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Abstract 

Traffic classification is widely used in network security and network management. Early studies have mainly focused 
on mapping network traffic to different unencrypted applications, but little research has been done on network 
traffic classification of encrypted applications, especially the underlying traffic of encrypted applications. To address 
the above issues, this paper proposes a network encryption traffic classification model that combines attention 
mechanisms and spatiotemporal features. The model firstly uses the long short-term memory (LSTM) method to ana-
lyze continuous network flows and find the temporal correlation features between these network flows. Secondly, 
the convolutional neural network (CNN) method is used to extract the high-order spatial features of the network flow, 
and then, the squeeze and excitation (SE) module is used to weight and redistribute the high-order spatial features 
to obtain the key spatial features of the network flow. Finally, through the above three stages of training and learn-
ing, fast classification of network flows is achieved. The main advantages of this model are as follows: (1) the mapping 
relationship between network flow and label is automatically constructed by the model without manual intervention 
and decision by network features, (2) it has strong generalization ability and can quickly adapt to different network 
traffic datasets, and (3) it can handle encrypted applications and their underlying traffic with high accuracy. The 
experimental results show that the model can be applied to classify network traffic of encrypted and unencrypted 
applications at the same time, especially the classification accuracy of the underlying traffic of encrypted applications 
is improved. In most cases, the accuracy generally exceeds 90%.
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1 Introduction
Network traffic classification is the process of identify-
ing specific applications or activities by matching them 
with network traffic. This task is essential for network 
management and security [1]. In network management, 
network traffic classification enables the identification of 

different types of network applications, allowing for the 
appropriate allocation of network resources [2].

Currently, some early network traffic classification 
methods focus mainly on two aspects: port based and 
deep packet inspection based [3]. Port-based methods 
identify network traffic by standard port numbers. How-
ever, in the current network environment, the port-based 
approach is beginning to decline due to the prevalence of 
port obfuscation and dynamic ports.

The deep packet inspection-based method has high 
classification accuracy for known application traf-
fic, but it cannot identify unknown or encrypted 
application traffic [4]. With the development of some 
new technologies, machine learning, traffic behavior 
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analysis, signature matching, and deep learning meth-
ods have also been applied and studied in network traf-
fic classification [5].

Machine learning algorithms enable the classification 
of network traffic by training models on known catego-
ries. These models can automatically identify and classify 
new traffic. Common algorithms used for this purpose 
include decision trees, support vector machines (SVM), 
and Naive Bayes classifiers. They use packet features such 
as source and destination IP addresses, packet length, 
and timestamps for classification. A network traffic clas-
sification method based on Naive Bayes classification 
was proposed in [6]. The authors first preprocessed the 
dataset by removing irrelevant features and normalizing 
values. They then applied a feature selection algorithm 
based on information gain to identify the most important 
features in the classification task. The Naive Bayes classi-
fier was trained on the selected features and evaluated on 
the test set using several metrics, including accuracy, pre-
cision, recall, and F1 scores. The study showed that Naive 
Bayes classification is an effective method for classifying 
network traffic, and that feature selection is crucial for 
improving the performance of the algorithm.

The traffic behavior analysis method classifies traf-
fic by analyzing the behavioral patterns of traffic. It can 
detect abnormal traffic behavior and identify network 
attacks and unusual activities. For example, by monitor-
ing frequent connection attempts or unusual data trans-
fer volumes from specific IP addresses, it is possible to 
determine whether traffic is a malicious activity. Signa-
ture matching methods use predefined rules or patterns 
to match traffic. By matching it against the signature of 
a known network attack or malicious behavior, it can 
determine whether the traffic belongs to a specific type 
of attack. This method is commonly used in intrusion 
detection systems (IDS) and intrusion prevention sys-
tems (IPS).

Deep learning traffic classification is a method that 
uses deep neural network models to automatically clas-
sify network traffic. A deep learning-based method for 
packet-based network traffic classification was proposed 
in [7]. The authors used a convolutional neural net-
work (CNN) to extract features from the packets and a 
multilayer perceptron (MLP) to classify the traffic. The 
method was evaluated on a real-world dataset and was 
shown to be more effective than other machine learning 
algorithms.

From the research in references [6] and [7], it can 
be seen that the former approach can identify certain 
unknown or encrypted application traffic but relies on 
prior knowledge. The latter method does not require 
manual extraction of traffic features and can auto-
matically construct the mapping relationship between 

network traffic and corresponding labels, thus eliminat-
ing the dependence on prior knowledge [8].

In recent years, the use of encryption technology has 
increased significantly in network communications. This 
is to ensure the privacy of user data. However, this has 
also led to a significant increase in encrypted traffic, 
which challenges traditional rule-based methods to effec-
tively identify and classify it. Encryption transforms com-
munication content into random ciphertext, making it 
difficult to decipher in a short period of time. As a result, 
load-based methods are ineffective for accurate matching 
and detection.

Encrypted traffic ensures secure communication, but 
it also creates opportunities for malicious activities. This 
can lead to an increase in false positives or false negatives 
in existing inspection methods, which poses a significant 
challenge for network regulators in accurately identifying 
and managing encrypted traffic. For example, consider 
an organization that relies heavily on VoIP communica-
tion for its day-to-day operations. Employees are also 
allowed to access video streaming platforms during their 
break times. However, due to limited network resources, 
the organization needs to prioritize VoIP traffic to ensure 
high call quality. However, both VoIP and video stream-
ing traffic often use similar network ports and protocols, 
making it challenging to differentiate them based solely 
on network packet header. Existing traffic classifica-
tion methods are not accurate enough to differentiate 
between VoIP and video streaming traffic, which leads to 
suboptimal QoS and potential disruptions in VoIP calls.

In addition, due to the use of encryption technology, 
traffic content is converted into random ciphertext, mak-
ing it difficult to directly check and analyze the content. 
This may result in traditional content-based malicious 
traffic detection methods being unable to effectively 
decrypt and identify some normal encrypted traf-
fic, leading to false positives. For example, Dropbox is 
a file synchronization and sharing service that let users 
upload and download files. Dropbox uses encryption to 
keep user data private and secure. However, this traffic 
behavior pattern may be similar to some malicious activi-
ties (such as massive file transfer or abnormal file types), 
which may result in misreported malicious traffic.

In addition, Dropbox provides its services using shared 
IP addresses or domain names that may be associated 
with other malicious activity. When cybersecurity sys-
tems detect malicious traffic based on IP addresses or 
domain names, they may misclassify Dropbox traffic as 
malicious.

Finally, Dropbox users can upload and download large 
amounts of data, possibly with high frequency. Such 
large data transfers and frequent traffic can be misin-
terpreted as malicious behavior, especially if traffic- or 
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frequency-based rules are used in network security 
systems.

From the problems faced by the first two network 
applications, it can be seen that there are still some chal-
lenging problems to be solved in dealing with encrypted 
traffic and application traffic classification, which are 
mainly as follows [9–11]:

(1) Inaccurate traffic classification: Due to the com-
plexity and diversity of application software, traffic 
can vary on different devices and versions of the 
same application. In addition, some applications 
may use encryption to hide their traffic, making it 
difficult to classify traffic.

(2) Misclassification: Application traffic classification 
is usually based on a few simple rules, such as port 
numbers, IP addresses, and domain names. There-
fore, misclassification may occur. For example, the 
traffic of some applications may be very similar to 
that of other applications, but their functions are 
completely different, which can be easily misjudged.

(3) Complex encryption algorithm: The encryption 
algorithm is usually very complex, which makes it 
difficult to classify traffic. Some encryption algo-
rithms may also use random numbers, hash func-
tions, and other techniques, which increases the 
difficulty of classification.

(4) Traffic noise problem: Since the encrypted traffic 
itself is encrypted, there may be a lot of noise in the 
encrypted traffic, which may affect the accuracy of 
traffic classification.

(5) Attacks and spoofing: Some malicious attack-
ers may use encryption to hide their attack traf-
fic, which poses a challenge to the classification of 
encrypted traffic. At the same time, the attacker 
may spoof other types of traffic to fool the traffic 
classification system.

(6) Traffic congestion: Users may use multiple applica-
tions at the same time, and the traffic of these appli-
cations will be mixed together, making it difficult 
to accurately classify and record the traffic of each 
application.

To address the aforementioned critical issues and 
improve the inspection accuracy of the original methods, 
the following three aspects can be considered:

(1) Update malicious traffic detection rules: Network 
security systems can be updated with rules based 
on the traffic behavior patterns and features of 
legitimate business traffic. This can help to avoid 
false positives, where legitimate traffic is mistakenly 
identified as malicious.

(2) Perform comprehensive feature-based classifica-
tion: Malicious traffic can be identified by con-
sidering multiple features, such as traffic behav-
ior, data transmission patterns, IP addresses, and 
domain names. By considering multiple features 
together, it becomes possible to more accurately 
differentiate between normal business traffic and 
malicious traffic.

(3) Use machine learning or deep learning methods: 
Machine learning and deep learning methods can 
be used to classify and identify normal business 
traffic. These methods learn the features and pat-
terns of normal traffic to distinguish between nor-
mal traffic and malicious traffic.

This paper proposes an end-to-end representation 
learning network classification model. End-to-end repre-
sentation learning is a deep learning-based approach that 
can directly map input data to output labels, thus avoid-
ing the process of manual feature extraction of input 
data. For encryption and application software traffic clas-
sification, the solution of this paper is as follows:

(1) Encrypted traffic classification problem: The tra-
ditional traffic classification method may need to 
decrypt encrypted traffic, which involves key man-
agement and privacy issues. However, the end-to-
end representation learning method can directly 
classify encrypted traffic without decryption, thus 
avoiding these problems.

(2) Application software traffic classification prob-
lem: The complexity and diversity of application 
software make traffic classification inaccurate. 
However, the end-to-end representation learning 
method can automatically extract useful features 
by learning a large amount of traffic data, so as to 
achieve more accurate traffic classification.

(3) Accuracy problem: The end-to-end representa-
tion learning method can improve the accuracy 
and precision of classification through multi-
level neural network structure and a large num-
ber of training data, which is more efficient than 
traditional methods.

(4) Universality problem: The end-to-end repre-
sentation learning method can deal with vari-
ous types of traffic data without manual feature 
extraction and rule design, so it has better uni-
versality and flexibility.

(5) Adaptive problem: Due to the constant changes of 
application software and encryption algorithms, 
traditional traffic classification methods need to be 
updated constantly, while end-to-end representa-
tion learning methods can update the model adap-
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tively through incremental learning to adapt to new 
application software and encryption algorithms.

The brief steps of the end-to-end representational 
learning model proposed in this paper are as follows:

(1) Sequential analysis with LSTM: LSTM is effective 
in capturing temporal dependencies in sequential 
data. It analyzes the order and timing of network 
packets, enabling the model to learn long-term 
dependencies and detect subtle patterns. This helps 
differentiate between normal and potential attacks, 
even in cases where similar ports or encryption 
techniques are used.

(2) Local pattern extraction with CNN: CNNs excel at 
extracting local patterns and features from data. In 
network traffic classification, a CNN component 
can learn to recognize specific packet-level patterns 
that differentiate applications. This aids in identify-
ing distinctive characteristics of benign Dropbox 
traffic, such as packet sizes, payload patterns, or 
protocol behavior, leading to accurate classification.

(3) Refining feature representations with SE: The SE 
module enhances the model’s representational 
power by recalibrating channel-wise features. It 
learns adaptive weights to focus on informative 
features while suppressing less relevant ones. This 
improves the discrimination between benign and 
potentially malicious traffic, reducing false-positive 
detections.

(4) Combined approach: By combining LSTM, CNN, 
and SE in the network traffic classification process 
for IDS, a novel approach is introduced that lever-
ages the strengths of each component. LSTM cap-
tures temporal dependencies, CNN extracts local 
patterns, and the SE module refines feature repre-
sentations. This combined approach enhances accu-
racy and reliability in network traffic classification, 
specifically addressing the challenge of misclassify-
ing benign business traffic as potential attacks and 
reducing false-positive detections in IDS systems.

This paper selects three datasets to evaluate the perfor-
mance of the model and compares it with some methods 
in recent years. The results show that the model is more 
accurate and performs better than other methods in most 
cases in different classification experiments. The main 
contributions of this paper are as follows:

(1) This paper proposes an end-to-end representation 
learning model which can automatically classify 
application software and encrypted network traf-
fic. This method effectively solves the problem of 

coarse and fine granularity classification of applica-
tion software traffic and the difficulty of accurate 
classification of encrypted traffic.

(2) This paper applies the attention mechanism and 
representation method to network traffic classifica-
tion to get rid of the bottleneck of information pro-
cessing and improve the model capability.

(3) This paper uses three datasets to verify the effec-
tiveness of the model. The experimental results 
show that the method has higher detection accu-
racy and stronger generalization ability than other 
methods.

(4) This model can be used to identify and classify 
network traffic generated by different applica-
tions, even if the traffic is encrypted. This approach 
works by capturing underlying patterns and fea-
tures within the encrypted traffic, which helps to 
improve classification accuracy. In the context of 
enterprise network environments, this model can 
be used by network administrators to identify and 
differentiate traffic generated by instant messaging 
tools, BitTorrent, and other applications. This helps 
to reduce false positives, improve network security, 
and ensure compliance with enterprise network 
policies.

The rest of this paper is organized as follows. The sec-
ond section is related work, which introduces the motiva-
tion and preparation of the experiment. The third section 
describes the specific method. The fourth section gives 
the experimental results and analysis. The fifth section 
summarizes the paper and prospects the future research.

2  Related work
2.1  Traditional network traffic classification methods
Traditional network traffic classification refers to the 
method of classifying and identifying traffic by analyzing 
the packet features of network traffic. There has been a 
lot of research in this field, mainly including the following 
aspects:

(1) Protocol-based classification method: This is one 
of the earliest network traffic classification meth-
ods, which classifies traffic by identifying the pro-
tocol identifier in the packet header. This method 
is simple and fast but susceptible to deception and 
attacks.

(2) Port-based classification method: This method clas-
sifies traffic based on port numbers, identifying the 
application type by determining the source and des-
tination port numbers of the packet. This method is 
also simple and fast but vulnerable to port decep-
tion attacks.
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(3) Feature extraction-based classification method: This 
method extracts various features of packets, such as 
packet size and timestamp, to classify traffic. This 
method requires manual selection and extraction of 
features, which has some subjectivity.

(4) Traditional machine learning methods: This 
method uses machine learning algorithms such as 
SVM and neural networks to classify and identify 
traffic. These methods have good interpretability 
for classification results. In traffic classification, 
the interpretability of classification results is very 
important because important features and patterns 
of traffic data can be obtained by analyzing the clas-
sification results.

(5) Deep learning-based classification method: This 
method uses deep learning algorithms such as 
CNN and recurrent neural networks (RNN) to clas-
sify and identify traffic. This method can automati-
cally extract features and has higher accuracy and 
flexibility.

In the early research of network traffic classification, 
port-based methods were widely used in practical net-
work business. However, these methods have lower rec-
ognition accuracy for applications with dynamic ports 
[12, 13]. Lim et al. fully proved that port-based methods 
can effectively identify applications that follow the port 
registration rules [14]. Most researchers now use hybrid 
methods that mix port-based methods with other meth-
ods to improve detection accuracy. Lu et al. proposed a 
hybrid method that first classifies flows into correspond-
ing applications by packet size distribution and then 
groups flow into sessions by port location [15].

Another direction for improvement is deep packet 
inspection (DPI), a traffic detection and control technol-
ogy based on the application layer. When IP, TCP, or UDP 
data flows pass through a DPI system, the system extracts 
a feature library by in-depth analysis of the packet pay-
load. In the traffic identification process, DPI matches the 
network flow load to the rules in the feature library. If the 
match is successful, the protocol corresponding to the 
rule is identified. Bujlow et al. conducted a comprehen-
sive comparison of 6 commonly used DPI tools, includ-
ing 2 commercial products (PACE and NBAR) and 4 
open-source tools (OpenDPI, L7-filter, nDPI, and libpro-
toident). The test comparison results show that the PACE 
commercial tool has the best detection performance 
among the six tools, but some open-source tools, such as 
nDPI and libprotoident, can also achieve very high accu-
racy [16].

As the rapid development of network applications, 
some new applications no longer follow simple port 
registration rules, and some are encrypted. Therefore, 

both port-based and DPI-based methods cannot 
directly analyze network traffic [17].

In recent years, machine learning methods such as 
SVM, Bayesian, KNN, and neural networks have been 
widely applied in network traffic classification with 
some success. However, existing flow correlation meth-
ods based on passive flow analysis technology have 
problems of high storage and huge computational over-
head. Hu et  al. [18] proposed a novel flow correlation 
method based on compressed sensing-neural network. 
This method takes the traffic features after dimension-
ality reduction as the input of the convolutional neural 
network, extracts the correlation features through the 
convolutional neural network, and then uses the one-
class SVM classifier to judge the correlation.

As can be seen from the above, machine learning 
methods have been applied to traffic classification, 
but their performance depends on the correct selec-
tion of traffic features and manual decision-making. 
This means that they cannot automatically adapt to 
new changes in the network. In contrast, deep learn-
ing methods generally have strong self-learning capa-
bilities and do not require human intervention during 
model training. As a result, more and more researchers 
have begun to pay attention to and use deep learning 
methods to classify network flows. At present, the main 
popular deep learning models are convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), 
and so on. These models have made great achievements 
in network security [19], computer vision [20], natural 
language processing [21, 22], speech recognition [23, 
24], and other fields.

Wang et  al. [9] proposed a malware traffic classifica-
tion method using CNN. This method does not require 
manual feature engineering but directly uses raw network 
traffic as input to the classifier. It is the first attempt to 
apply representation learning to malware traffic classifi-
cation, and the results of related experiments are prom-
ising. However, the authors also point out two potential 
limitations of the method:

(1) The generalization ability of the method needs fur-
ther verification.

(2) The method only considers the spatial features of 
network traffic and ignores temporal features.

Li et  al. [25] introduced RNN to network traffic clas-
sification. In this method, network datagrams are divided 
into several byte segments, which are then fed to the 
RNN for training and learning. Finally, the softmax func-
tion is applied to output the traffic type. The authors 
believe that this method has several advantages over tra-
ditional machine learning methods:
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(1) No prior knowledge of the target application is 
required.

(2) Different protocols and multi-class operations can 
be handled.

To overcome the limitations of single deep learn-
ing models, researchers have begun to explore the use 
of multiple deep learning models in combination. For 
example, RNN and LSTM can be combined to analyze 
and refine network characteristics from multiple angles. 
Currently, researchers are exploring how to combine and 
optimize different classification methods to achieve more 
accurate and efficient traffic classification and identifica-
tion. Additionally, researchers are also constantly explor-
ing and researching new methods and technologies to 
address the challenges of classifying new applications and 
encrypted traffic.

2.2  Encryption and application traffic classification 
methods

With the widespread use of encryption and application 
software, network traffic classification faces new chal-
lenges. In response to these challenges, researchers have 
conducted a series of related work.

(1) Encryption traffic classification: Traditional net-
work traffic classification methods cannot accu-
rately identify the type of encrypted traffic due to 
the difficulty of decrypting and analyzing encrypted 
traffic. Researchers have proposed encryption traf-
fic classification methods based on traffic statistical 
features and machine learning algorithms, such as 
Hidden Markov models (HMM) and collaborative 
decomposition algorithms.

(2) Application software traffic classification: The clas-
sification of application software traffic is subjective 
and complex. Researchers have proposed a number 
of methods to overcome these problems, such as 
host behavior, user behavior, and deep learning.

(3) End-to-end representation learning: End-to-end 
representation learning is a new traffic classification 
method that learns the end-to-end representation 
of network traffic to achieve traffic classification 
and identification. This method can overcome the 
problem of manual feature selection and extraction 
in traditional methods and has higher accuracy and 
flexibility.

(4) Network traffic classification platforms: Research-
ers have developed a number of network traffic 
classification platforms, such as OpenDPI, L7-fil-
ter, and DPI-LIB, to facilitate and accelerate traf-
fic classification research. These platforms provide 
convenient traffic classification tools and datasets, 

which can help researchers to conduct traffic clas-
sification research more quickly.

Network encrypted traffic classification is a tech-
nique for identifying and classifying encrypted traffic. 
Many researchers have attempted to solve this problem 
using different methods. Here are some related work 
introductions:

(1) Deep learning-based encrypted traffic classification: 
This method employs deep learning models to auto-
matically extract features from encrypted traffic and 
subsequently classify it. By utilizing models such as 
convolutional neural networks (CNNs) or recurrent 
neural networks (RNNs), the transmission charac-
teristics of encrypted traffic can be fed as inputs to 
identify and categorize the traffic. Shapira et al. [26] 
introduce a novel method for encrypting Internet 
traffic. Their approach involves converting elemen-
tary stream data into images and then applying a 
CNN technique to identify traffic categories (e.g., 
browsing, chatting, video). Lotfollahi et  al. [11] 
attempt to distinguish between encrypted and non-
encrypted traffic by combining a stackable autoen-
coder with a CNN method. While this approach 
performs well on ISCX data streams, it struggles 
to identify subcategories of network streams when 
tested on Tor and YouTube data streams.

(2) Statistical analysis-based encrypted traffic classi-
fication: This method employs statistical analysis 
techniques to examine the properties of encrypted 
traffic and extract valuable information for clas-
sifying it. For instance, Bayesian classifiers or sup-
port vector machines can be utilized to categorize 
encrypted traffic. Ammar Almomani proposed a 
system for analyzing and classifying VPN and non-
VPN traffic using a new machine learning classifier 
called stacking ensemble learning. This approach 
was applied for the first time to a VPN and non-
VPN attack problem. By combining predictions 
from multiple learning mechanisms (random for-
est, neural network, and support vector machine), 
ensemble learning was employed to enhance pre-
diction accuracy [27].

(3) Feature extraction-based encrypted traffic clas-
sification: This method classifies encrypted traf-
fic by extracting and analyzing its features. For 
example, wavelet transform can be used to extract 
time-domain and frequency-domain features 
of encrypted traffic, and then a classifier can be 
employed to categorize the traffic. Okada et al. [28] 
investigated the impact of encryption on traffic 
features. They created a training dataset contain-
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ing HTTP, FTP, SSH, and SMTP application proto-
cols encrypted using PPTP and IPsec tunnels. The 
authors evaluated 49 traffic features and analyzed 
which ones had strong correlations in normal and 
encrypted traffic. They then used the correlated 
features to infer the function that transforms fea-
tures between normal and encrypted traffic. Con-
sequently, standard classifiers can be used to clas-
sify transformed traffic. The authors employed the 
Naive Bayesian classifier and made several modifi-
cations to validate their approach.

(4) Rule-based encrypted traffic classification: This 
method uses predefined rules to determine the type 
and purpose of encrypted traffic. For example, the 
type of encrypted traffic can be ascertained by ana-
lyzing the features of the TLS handshake protocol. 
TLS is an encryption protocol that provides privacy 
for applications and is typically used to encapsulate 
common application layer protocols, such as HTTP 
and SMTP protocols. For instance, for SSL/TLS 
traffic, the following rules can be used to classify it:

• If the handshake message contains an RSA key 
exchange algorithm, the traffic type is RSA.

• If the handshake message contains an ECDHE key 
exchange algorithm, the traffic type is ECDHE.

• If the handshake message contains an AES encryp-
tion algorithm, the traffic type is AES.

• If the SHA digest algorithm is included in the 
handshake message, the traffic type is SHA.

These rules can be defined through an understanding of 
the TLS protocol and can be implemented through soft-
ware to identify the type of encrypted traffic. Rule-based 
encryption traffic classification methods can quickly 
identify encryption traffic types, but their disadvantage 
is that they cannot adapt to new encryption protocols 
or algorithms, requiring constant updating and mainte-
nance of rule tables.

For example, Wei et  al. [29] proposed the HNNIM 
(hybrid neural network identification model) model to 
identify malicious TLS traffic. The goal is to address the 
issue that classical machine learning methods are heavily 
influenced by expert experience, resulting in suboptimal 
identification and classification outcomes. The HNNIM 
model combines plaintext information from the TLS pro-
tocol’s handshake phase and the TCP protocol’s header 
field information, reducing reliance on expert experience 
and effectively improving the identification and classifi-
cation of malicious TLS traffic. Korczyn´ski and Duda 
[30] proposed a Markov-based method for detecting 
anomalous encrypted communication by extracting fin-
gerprints from the payload of data packets in TLS/SSL 

sessions to identify encrypted application traffic and then 
modeling the TLS/SSL message type sequence using a 
first-order Markov chain to detect anomalous encrypted 
communication. This method is applicable to unidirec-
tional communication from the server to the client for a 
given application but requires upgrading and updating of 
the application and periodic updating of the fingerprints.

As new applications and services emerge, network traf-
fic becomes more complex and diverse, making applica-
tion-level traffic classification increasingly important and 
popular. However, existing methods for traffic classifica-
tion often have limitations in achieving acceptable real-
time performance.

Kyu-Seok Shim et  al. [31] proposed a new method 
for application-level traffic classification that utilizes a 
sequence of payload sizes to generate unique signatures 
for each application. By analyzing the packet order, direc-
tion, and payload size of the first N packets in a flow, this 
method identifies application traffic with high accuracy 
and completeness rates, over 95% and 93%, respectively.

Jae-Hyun et  al. [32] also used payload size sequence 
(PSS) signatures to classify application-level traffic. 
PSS signatures represent unique flow patterns for each 
application, which can be used to differentiate between 
applications. PSS signatures are generated for each appli-
cation using statistical information of flows obtained 
from application traffic traces. This method can easily 
and quickly classify application traffic in real-time net-
works by matching the PSS signatures of new flows to 
those of each application.

Although some achievements have been made in 
application traffic classification, one of the main prob-
lems facing encrypted application traffic classification is 
encryption. Since the packet payload is encrypted, the 
traditional feature-based traffic classification method 
cannot be directly applied to encrypted traffic. Secondly, 
the characteristics of encrypted traffic and ordinary traf-
fic are very different, so special techniques and algo-
rithms are needed to distinguish them. In addition, as 
encryption technology continues to evolve and update, 
traffic classification methods need to be constantly 
updated and improved to maintain effectiveness. Finally, 
the number and variety of encryption applications are 
increasing, and the accuracy and scalability of classifica-
tion methods need to be improved constantly.

End-to-end representation learning refers to the pro-
cess of learning high-level features or representations 
from raw data using neural networks. In the field of traf-
fic classification, end-to-end representation learning can 
automatically learn the characteristics of traffic without 
relying on manually defined characteristics.

DeepPacket and DeepFlow are traffic classification 
methods that utilize deep representation learning. In 
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[33], the authors employed a convolutional neural net-
work (CNN) and a stacked autoencoder (SAE) to classify 
encrypted traffic data. They improved model perfor-
mance using data augmentation and SAE learning tech-
niques and demonstrated that DeepPacket outperformed 
traditional rule and feature-based methods. Similarly, in 
[34], the authors used CNNs and recurrent neural net-
works to classify data packets. They enhanced perfor-
mance with data augmentation, transfer learning, and 
deep supervision and showed that DeepFlow outper-
formed traditional methods. In [35], the authors sum-
marized various deep learning methods used in network 
traffic classification, including CNNs, recursive neural 
networks, and autoencoders. Experimental results indi-
cated that deep learning methods outperformed tradi-
tional rule and feature-based methods and performed 
well in different types of traffic classification tasks.

In summary, traditional machine learning methods 
typically require feature extraction from network flows 
and classification using machine learning and rule defi-
nitions. The effectiveness of network traffic classification 
depends on feature extraction and rule definition and 
requires trustworthy public network traffic datasets for 
comparison. With the increasing popularity of encryp-
tion technology, analyzing encrypted network traffic 
effectively has become an urgent problem to solve. The 
complexity of network services also requires continuous 
exploration of how to classify different types of network 
flows. Although representation learning has made great 
progress in network traffic classification, there are still 
some outstanding issues to be addressed, including the 
following:

(1) Classification of unknown traffic: Representation 
learning algorithms typically require a large amount 
of training data to generate effective feature repre-
sentations. However, in practical networks, there 
may be some unknown traffic types that cannot 
be properly classified. Therefore, how to classify 
unknown traffic is still a challenge.

(2) Classification of encrypted traffic: The widespread 
use of encryption communication technology has 
led to an increasing amount of encrypted traffic in 
networks. Due to the concealment of encrypted 
communication, encrypted traffic is difficult to be 
detected and recognized by traditional rule-based 
or feature-based classification methods. Therefore, 
how to effectively classify encrypted traffic is still an 
important issue.

(3) Classification of variable traffic: Traffic types in net-
works are usually diverse and dynamically chang-
ing. For example, the traffic of the same application 
may change due to upgrades or updates, and even 

the traffic of the same application used by different 
users may differ. Therefore, how to classify variable 
traffic is still a challenging problem.

(4) Classification of anomalous traffic: Anomalous 
traffic, such as attack traffic and virus traffic, often 
appears in networks. The features of this traffic 
are usually different from normal traffic, so special 
classification methods are needed to identify them. 
However, current representation learning algo-
rithms still face certain challenges in dealing with 
anomalous traffic.

3  Proposed solution
Deep learning has been proven to be very effective in 
network traffic classification tasks. However, the increas-
ing diversity of network traffic and encrypted traffic 
demands continuous improvement and optimization 
of these models. In order to further improve the clas-
sification accuracy of encrypted and network applica-
tion traffic, this paper proposes the use of multiple deep 
learning models to enhance network traffic classification. 
The paper also considers aspects such as dataset, feature 
selection, model optimization, and model fusion.

The paper emphasizes the importance of dataset qual-
ity and diversity and the need to collect valid data. For 
different types of traffic, appropriate end-to-end repre-
sentation learning methods should be used. Using various 
model optimization techniques, such as adaptive learn-
ing rate, dropout, and batch normalization, can improve 
model performance. In addition, using multiple model 
fusion methods, such as voting, weighted averaging, and 
stacking, can further improve model performance.

The comprehensive use of these technologies and 
methods can effectively improve the accuracy and gener-
alization ability of network traffic classification, especially 
in the area of encrypted and network application traffic 
classification.

In this section, a deep learning-based spatiotem-
poral correlation network flow classification model is 
proposed. The model combines the advantages of con-
volutional neural network (CNN) and long short-term 
memory (LSTM). The model framework is shown in 
Fig. 1.

To automatically and effectively extract and represent 
the spatiotemporal features of network flows, the pro-
posed model performs the following steps:

(1) The model utilizes LSTM to extract the temporal 
features of the network flow.

(2) The model applies the squeeze-and-excitation (SE) 
mechanism to optimize the CNN network struc-
ture and improve its training performance.
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LSTM is a type of neural network with memory func-
tion and is well-suited for processing temporal data. 
Given that network flow is a typical time series data, 
LSTM is a suitable choice for training the model.

CNN, on the other hand, has a strong ability in image 
feature extraction. It usually comprises three main com-
ponents: convolution layer, pooling layer, and full con-
nection layer. The convolution layer convolutes the local 
region of the input data with the convolution kernel, 
while the pooling layer reduces the dimension of the 
training characteristics. The fully connected layer is a tra-
ditional multilayer perceptron, often used as an output.

The CNN-SE-net is achieved by integrating the SE 
module with the traditional CNN network. The SE mod-
ule is an attention mechanism that can be embedded in 
other classification or detection models. Its core idea is to 
learn feature weights based on the loss function through 
the network, so that the effective feature map has a larger 
weight, while the ineffective feature map has a smaller 
weight.

The detailed implementation of the model is shown in 
Sect. 3.3.

3.1  Datasets
A good dataset is a necessary condition for verifying the 
correctness of a method. Currently, researchers mainly 
rely on some well-known network attack datasets (such 
as KDD-CUP99 [36], NSL-KDD [37], and UNSW_NB15 
[38]) to test network traffic classification methods. For 
example, Gao et al. [39] used the KDD-CUP99 dataset to 
validate their method of combining multiple Boltzmann 
machines and back-propagation algorithms to classify 

network flows. Shone [40] and Zhang et al. [19] tested the 
intrusion detection systems they developed on the NSL-
KDD and UNSW_NB15 datasets, respectively.

Although these datasets contain some classic exam-
ples of network attacks, some of them are outdated and 
cannot adapt to new network scenarios. As time goes 
on, network traffic and attack types and patterns are 
constantly changing. Therefore, evaluating intrusion 
detection methods using outdated datasets may lead to 
evaluation results that do not match the actual situation.

To address this problem, researchers can take the fol-
lowing measures:

(1) Create new datasets: Researchers can create new 
datasets to reflect the current network attacks and 
traffic. This can be achieved by monitoring real-
time network traffic and recording attack behavior.

(2) Update existing datasets: Researchers can update 
existing datasets to reflect current network attacks 
and traffic. This can be achieved by adding new 
attack types and patterns.

(3) Develop more generic evaluation frameworks: 
Researchers can develop more generic evaluation 
frameworks that can be applied not only to exist-
ing datasets but also to new datasets. This can be 
achieved by designing more flexible and scalable 
evaluation metrics.

(4) Use mixed datasets: Researchers can use mixed 
datasets, which combine multiple datasets to reflect 
a wider range of attacks and traffic. This can be 
achieved by combining existing datasets or collect-
ing data from different sources.

Fig. 1 Network architecture
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In summary, as network attacks and traffic continue to 
evolve, evaluating the relevance of intrusion detection 
methods becomes increasingly difficult. To address this 
issue, researchers need to take innovative approaches to 
create new datasets, update existing datasets, develop 
more generic evaluation frameworks, and use mixed 
datasets.

In order to verify the comprehensive ability of the pro-
posed method in this paper, multiple different datasets 
were used, including three commonly used datasets: 
ISCX VPN-nonVPN [41], USTC-TFC2016 [42], and the 
YouTube dataset [43]. These three datasets contain a 
large amount of encrypted, unencrypted, abnormal, and 
normal traffic, and the proposed method was thoroughly 
tested from both binary and multi-class perspectives.

The ISCX VPN-nonVPN dataset consists of both VPN 
and non-VPN network traffic, providing a means to 
evaluate the performance of intrusion detection systems 
and network security algorithms. VPNs employ encryp-
tion and authentication to safeguard data communica-
tion, offering enhanced network security. This dataset 
encompasses real-world network environments and 
encompasses various common network protocols such 
as HTTP, SSH, FTP, SMTP, and DNS. Additionally, it 
includes instances of common network attacks like DDoS 
attacks, port scanning, and malware propagation.

Widely utilized in academic research and practical 
applications, the ISCX VPN-nonVPN dataset serves as a 
valuable resource for studying network attack detection, 
intrusion detection algorithms and tools, and testing 
defense performance. The Canadian Cybersecurity Insti-
tute stores this dataset in PCAP format, with network 
traffic categorized into 12 types based on protocol type, 
including chat, email, file transfer, streaming, torrent, 
VoIP, and more (Table 1).

The USTC-TFC2016 dataset, released by the Security 
Laboratory of the University of Science and Technol-
ogy of China, comprises video traffic data collected from 
real-world scenarios covering multiple video applica-
tions and network protocols. Captured using packet 
capture technology between March and June 2016, the 
dataset includes various application scenarios spanning 
local networks and the Internet. It encompasses video 
protocols such as HTTP, RTSP, UDP, RTP, SIP, Skype, 
and QQ video. The USTC-TFC2016 dataset serves as a 
vital resource for research on video traffic analysis, video 
content recognition, traffic classification, network appli-
cation performance evaluation, and related fields. It is 
widely recognized as a significant video traffic dataset. 
Table  1 illustrates that the dataset encompasses 20 net-
work flows, consisting of 10 normal flows and 10 abnor-
mal flows.

The YouTube dataset comprises 100 encrypted video 
streams from Chrome, with each video viewed 100 times. 
These videos’ titles are derived from current popular top-
ics, including news, sports, nature, and more. For exam-
ple, in the directory http:// www. cse. bgu. ac. il/ title_ finge 
rprin ting/ datas et_ chrome_ 100/ Holly weezy/, there are 
100 PCAPs, with “Hollyweezy” representing the video 
title. The dataset also includes some data packets with 
delays and packet loss for testing purposes.

The purpose of this dataset is to develop a model capa-
ble of identifying video titles associated with encrypted 
video traffic. In order to validate the proposed method’s 
ability to accurately identify encrypted network flows, 
this publicly available dataset is employed. Due to the 
large number of source data samples and the space they 
occupy, only 10 samples are selected for testing and eval-
uation in this experiment, with a total PCAP stream size 
of 3.24 GB.

Table 1 Labels for three datasets

ISCX VPN-nonVPN USTC-TFC2016

Traffic VPN_Traffic Malware traffic Normal traffic YouTube

Email VPN_Email Cridex BitTorrent American_Hustle

Chat VPN_Chat Geodo FaceTime BonBon

Streaming VPN_Streaming htbot FTP Disconnect

File transfer VPN_ File transfer Miuref Gmail Friends

VoIP VPN_VoIP Neris MySQL Hollyweezy

P2P VPN_P2P Nsis-ay Outlook Let_It_Go

Shifu Skype Maria

Tinba SMB Maroon_5_Sugar

Virut Weibo Sola

Zeus World of Warcraft TenYears

http://www.cse.bgu.ac.il/title_fingerprinting/dataset_chrome_100/Hollyweezy/
http://www.cse.bgu.ac.il/title_fingerprinting/dataset_chrome_100/Hollyweezy/
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3.2  Preprocessing
Since the original network packets in PCAP format cannot 
be directly used as the input of this model, this paper refers 
to the literature [9] to preprocess the dataset for the PCAP 
packets. The specific steps include the following: traffic fil-
tering, image generation, and IDX format conversion.

3.2.1  Step 1 (traffic filtering)
Since a session is a bidirectional network flow, it con-
tains more abundant information than a unidirectional 
flow. Therefore, this paper adopts the traffic classification 
method based on the session mode. This step splits the 
PCAP-formatted raw packets into individual session-
level packets and then cleans the traffic to remove empty 
and duplicate files that affect model training.

In this step, this paper uses the SplitCap [44] tool to 
split the network flow from flow to session level. Split-
Cap is a free and open-source PCAP file splitter. Split-
Cap splits a large PCAP file into multiple files based on 
TCP and UDP sessions, one PCAP file per session. The 
TCP and UDP session concepts in SplitCap are defined 
as bidirectional streams, i.e., all frames/packets with the 
same 5-tuple (source host, destination host, source port, 
destination port, transport protocol).

From the protocol level analysis, the traffic character-
istics are mainly reflected in the application layer. For 
example, the STMP protocol stands for mail traffic and 
HTTP for browser traffic. If the relevant network fea-
tures are only obtained from a single PCAP packet, the 
entire process of the network session cannot be accu-
rately reflected. By using session-based traffic analysis, 
new implicit statistical features can be obtained, such as 
blocking window size, out-of-order segments, and net-
work forward and backward flow byte sizes.

3.2.2  Step 2 (image generation)
To facilitate the processing of the CNN training model, 
the following steps are taken. Firstly, the cleaned files are 
standardized to a length of 784 bytes. If a file is longer 
than 784 bytes, it will be truncated, and if it is shorter, it 
will be padded with 0 × 00 bytes. Each byte in the original 
packet represents a pixel in the image, resulting in a con-
version of 784 bytes of stream data into a 28 × 28 image 
matrix. Each image has three parameters: height (H), 
width (W), and channel (C).

To convert PCAPs/flows into a 784-byte image, the fol-
lowing steps are involved:

(1) Obtain PCAPs/flows data: PCAPs are packet cap-
ture file formats, while flows are a data represen-

tation method based on network traffic statistics. 
Tools such as Wireshark and Tcpdump can be used 
to collect this data.

(2) Preprocess the PCAPs/flows data: Since PCAPs/
flows data is typically large, preprocessing is nec-
essary to reduce the data volume and extract 
relevant information. This involves filtering out 
unnecessary packets, extracting packets within a 
specific time period, and removing irrelevant data 
based on specific requirements.

(3) Feature extraction: Useful features such as packet 
length, source IP address, destination IP address, 
source port number, destination port number, and 
transport layer protocol type need to be extracted 
to convert PCAPs/flows data into an image. The 
selection of features depends on the specific task at 
hand, such as detecting malicious traffic by extract-
ing traffic direction and duration.

(4) Feature encoding: The extracted features need 
to be encoded, which can be achieved through 
techniques like one-hot encoding or embedding 
encoding. The choice of encoding method should 
consider its impact, such as one-hot encoding 
resulting in high-dimensional vectors with feature 
independence, while embedding encoding map 
features to a lower-dimensional space but may lead 
to information loss.

(5) Conversion of encoded features into an image 
involves the following steps:

a) Arrange the encoded features into a one-dimen-
sional vector according to a specific order. For 
example, if there are n features, each encoded 
with a length of m, these n features should be 
concatenated in order to form a one-dimensional 
vector of length n*m.

b) Rearrange the one-dimensional vector into a 28 × 
28 matrix, where the 784 values are reshaped into 
a matrix with 28 rows and 28 columns.

c) Map the values in the matrix to pixel values 
using techniques like linear mapping or loga-
rithmic mapping. For instance, to map the fea-
ture value range to the integer range of 0–255, 
the linear mapping formula can be applied as 
follows: pixel_value = (feature_value - min_fea-
ture_value) × 255/(max_feature_value - min_
feature_value).

(6) Optional post-processing steps can be performed 
on the generated image, such as image enhance-
ment or denoising, to improve the image quality.



Page 12 of 25Hu et al. EURASIP Journal on Information Security          (2023) 2023:6 

3.2.3  Step 3 (IDX format conversion)
The processed data is converted into the IDX file format, 
which serves as the input for the LSTM and CNN net-
works [45].

To ensure clarity in the preprocessing process, let us 
use an example from the YouTube dataset, specifically the 
flow titled “Maroon 5_Sugar.” Fig. 2 showcases a selection 
of original flows downloaded from the network in this 
study. The IDX format is commonly used for storing large 
multidimensional arrays or tensors efficiently. By con-
verting the preprocessed data into IDX files, it becomes 
compatible with the LSTM and CNN networks, ena-
bling further analysis and classification tasks. It is worth 

noting that IDX format conversion provides a structured 
and standardized representation of the data, facilitating 
seamless integration with the chosen network models for 
subsequent processing and analysis.

The first PCAP network flow consists of a total of 
63,855 TCP records. Visual representation of these 
records can be achieved using tools like Wireshark, as 
depicted in Fig. 3. While Wireshark allows for basic infor-
mation retrieval, such as source IP address and source 
port, it does not provide statistical insights into network 
sessions.

After completing step 1, subflows in session-level 
PCAP format are obtained, as illustrated in Fig.  4. 

Fig. 2 Some of the original Maroon_5_Sugar flows

Fig. 3 The information of Maroon_5_Sugar_Train03_39_04 flow



Page 13 of 25Hu et al. EURASIP Journal on Information Security          (2023) 2023:6  

Furthermore, comprehensive network communication 
information can be obtained by opening a session PCAP 
packet in Wireshark, as depicted in Fig. 5. This includes 
details of TCP flow establishment, data transmission, and 
release, along with various relevant statistical features 
that can be calculated.

After the processing of step 2, the network session flow 
is converted into a 784-byte image, which serves as the 
input for the CNN network. The processed images of the 
three datasets are displayed in Figs.  6, 7, and 8, respec-
tively. It is evident that most of the images exhibit dis-
tinguishable texture features, while only a few share 
similarities, such as FTP and SMB. The traffic visualiza-
tion results indicate clear distinctions between images 
representing different types of traffic, demonstrating the 
feasibility of using session flow-generated images for traf-
fic classification.

3.3  Model
3.3.1  LSTM
Network traffic is the language of communication 
between computers, which is transmitted in the form of 
sequence in the network and contains rich time-related 
information. In order to comprehensively analyze the 
network traffic and extract its temporal correlation fea-
tures, this paper adopts the LSTM method.

LSTM networks are a special type of RNN that can 
learn long-term dependencies. LSTM was proposed by 
Hochreiter and Schmidhuber in 1997 [46]. In many prob-
lems, LSTMs have achieved considerable success and are 
widely used. The structure of the LSTM model used in 
this paper is shown in Fig.  9. The long- and short-term 
memory network consists of several long- and short-term 
memory units, which are composed of linear units and a 
self-connection with a constant weight of 1.0. This allows 
a value (forward pass) or gradient (backward pass) to 
flow into this self-looping unit and be saved and retrieved 
after the desired time step.

The 784-byte data obtained from the preprocessed net-
work stream will be converted into a matrix with a value 
between 0 and 255, and then, this matrix will be gener-
ated into a 28 × 28 × 1 single-channel image. These images 
will be sent to the LSTM model to extract the time series 
features contained in the network flow. The internal 
structure of LSTM is more complex, and the core is the 
unit state flow shown in Fig. 9. The unit state flow is con-
trolled and adjusted by three gate mechanisms: forgetting 
gate ( Ft ), input gate ( It ), and output gate ( Ot).

The output of the previous cell ht−1 and the input data 
of the current cell xt are entered into the forgetting gate 
at the same time to obtain the information retention 
degree of the previous hidden layer, and the value is Ft.

Fig. 4 Some subflows in session-level PCAP format
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where σ refers to the sigmoid function, Wf  is the weight 
matrix of the forgetting gate, and bf  is the bias value. The 
input gate calculates It and Ct ′ to determine the new data 
and the extent to which it needs to be retained.

(1)Ft = σ Wf · [ht−1, xt ]+ bf

(2)It = σ(Wi · [ht−1, xt]+ bi)

(3)C ′
t = tanh(Wc · [ht−1, xt ]+ bc)

(4)Ct = Ft ∗ Ct−1 + It ∗ C
′
t

In the above formula, Wi and Wc are the weight matrix 
of the input gate, and bi and bc are the bias value. Finally, 
according to the calculation results of the input gate and 
the forgetting gate, the output gate obtains the next out-
put results ht and  Ot.

where σ refers to the sigmoid function, Wo is the weight 
matrix of the output gate, and bo is the bias value.

(5)Ot = σ(Wo · [ht−1, xt ]+ bo)

(6)ht = Ot ∗ tanh(Ct)

Fig. 5 A complete session network subflow

Fig. 6 Visualization of ISCX VPN-nonVPN
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3.3.2  CNN‑SE‑net
CNN is an excellent deep learning model for image pro-
cessing, capable of automatically extracting features from 
high-dimensional data using shared convolutional ker-
nels, without encountering significant computational 
challenges.

However, researchers have identified certain limita-
tions when employing a single CNN network. Firstly, 

as the network depth increases, modifying parameters 
through backpropagation can lead to slower changes in 
parameters near the input layer. Secondly, using gradi-
ent descent algorithms may cause the training process 
to converge to local minima instead of the global mini-
mum. Lastly, the pooling layer may result in the loss 
of valuable information and disregard the correlation 
between individual parts and the overall context.

Fig. 7 Visualization of USTC-TFC2016

Fig. 8 Visualization of YouTube
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Consequently, it is not feasible to directly employ a sin-
gle CNN model for network flow training. To enhance 
the accuracy and efficiency of CNN models in network 
traffic classification, this study proposes optimizations 
from two perspectives.

Firstly, during CNN model training, the large con-
volutional kernel’s receptive field can be simulated 
by stacking multiple 3 × 3 convolutional kernels. For 
instance, three 3 × 3 convolutional kernels can be 
stacked to achieve a receptive field equivalent to a 7 × 7 
convolutional kernel. This approach increases the net-
work’s depth and search space, reduces the number of 
model parameters, and enhances overall performance 
[47]. Additionally, selecting a smaller stride value dur-
ing model training prevents the loss of detailed infor-
mation associated with larger strides. Therefore, this 
study sets the model’s stride parameter to 1.

Secondly, the self-attention mechanism of the SE 
module [48] is employed to extract spatial and channel 
information while recalibrating the interdependence 
among feature map channels. The SE module generates 
modulation weights based on the global information 
of the feature map, enhancing or suppressing different 
channels based on specific classification tasks.

The attention mechanism, also referred to as “neural 
network attention,” comprises three steps: informa-
tion input, calculation of attention distribution, and 
processing of input information based on the calcu-
lated attention distribution. By incorporating the self-
attention mechanism into the CNN model, this study 

effectively captures spatial and channel dependencies, 
leading to improved performance in network traffic 
classification tasks.

Let a ∈ Rd be the input vector, X = [x1, x2, · · ·, xn] be 
N  input samples, q ∈ Rk be the query vector or feature 
vector, and Z ∈ [1,N ] be the attention variable, which 
indicates the position of the selected information. For 
example, z = i means the i-th input vector is selected.

The general attention mechanism is divided into 
soft attention and hard attention. The formulas of soft 
attention mechanism are generally as follow:

where ai is called attention distribution and s(xi, q) is the 
attention scoring function. Attention distribution ai can 
be interpreted as the degree of attention of the i-th input 
vector for a given query q . The soft attention selection 
mechanism is to aggregate them.

Hard attention selects information based on maxi-
mum sampling or random sampling. Among them, the 
formula for selecting the input information with the 
highest probability is as follows:

The specific implementation of embedding SE in 
CNN is shown in Fig. 10.

(7)ai = p(z = i||X , q) = softmax(s(xi, q))

(8)att(X , q) =
∑n

i=1
aiXi

(9)att(X,q)=Xj, where j= argmax(ai)

Fig. 9 The structure of the LSTM model
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After preprocessing, the original network flow is 
input into the LSTM module for time series analysis, 
and the output X = [x1, x2, ..., xc] is obtained. After the 
convolution operation, the output isU ′ = [u1′, u2′, ..., uc′]

,U ′ ∈ RH ′×W ′×C′.
The convolution operation is shown in formula 10.

where * denotes convolution and V = [v1, v2, . . . , vc] 
is C convolution kernels of 3 × 3. The first three convo-
lution layers of network use 32, 64, and 64 convolution 
kernels respectively, and the channel number of the fea-
ture graph is correspondingly converted to the following: 
1–32-64–64.

(10)U ′ = X × Vk , (k = 1, 2, . . . ,C)

After that, the fourth network layer is the maximum 
pooling layer with 2 × 2 and step size of 2, and the out-
put result is U = [u1,u2, . . . ,uc] , U ∈ RH×W×C.

SE module is embedded in the fifth layer of the 
model. SE module is a channel-based attention model 
with simple deployment and small amount of calcu-
lation [39]. In this paper, the SE module is embedded 
in CNN to enhance or suppress the feature channel 
through weight, so that the model focuses on the spa-
tial features with greater importance.

The specific operation is further subdivided into 
three main steps: global average pooling Fsq(U) , weight 
generation Fex(w

∗,W ), and weight redistribution 
Fsca

(

uc,w
∼
c

)

.

(1) Global average pooling

Fig. 10 SE mechanism-embedded process
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 The feature map output by the maximum pooling layer 
has three dimensions, namely width, height, and num-
ber of channels. First, the global average pooling oper-
ation compresses the width and height directions, so 
that the width and height dimensions are reduced to 
1 × 1, but the number of channels remains unchanged.

 The feature map output in this step is 
w∗ =

[

w∗
1,w

∗
2, . . . ,w

∗
C

]

,w∗
1 ∈ R1×1×C . The feature 

map of 1× 1× C has a global perceptual domain, and 
the specific calculation of w∗ is shown in formula 11:

(2) Weight generation
 Two fully connected layers are used to reduce and 

increase the dimension of channel C and increase 
the nonlinear relationship between channels. 
This operation produces a weight represent-
ing the importance of a set of global information 
W∼ = [w∼

1 ,w
∼
2 , . . . ,w

∼
c ] . The details are described 

in the formula 12.

where W1 ∈ R
C
r ×C ,W2 ∈ RC× C

r , r is reduction ratio 
of dimensionality-reduction layer.

(3) Weight redistribution

Finally, the output U ∈ RH×W×C of the maximum 
pooling layer is multiplied by the feature channel 
weight W∼ = [w∼

1 ,w
∼
2 , . . . ,w

∼
c ] and the output of CNN-

SE-net X∼ = [x∼1 , x
∼
2 , . . . , x

∼
c ] is obtained.

It can be seen that the importance of each channel 
has changed after weight redistribution.

The output from the SE module undergoes another 
round of processing through three convolution lay-
ers, each utilizing small 3 × 3 convolutional kernels. 
These convolution layers are configured with 32, 32, 
and 16 convolutional kernels, respectively, resulting 
in a channel conversion of 32–32-16. Subsequently, 
the model is trained with a maximum pooling layer 
of 2 × 2 dimensions and a stride of 2. This is followed 
by two fully connected layers, one with a dimension 
of 1024 and another with a dimension matching the 
number of traffic classes. Finally, the softmax layer 
is employed to produce the ultimate classification 
results.

(11)w∗ = Fsq(U) =
1

H ×W

∑H

i=1

∑W

j=1
uij

(12)
w
∼ = Fex

(

w
∗
,W

)

= σ
(

g
(

w
∗
,W

))

= σ1
(

W2σ2
(

W1W
∗
))

(13)x∼c = Fsca
(

uc,w
∼
c

)

= w∼
c uc

4  Experiment
4.1  Basic performance test
In this paper, three international public network traf-
fic datasets are chosen for several experiments: ISCX 
VPN-nonVPN, USTC-TFC2016, and YouTube. These 
datasets consist of raw PCAP flow files, which are 
described in Sect. 3.1. After the preprocessing detailed 
in Sect.  3.2, each PCAP flow is transformed into a 
28 × 28 × 1 image. The experimental parameters are 
outlined in Table 2.

For evaluating the proposed detection scheme, Python, 
Scikit-learn, NumPy, Pandas, TensorFlow, and Keras 
machine learning libraries are utilized in this study. Ini-
tially, 90% of the samples are randomly selected as the 
training set, while the remaining 10% serve as the test set. 
To address potential overfitting issues, a dropout layer 
is introduced after the first fully connected layer. Cross-
entropy and Adam are employed as the loss functions 
and optimizers, respectively. During the training phase, 
the ReLU and softmax activation functions are predomi-
nantly used.

Dropout is a regularization technique commonly 
employed in convolutional neural networks (CNNs) to 
mitigate overfitting. By randomly deactivating neurons 
during training, dropout reduces the complexity of the 
neural network and fosters independence among neu-
rons. This, in turn, enhances the network’s ability to 
generalize and make more robust predictions. In these 
experiments, a dropout value of 0.7 indicates that 70% 
of the neurons in each layer are randomly ignored or 
“dropped out” during each iteration of training. This 
technique effectively reduces interdependence among 
neurons and helps prevent overfitting, allowing the 
network to learn more generalized features. During 

Table 2 The parameters of model

Parameter Values

Learning rate 10−2, 10−3, 10
−4

Number of training (12 classifications) 3.5× 105

Number of training (20 classifications) 6.5× 105

Batch (12 classifications) 64

Batch (20 classifications) 256

Time stamp of LSTM 28

N_inputs (the number of input images of LSTM)  >  = 1

N_classes (the number of network traffic classes)  >  = 2

N_hidden_units (the number of hidden neurons 
of LSTM)

28

batch_size (batch size of LSTM) 64

Epochs (the number of iterations)  >  = 300

Dropout 0.3, 0.5, 0.7



Page 19 of 25Hu et al. EURASIP Journal on Information Security          (2023) 2023:6  

testing, all neurons are utilized to ensure optimal per-
formance by activating the entire network for making 
predictions.

To assess the impact of this method and provide an 
objective comparison with other approaches, the experi-
mental results in this paper are evaluated using metrics 
such as F1 score, recall, accuracy, and precision.

In the aforementioned formulas, TP (true positive) rep-
resents the number of successful detections of the cur-
rent network traffic category. TN (true negative) refers to 
the number of other network traffic types that were cor-
rectly identified. FP (false positive) represents the num-
ber of other network traffic categories falsely identified as 
the current network traffic category. FN (false negative) 
denotes the number of current network traffic categories 
mistakenly identified as other network traffic categories.

The performance results obtained from the experi-
ments are visualized in Figs.  11, 12, and 13. The X-axis 

(14)Accuracy =
TP + TN

TP + FP + TN + FN

(15)Precision =
TP

TP + FP

(16)Recall =
TP

TP + FN

(17)F1− score =
2× precision

Precision + recall

of these figures represents the number of training epochs 
for the model’s training set samples. The Y-axis shows 
the loss value of the model training, depicted by the red 
curve, and the detection accuracy of the model, repre-
sented by the blue curve.

From the experimental results in these figures, it is 
evident that as the training epochs increase, the model’s 
detection accuracy improves, gradually approaching 
100%. Simultaneously, the loss rate decreases, progres-
sively approaching 0%.

Furthermore, the figures demonstrate that in the 
selected experiments, the model generally achieves 
optimal results after 200 training iterations. The model 
exhibits a rapid convergence speed, effectively reducing 
the consumption of computing resources through fewer 
iterations of training.

To further assess the overall performance of the model 
and its ability to accurately classify different network traf-
fic types, the paper conducted detection on the network 
applications within the three datasets. The detection 
results are presented in Tables 3, 4, and 5.

The results indicate that the precision, F1 score, and 
recall values all exhibit high performance. In Fig.  3, the 
average precision is 97.54%, the average F1 score is 97.61%, 
and the average recall is 97.72. Moreover, in Figs. 4 and 5, 
the average values for these three indicators also exceed 
96%. These high values obtained from the detections pro-
vide strong evidence that the model proposed in this paper 
is capable of effectively classifying network traffic across 
different datasets and application types.

Fig. 11 Test performance on ISCX VPN-nonVPN
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4.2  Comparative experiment
To further validate the performance of the proposed 
model, the paper conducted comparative experiments 
with several existing methods on the first three datasets.

DraperGil et  al. [10] employed the C4.5 machine learn-
ing technique to classify traffic in the ISCX VPN-nonVPN 
dataset. Wang et  al. [1] proposed the use of multichan-
nel LeNet-5, a variant of LeNet-5 CNN architecture, for 

network traffic classification. This method demonstrated 
better performance in classifying VPN traffic compared to 
the C4.5 method. Lotfollahi et al. [11] utilized a combination 
of SAE and 1DCNN for network flow classification. Dubin 
et al. [49] employed the KNN method for flow classification.

Using the same training and test datasets, the pro-
posed method was compared with the aforementioned 

Fig. 12 Test performance on USTC-TFC2016

Fig. 13 Test performance on YouTube
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literature methods, and the experimental results are pre-
sented in Tables 6, 7, and 8.

From the results in Table 6, the C4.5 method did not 
perform well in detecting both VPN and non-VPN 
flows, with a precision value lower than 85%. The other 
two CNN methods showed improvements in detect-
ing VPN flows, achieving precision values exceeding 
92%, but the improvement in non-VPN flow detection 
was not significant. The proposed method in this paper 
demonstrated good performance in detecting both 

VPN and non-VPN flows by extracting and optimizing 
the spatiotemporal features of network flows, with pre-
cision, recall, and F1 score values exceeding 95%.

Additionally, in Table  6, since the original literature 
for the C4.5 and ID CNN methods did not include the 
F1-score indicator, the corresponding values are indi-
cated with “-” in Table 6.

Regarding the results in Table  7, the multichannel 
LeNet5 method showed strong performance in the 
USTC-TFC2016 dataset, achieving a detection rate of 
97% for benign flows and over 98% for malware flows. 
Similarly, the proposed method in this paper yielded 
excellent results on this dataset. Although the over-
all indicators were slightly weaker than the former 
method, all three indicators for detecting the two types 
of flows surpassed 98%.

In the experiments conducted on the YouTube data-
set (Table  8), the literature [40] primarily focused on 
precision values. Therefore, this paper only compared 
the precision value with the KNN method. The experi-
mental results showed that the proposed method out-
performed the KNN method in identifying YouTube 
video flows. It was capable of distinguishing between 
encrypted and non-encrypted flows, with a detection 
precision value exceeding 96%.

To evaluate the model’s performance during training, 
tests were conducted on the ISCX VPN-nonVPN data-
set. The training involved 12 different network streams, 
using epoch = 5000 and learning rate (LR) values rang-
ing from 0.0001 to 0.01. The objective was to observe 
changes in model accuracy with varying numbers of 
training rounds and LR values, aiming to identify the 
optimal LR value.

Figure  14 illustrates the accuracy variations of the 
model with different LR values. It can be observed that 
a LR of 0.0001 led to slow convergence, as the model’s 
accuracy failed to stabilize even after 300 epochs of 

Table 3 The classification results on ISCX VPN-nonVPN

Category Recall ( 10−2) Precision ( 10−2) F1 score ( 10−2)

Chat 97.01 99.84 98.40

Email 100.00 96.91 98.43

File 96.80 92.13 94.40

P2P 100.00 99.05 99.52

Streaming 98.92 99.46 99.19

VoIP 92.06 96.98 94.45

VPN_Chat 99.75 99.86 99.75

VPN_Email 93.33 90.32 91.80

VPN_File 97.00 97.98 97.49

VPN_P2P 97.92 97.92 97.92

VPN_Streaming 100.00 100.00 100.00

VPN_VoIP 99.83 100.00 99.92

Table 4 The classification results on USTC-TFC2016

Category Recall ( 10−2) Precision ( 10−2) F1 score ( 10−2)

BitTorrent 100.00 99.88 99.94

FaceTime 100.00 100.00 100.00

FTP 100.00 100.00 100.00

Gmail 99.53 99.88 99.71

MySQL 100.00 100.00 100.00

Outlook 99.87 99.47 99.67

Skype 100.00 100.00 100.00

SMB 99.68 99.84 99.76

Weibo 99.85 99.85 99.85

World of Warcraft 100.00 99.87 99.93

Cridex 100.00 100.00 100.00

Geodo 100.00 100.00 100.00

htbot 99.84 100.00 99.92

Miuref 100.00 100.00 100.00

Neris 93.05 98.50 95.67

Nsis-ay 99.17 99.50 99.33

Shifu 100.00 99.86 99.95

Tinba 100.00 100.00 100.00

Virut 97.85 91.17 94.36

Zeus 100.00 100.00 100.00

Table 5 The classification results on YouTube

Category Recall ( 10−2) Precision ( 10−2) F1 score ( 10−2)

American_Hustle 100.00 99.98 99.94

BonBon 100.00 100.00 100.00

Disconnect 100.00 100.00 100.00

Friends 99.93 99.98 99.91

Hollyweezy 100.00 100.00 100.00

Let_It_Go 99.97 99.97 99.97

Maria 100.00 100.00 100.00

Maroon_5_Sugar 99.98 99.94 99.96

Sola 99.99 99.99 99.99

TenYears 99.95 99.95 99.95
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training. This is due to the learning rate being a hyper-
parameter that adjusts the weight degree of the net-
work based on the loss function. A small LR value can 
result in longer convergence times.

In contrast, setting the LR to 0.01 caused significant 
oscillations in the learning rate curve, indicating that 
the LR was too high. This caused the gradient to swing 
in a region near the minimum value during training, 
making it difficult for the model to converge.

Table 6 Overall test results on the ISCX dataset

Method VPN Non-VPN

Precision ( 10−2) Recall ( 10−2) F1_score ( 10−2) Precision ( 10−2) Recall ( 10−2) F1_score ( 10−2)

C4.5 [10] 78.2 81.3 - 84.3 79.3 -

ID CNN [1] 92 95.2 - 85.8 85.9 -

SAE + 1D CNN [11] 97.8 96.3 97 86.7 88.8 87.3

Our 99.4 99.4 99.4 97.4 97.5 96.8

Table 7 Overall test results on the USTC-TFC2016 dataset

Method Benign Malware

Precision ( 10−2) Recall ( 10−2) F1_score ( 10−2) Precision ( 10−2) Recall ( 10−2) F1_score ( 10−2)

Multichannel 
LeNet-5 [9]

99.7 99.7 99.7 98.6 98.7 98.6

Our 99.8 99.8 98.9 98.9 98.7 98.9

Table 8 Overall test results on the YouTube dataset

Method K-nearest neighbor algorithm [40] Our method

Precision ( 10−2) 95.0 99.9

Fig. 14 Accuracy of the model under different learning rates
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The experiments revealed that the model achieved the 
fastest convergence with a learning rate of 0.001. This LR 
value produced a small range of oscillation in the accuracy 
curve and resulted in the highest accuracy rate after con-
vergence. Therefore, a learning rate of 0.001 was selected 
for this study. In summary, the experiments demonstrated 
that the optimal LR value depends on the dataset and 
model architecture. Careful tuning of the LR is crucial for 
achieving good performance during training.

To further evaluate and compare the time-consuming 
performance of different models in model training, the 
study assesses the model’s training time and convergence 
time. Training time refers to the duration spent by the 
model to train on the training set, depending on factors 
such as the number of iterations, model size, and experi-
mental hardware environment. Convergence time, on the 
other hand, relates to the time taken for the model to reach 
a relatively stable performance output and is influenced 
by the model size and other parameters. Table 9 presents 
the training time required by each model (ID CNN [1], 
SAE + 1D CNN [11], and the model proposed in this study) 
to complete 5000 epochs and the time taken to reach con-
vergence based on the same test set using the ISCX dataset.

As indicated in Table  9, the model’s training time for 
completing 5000 epochs on the ISCX dataset is 1967.76 s, 
which corresponds to only 93.4% of the training time 
of the ID CNN model and 88.8% of the training time of 
the SAE + 1D CNN model. Moreover, the convergence 
time for completing 5000 epochs on the ISCX dataset is 
589.17 s, representing only 81.7% of the convergence time 
of the ID CNN model and 85.9% of the convergence time 
of the SAE + 1D CNN model. Tables 6 and 9 demonstrate 
that the proposed model achieves lower time usage com-
pared to the 1D-CNN model with the simplest structure 
while maintaining an accuracy rate that is over 5% higher. 
Compared to the SAE + 1D CNN model, the proposed 
model significantly reduces training time, advances con-
vergence time, and increases the average training accu-
racy by more than 3%.

In summary, the proposed model demonstrates excel-
lent performance and requires less training time than 
other models. However, it is important to note that actual 
training time and convergence time may vary due to 
various factors, including dataset and model parameters. 

Therefore, careful consideration of these factors is cru-
cial when selecting and optimizing models for specific 
applications.

5  Conclusion
Encryption stream and network application stream clas-
sification are important issues in the field of network 
security, which are of great significance for real-time 
monitoring and defending against network attacks. Aim-
ing at the problem that existing network traffic generally 
has various types and it is difficult to effectively identify 
malicious traffic from non-encrypted and encrypted 
traffic, this paper proposes a deep learning traffic model 
based on the combination of LSTM, CNN, and SE meth-
ods. This method first eliminates the problem that some 
old classical machine learning methods rely too much 
on the accurate extraction of network traffic features. 
Secondly, by using the LSTM method to automatically 
obtain the time series features and the CNN method 
to obtain the spatial features of the network flow, the 
problems of the temporal correlation of features and the 
incomplete feature space are well resolved. In addition, 
by embedding the SE mechanism in the CNN, the cor-
relation of the channels between different layers of the 
network is further analyzed to improve the accuracy of 
model feature selection. Judging from the results of dif-
ferent experiments, it fully reflects that the method pro-
posed in this paper is indeed feasible and can basically 
handle the classification of different network traffic.

The model proposed in this paper can effectively 
enhance the capabilities of enterprises in detecting 
and defending against network attacks. By integrating 
it with IDS, IPS, and other network security systems, 
enterprises can achieve accurate identification and clas-
sification of network traffic. The model demonstrates 
higher accuracy in network traffic classification, effec-
tively reducing false positives and false negatives. This 
improves the detection accuracy and reliability of IDS. 
The model also strengthens its feature extraction capa-
bility, allowing for a more comprehensive description of 
network traffic characteristics. This provides IDS with 
more accurate information, enabling better identification 
and classification of network traffic. The introduction of 
the SE mechanism further enhances the model’s robust-
ness by analyzing channel correlations across different 
layers of the network. This empowers IDS to effectively 
respond to variations and threats in network attacks.

With the rapid development of Internet and the gradual 
improvement of security awareness, there are more and 
more types of network traffic and encrypted traffic forms, 
which puts forward higher requirements for the detection 
rate and accuracy of the model. The future work of this 

Table 9 Comparison of running efficiency of different models

Model Training time(S) Convergence 
time (S)

ID CNN [1] 2104.89 720.54

SAE + 1D CNN [11] 2215.78 685.36

Our 1967.76 589.17
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paper needs to continue to improve the training speed of 
the model and find better solutions from the aspects of 
network model structure and data set parallel processing.

Abbreviations
LSTM  Long short-term memory, which is a kind of time cycle 

neural network
CNN  Convolutional neural network, which is a kind of feed-for-

ward neural network with convolution calculation and deep 
structure

SE  Squeeze and excitation, its purpose is to improve the quality 
of the representation generated by the network by explicitly 
modeling the interdependence between the channels of its 
convolution features

DPI  DPI is called “deep packet inspection.” DPI technology adds 
analysis to the application layer on the basis of analyzing 
the packet header. It is a flow detection and control tech-
nology based on the application layer

SMTP  SMTP is a protocol that provides reliable and effective email 
transmission

TCP  Transmission control protocol, it is a connection-oriented, 
reliable, byte stream-based transmission layer communica-
tion protocol

SVM  Support vector machine, which is a generalized linear 
classifier that performs binary classification of data in a 
supervised learning method

Bayes  Bayesian classification algorithm is a classification method 
of statistics

RNN  Recurrent neural network, it is a type of recurrent neural 
network that takes sequence data as input, recursively 
in the evolution direction of the sequence, and all nodes 
(cyclic units) are connected in a chain

IDX  IDX is an image format
CNN-SE-net  CNN-SE-net refers to the SE mechanism embedded in the 

CNN network
BP  Back propagation, which is a multilayer feed-forward neural 

network trained according to the error back-propagation 
algorithm

C4.5  Which is an algorithm developed by Ross Quinlan for gener-
ating decision trees

VPN  Virtual private network
1D-CNN  This refers to a CNN network with a one-dimensional 

architecture
SAE  Stacked auto-encoders
LR  Learning rate
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