and secure hashing algorithms
to optimize the content-based fingerprinting framework and
at the same time explore efficient hierarchical decision-
making schemes for identification.

Furthermore, we plan to explore the variations of the
current FJLT hashing. Similar to the NMF-based hashing
approach (referred as NMF-NMF-SQ hashing in [16]) where
the hash is based on a two-stage application of NMF, we
can modify the proposed FJLT hashing into a two-stage
FJLT-based hashing approach by introducing a second stage
of FJLT as follows. Treat the intermediate hash IH as a
vector with length k × N , and then reapply FJLT to obtain
a representation of the vector IH with further dimension
reduction. Compared with our current one-stage FJLT-
based hashing, the length of intermediate hash IH could be
further shortened by the second FJLT and the security would
be enhanced in the two-stage FJLT hashing. However, the
robustness of a two-stage FJLT-based hashing under attacks
such as cropping may degrade, since now each component
in the modified hash vector is contributed by all the
subimages by random sampling. Therefore, the distortion of
local information in one subimage could affect the whole
hash vector rather than a couple of hash components. The
computation cost can also be a concern. We will investigate
these issues in the future work.

Another concern that is of great importance in practice
but is rarely discussed in the context of image hashing is
automation. Automatic estimation/choice of design param-
eters removes the subjectivity from the design procedure
and can yield better performances. For instance, algorithms
for automating the design process of image watermarking
have already been implemented in the literature [28–30].
However, to our knowledge, this automated solution has
not yet been explored in the context of image hashing.
Our preliminary study in [31] demonstrated that using
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a genetic algorithm (GA) for automatic estimation of
parameters of the FJLT hashing using could improve the
identification performance. However, choosing the appro-
priate fitness function is challenging in automated image
hash. We plan to investigate different fitness functions
and how the GA algorithm can incorporate other factors
(such as keys) and other constraints (such as the hash
length).
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