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Abstract 

Natural face images are both content and context-rich, in the sense that they carry significant immersive informa-
tion via depth cues embedded in the form of self-shadows or a space varying blur. Images of planar face prints, on 
the other hand, tend to have lower contrast and also suppressed depth cues. In this work, a solution is proposed, to 
detect planar print spoofing by enhancing self-shadow patterns present in face images. This process is facilitated and 
siphoned via the application of a non-linear iterative functional map, which is used to produce a contrast reductionist 
image sequence, termed as an image life trail. Subsequent images in this trail tend to have lower contrast in relation 
to the previous iteration. Differences taken across this image sequence help in bringing out the self-shadows already 
present in the original image. The proposed solution has two fronts: (i) a calibration and customization heavy 2-class 
client specific model construction process, based on self-shadow statistics, in which the model has to be trained with 
respect to samples from the new environment, and (ii) a subject independent and virtually environment independ-
ent model building procedure using random scans and Fourier descriptors, which can be cross-ported and applied 
to new environments without prior training. For the first case, where calibration and customization is required, overall 
mean error rate for the calibration-set (reduced CASIA dataset) was found to be 0.3106%, and the error rates for 
other datasets such OULU-NPU and CASIA-SURF were 1.1928% and 2.2462% respectively. For the second case, which 
involved building a 1-class and 2-class model using CASIA alone and testing completely on OULU, the error rates were 
5.86% and 2.34% respectively, comparable to the customized solution for OULU-NPU.
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1 Introduction
Given the seamless integration of functionalities and 
technologies inside smart-phones, it is imperative to 
incorporate not only biometric access control features 
inside it, but also include algorithms and architectures, 
which can detect and protect the contents against any 
form of impersonation or biometric-spoofing  [1]. The 
face as a biometric establishes an individual’s identity 
in a social setting, and this entrenchment permits easy 
traceability both in the digital space, as well as across 

surveillance networks. Phone models therefore tend to 
use the owner’s face as a biometric unlocking feature [2]. 
It is practical to assume that the natural face capturing 
environment, which involves taking a single shot image 
of a person standing in front of a camera is well defined 
under somewhat constrained settings (of-course with 
some variability in lighting and pose). Spoofing operation 
however can be effected on multiple fronts: (i) presenting 
a planar printed photo as a mask, of the person who is 
being impersonated; (ii) replaying a video sequence from 
a tablet or another cell-phone of the target; and (iii) wear-
ing a carefully designed prosthetic (with a certain texture 
and having appropriate slits) of the target individual.

There are many applications, particularly involv-
ing smart phones, where, prosthetic based spoofing is 
unlikely. This is mainly because the customized design 
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of a prosthetic tailored to mimic a particular individual’s 
face (who owns the smart-phone) is an extremely difficult 
scientific exercise. This problem is exacerbated by the fact 
that to prepare a 3D mask [3] (flexible or rigid), tuned to 
a particular individual’s most recent facial parameters, 
one needs to first prepare a cast of the person’s face or 
derive some form of holographic representation of the 
individual’s facial parameters surreptitiously. This is an 
extremely expensive and time consuming affair. Hence, 
much of the spoofing technology is likely to be directed 
towards planar spoofing, wherein low or high-resolution 
facial images of individuals are either downloaded from 
the web and either printed and presented or presented 
via tablets to a particular face authentication/identifica-
tion engine. Since most authentication engines look for 
facial similarity, the modality in which the authentica-
tion is done tends to ignore formatting anomalies con-
nected with spoofing operation. One of the reasons why 
an authentication engine gets fooled by a planar print is 
because, while from a machine vision perspective this 
engine is designed to be robust to pose and illumination 
variations, this robustness comes at a price of overlook-
ing format changes associated in the manner in which 
facial parameters are presented to the camera [4, 5]. 
Hence, there is a need for a counter-spoofing algorithmic 
layer, which searches for some form of naturalness based 
on some statistical lens, with respect to the facial param-
eters presented to the camera.

1.1  Counter‑spoofing based on physical models
When the spoof-type is planar with a high probability, the 
counter spoofing solution can be designed more effec-
tively by picking that statistical or forensic lens which 
separates the natural face class from the planar spoofed 
version. Very often the selection of this lens is governed 
by the manner in which the planar print representation is 
viewed or analyzed. When a planar printed photo is pre-
sented to the camera, on physical grounds it is easy to see 
that there are multiple fronts on the basis of which the 
so called naturalness can be compromised: (i) a planar 
presentation does not have depth, hence, the blur-profile 
in the target image is largely homogeneous [6–8], and (ii) 
the reprinting process to synthesize a planar print brings 
about a progressive degradation in contrast  [9], clarity, 
specularity [10], quality [11], or color-naturalness [12].

One type of statistical lens for detecting planar spoof-
ing is a specularity check [13]. If the paper printing of the 
target’s face is done on a glossy type of paper, this results 
in a dominant specular component [10, 13] in the trapped 
image. While the non-specular component is a function 
of the object’s color reflectivity profile and texture/rough-
ness, its specular component is a measure of the object 
surface geometry witnessed by the camera in relation to a 

fixed light source. In the case of a natural face, on account 
of a natural depth variation, the magnitude of the specu-
lar component is likely to be highly heterogenous while 
it is largely homogeneous for planar-print presentations 
[13]. In Emmanuel et al. [14], primary low rank specular 
features were derived from training face-images belong-
ing to both classes. However, a principal components 
analysis (PCA) model was built for the natural face space 
alone, in Balaji et al. [10]. The training samples were pro-
jected onto this natural eigenspace. Since the spoof pro-
jections were ideally expected to correspond to the null 
space in relation to this PCA model, they were observed 
to have much lower magnitudes as compared to natural 
specular samples. Since the natural variability associated 
with the specular component is a function of many fac-
tors such as ethnicity, facial profile, presence of cosmet-
ics, and other facial elements such as glasses and beards, 
this remains an non-robust primary feature.

Planar geometric constraints also impact the manner in 
which other parameters are influenced,such as contrast 
[9] or sharpness (or its opposite blur) [6–8].

When natural photographs are either re-printed or 
re-imaged and re-presented to a still camera, there is a 
reduction in contrast which follows a power law drop [9]. 
This reduces the dynamic range in the intensity profile 
considerably, eventually resulting in a more homogene-
ous contrast profile throughout the image. This contrast 
homogeneity can be measured by fusing local contrast 
statistics, using a global variance measure [9]. One of the 
main issues with this choice of high-level feature is the 
lack of consistency when it comes to print re-production. 
There are high quality printers available for re-creating 
the original subject-face in virtually the exact same form 
before presenting it as a mask to the camera. Thus, this 
cannot be treated as a universal feature from the print of 
view of planar printing.

Alternatively, in literature, while examining the planar-
spoofing problem, it was observed that in the case of 
closed cropped natural faces, the natural depth (or dis-
tance) variation with respect to the camera often had a 
tendency to reflect as a spatially varying blur [6, 8, 15] in 
the captured image. In the work of Kim et al. [6], two sets 
of images were taken of the same subject. In one case, 
the depth of field was narrowed deliberately to induce a 
significant blur deviation across the entire natural image. 
In case of a planar spoofing, the blur differential between 
the original and de-focused image is likely to be very 
small. This dis-similarity in the de-focus patterns was 
used by Kim et al. [6] to detect planar spoofing.

In another blur variability detection procedure  [15], 
a camera with a variable focus was used in the experi-
ment and was designed to focus manually at two dif-
ferent points on the person’s natural face: (i) nose of 
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the individual which is closest to the camera and the 
(ii) the ear of the individual which is the farthest from 
the camera. In the manual search procedure, the focal 
length adjustment was done to ensure clarity of one of 
these two facial-entities (nose or ear). It was observed 
that in the case of the natural face, the number of itera-
tions required for the two cases were very different. On 
the other hand for a planar spoof presentation, virtually 
the same number of iterations were required to pro-
duce either a clear nose or a clear ear image. This dif-
ference between convergence trends was used to detect 
planar spoofing.

In an isolated image analysis setting (without deploying 
multiple entrapments and variable focus cameras), a pin-
hole camera model was presented in [8] to bring out the 
problem connected with this blur phenomenon. A simple 
sharpness profile analysis based on gradients and gradi-
ent-thresholding was done to generate a statistic which 
gave an approximate measure of the sharpness measure 
for the presented image. In the case of planar spoofing, 
since the referential plane of focus (or object plane) need 
not coincide precisely with the spoof-print presentation, 
a homogeneous blur is likely to be superimposed on top 
of the original natural blur trapped in the printed ver-
sion. Because of this, the average sharpness of the planar 
print version is expected to be much lower as compared 
to mean sharpness computed from a natural face image. 
The statistic proved to be sub-optimal, particularly for 
cases where the plane of focus was close to the print-
object plane for print-presentations. The other problem 
was that with regular cameras in which the depth of field 
covers the complete face, the blur deviation is likely to be 
subtle. Thus, this blur diversity cannot be easily trapped 
without deploying a highly precise single face image 
based depth map computation algorithm.

Entrapment of scene related immersive informa-
tion particularly regarding the positioning of light 
sources [16] is possible in the case of natural faces. This 
is because for portions of the face which are smooth in 
nature such as the cheeks and the forehead, the surface 
normal directions, for fixed ethnic group of individu-
als can be reliably estimated based on 3D registration 
frames. This becomes a referential pattern available in the 
repository. Now, when the subject presents his/her face 
to camera, at precisely the same spatial locations, based 
on the apparent intensity gradient and the known source 
co-ordinates relative to the subject, the surface normal 
directions are re-estimated. When there is a similarity in 
direction at a majority of the points where the measure-
ments are taken, then the presentation can be declared as 
a natural one. When the estimated surface normal direc-
tions deviate considerably from the test subject, then it is 
highly probable that this inconsistency is due to a planar 

spoofing. While the approach is interesting there are 
some issues with this:

• Multiple light sources are required at the surveil-
lance point (at least two as in [16]), so that the same 
subject’s face presentation can be illuminated from 
multiple directions. The overall setup requires addi-
tional lights, timers and switches and the per-sub-
ject assessment time is significant. This makes this 
architecture quite infeasible in large scale public 
scanning environments.

• Intra-natural face class errors associated with the 
normal direction estimation tend to climb if there 
are pose, scale, and expression changes in the indi-
vidual [16].

• Since the points at which the measurements are 
taken must be registered in space, in a subject 
independent setting, identification of these key-
points becomes a noisy affair for an arbitrary pose 
and scale presentation. This presents itself as what 
can be called subject-mixing noise or registration 
noise [4].

Planar spoofing (both print and digitized presentations) 
tend to imbibe some form radiometric distortion which 
stems from the additional printing and re-imaging 
stages which are constrained and lossy in nature  [12]. 
Thus, an image of a planar printed face may not exhibit 
on one hand all the true colors which were originally 
present in natural face image of the same subject. Given 
the availability of both natural and spoof samples, this 
radiometric model can be estimated at a generic level 
but confined to a subject/client specific analysis  [17]. 
When a test image arrives, its affiliation with the sub-
ject-specific radiometric distortion model is done via 
some form of regression analysis to establish the true-
ness or naturalness of the image. There are several 
issues with this arrangement:

• To ensure that only the illumination and color profile 
confined to the facial-region of a particular subject 
is analyzed, the background is painted and cropped 
via a segmentation procedure. The close cropping 
is extreme to the extent that no part of the person’s 
hair or lower neck/shoulders are included in the seg-
mented region. When this close cropping is not done, 
then both the radiometric (real, planar) model-esti-
mation, along with the detection procedure, becomes 
noisy and quite unreliable.

• When there is subtle pose change, considerable illu-
mination variation and scale change in the training 
sets, the model learning procedure (even on a subject 
specific note) becomes highly unreliable. Because of 
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this lack of model reliability, the accuracy reported 
for difficult datasets such as CASIA  [18] was found 
to be on the lower side.

1.2  Counter‑spoofing based on image texture and quality 
analysis

It was proposed in Maatta et al. [19] that planar spoofing 
tends to bring about a change in texture and facial per-
spective (apparent or projected face) compared to real 
facial images. Local binary patterns (LBPs)  [17, 19, 20], 
Gabor and Histogram of Gradients (HoG), can there-
fore be used to capture texture statistics linked to both 
the classes and build a 2-class SVM model. But without 
a crisp differential noise analysis, with respect to natu-
ral and planar spoof representations, features/statistics 
picked may not be robust enough.

In the same context of texture, facial micro-analysis 
via landmark identification can be used track faces 
across real-time surveillance videos  [21]. Facial land-
marks, such as eye centers and nose tips, once identi-
fied from a sequence of frames using standard face 
detection protocols, pixel information from their local 
neighborhoods can be collated to construct a statisti-
cal model for each landmark. These so called land-
mark-descriptors when stitched together in the form 
of a connected graph, can be tracked across videos. 
In a dynamic camera and still face arrangement, mul-
tiple collections of landmark-sets taken from a series 
of video frames can be used to recreate a generic 3D 
model of the person’s face  [22]. In the case of planar 
spoofings, these gathered measurements will result in 
the re-creation of face surfaces which are largely flat 
and lacking in depth information. There are several 
issues with this arrangement:

• Need for relative movement between the subject 
and the camera is must in this arrangement to re-
create either a 3D-representation by aligning the 
landmark features from multiple frames or for 
establishing whether the presentation is planar in 
nature. This relative dynamism may not always be 
feasible at an un-manned surveillance point, par-
ticularly when the camera is expected to move rela-
tive to a static face.

• If too many landmark-points are identified, the 
graph structure is expected to become un-stable 
(leading to alignment problems) when there is a 
pose variation or an illumination profile change. 
Too few landmark points will result in an imprecise 
model in the context of 3D surface reconstruction. 
Under varying ethnic origins, this optimization 

problem will turn subject specific and difficult to 
handle. Cross-porting a particular counter-spoof-
ing architecture/arrangement tuned to one dataset 
may not be very effective on a dataset housing sub-
jects from a different geographical region.

1.3  Mixed bag techniques
Apart from model based approaches, in Wen et al. [23], 
statistics based on a mixed bag of features ranging 
from texture, color diversity, degree of blurriness were 
deployed, assuming that the extended acquisition pipe-
line (in a spoof-environment), connected with a re-
printing and re-imaging procedure, tends to alter and 
impose constraints on this bag of features on a mul-
titude of fronts. There were several issues with this 
arrangement:

• In a diverse planar spoofing environment, there exist 
several uncertainties related to the spoofing-medium: 
(i) for paper-print-presentations, the nature of the 
paper (glossy/non-glossy), printing resolution, and 
print color quality remain unknowns; (ii) for tab-
let and other digitized presentations, the nature and 
extent of re-sampling noise [19], resolution, color re-
transformation, and reproduction remain unknown. 
Thus, using a common and diverse statistical lens to 
segregate natural and planar-spoofings may not be 
very effective. What works for one type of spoofing 
may not work work for another.

• The other main problem in conducting the train-
ing in a subject independent fashion is the influx of 
content dependent noise connected with subject-type 
variability  [4] which stems from differences in facial 
parameters such as eye structures, their separation, 
nose profiles, and cheek and jaw-bone patterns. This 
is where client/subject dependent models [17, 20] 
tend to outshine the subject independent ones [9, 11].

Texture analysis in a broader context can be visualized 
as a quality assessment measure, wherein in most cases 
natural images are expected to possess a higher quality 
and clarity as compared to spoofed images [24, 25]. This 
blind quality assessment is brought about via a differen-
tial analysis wherein differential information between 
the original and its low pass filtered version is analyzed. 
Natural faces tend to exhibit a greater noise differential 
as compared to planar prints. Statistics such as pixel dif-
ference, correlation, and edge based measures were used 
to quantify the differential noise parameters and sub-
sequently the overall quality score. There were several 
issues with this arrangement:
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• Since-edge related statistics are heavily dependent on 
the subject facial profiles, the measures were not sub-
ject-agnostic, inviting subject-specific content inter-
ference or “subject mixing noise” [4].

• There was no scientific basis or analytical justifica-
tion for choosing such a potpourri of statistics for 
performing this noise analysis. Hence, these features/
statistics were not all that precise.

• The differential noise and image quality analysis was 
done in a 2-class setting (real versus spoof ), and 
assuming prior availability of sample training images 
from the spoof-segment, which is impractical.

1.4  Subject mixing noise
Overall, in the approaches discussed so far, features 
connected with intensity, contrast [9, 12], blur/sharp-
ness [7, 8], specularity [10]. and differential statistics 
such as localized binary patterns (LBPs) and its vari-
ants collected in regular fashion are pooled together 
to generate a 2-class model assuming that spoof-print 
samples are available. The problem with this para-
digm is that in this frame one cannot avoid what can 
be called “subject mixing noise,” as subject-related per-
ceptual content tends to interfere with the regularized 
measurements. This “mixing” problem stems from a 
lack of proper face registration due to pose and face-
scale changes [4]. This problem can be mitigated to 
some extent in a client-authentication rather than a 
client-identification setting by restricting the analytical 
and decision space to specific subjects/clients [17, 20].

Since the facial parameters such as eye-type and rela-
tive positioning, nose (size and shape), mouth, and cheek 
bones are distinct but largely fixed for a given individual, 
registered measurements taken in a certain order for a 
natural image can be weighed against those taken from a 
print-spoof image without worrying about “subject-mix-
ing noise.” There are many more choices as far as feature 
selections are concerned in a client specific arrangement 
as opposed to a client agnostic one. While lack of port-
ability and customization of the detection algorithm is 
a drawback of this architecture, a big advantage is the 
higher accuracy one can achieve, since the “subject mix-
ing noise” is nullified provided, pose variation and scale 
change is minimal.

1.5  Identity independent counter‑spoofing via random 
scans

This so called subject-mixing noise can be combated in 
a subject agnostic setting by noting that short-term pixel 
intensity correlation profiles carry significant immersive 
information regarding both the type of object presented 
to the camera and also the lighting environment  [4, 5].

Thus, by trapping this short-term correlation profile 
without inviting content dependent texture-noise, one 
can detect natural presentations. The first, second or 
third order pixel correlation profiles can be trapped 
by executing a simple random walk  [4] from the center 
of the image. Multiple realizations of this random walk 
phenomenon can be used to auto-populate the features 
associated with a natural image. By ignoring the macro-
structure in the face image, only the format differences 
are extracted via first order differential scan statistics [4]. 
This allows this random walk based counter-spoofing 
algorithm to transcend a variety of planar-spoof-media, 
lending itself as a monolithic yet universal solution. 
While such a random walk approach can tell the differ-
ence between a over-smoothed prosthetic and a natural 
face [5], with albeit a reduced degree of reliability, it has 
a tendency to hit an error-rate ceiling when the acquisi-
tion format or scene variability in the inlier/natural face 
space class is on the higher side. The error rates reported 
for CASIA-CASIA are therefore likely to saturate at EER 
= 1.89% and 2.16% for printed and digital planar spoof-
sets respectively. This may not even decrease, even if one 
drifts to a client/subject specific frame.

1.6  Motivation and problem statement
In this work, as opposed to a universal one, a spoof 
model directed approach on client-specific grounds has 
been proposed wherein the spoofing frame is considered 
as a planar print presentation. This streamlining permits 
the design and deployment of a much more precise solu-
tion with a higher detection accuracy as compared to the 
universal case. As discussed earlier, this client specific 
weighing (in the image analysis domain, natural versus 
spoof) allows a mitigation of “subject mixing noise.” The 
counter-spoofing system here knows the identity of the 
face presented to the camera and can access stored sam-
ples related to that “presented-subject” from the reposi-
tory, with a client/subject-dependent  [17, 20], 2-class 
support vector machine (SVM) model and use that prior 
data to perform the classification of this new test image 
sample. The main contributions in this work are: 

• Proposition of a new contrast reductionist frame 
for planar print counter-spoofing, by deploying a 
discrete logistic map at the pixel level  [26]. This has 
been termed as an image life trail wherein the con-
trast of the original test image (real or spoof ) drops 
with each iteration and eventually reaches a virtually 
zero contrast state (saturation point).

• A self-shadow enhancement procedure which feeds 
on this life trail to make the self-shadows trapped in 
natural images much more prominent. It has been 
observed that planar-print spoof images tend to 
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have suppressed self-shadows as compared to natu-
ral ones, which serves as a discriminatory feature for 
segregating the two classes.

• A simple statistical model based on the dynamic 
range associated with intensity distributions con-
nected with real and spoof/print classes has been 
used to justify the choice of first, first difference ratio 
statistic for enhancing self-shadow information and 
also arrive at the optimal choice of the exponent α∗ 
via a calibration process and shape the final feature 
used to build the subject-specific 2-class model.

The proposed overall architecture has been split into two 
segments/blocks: (i) feature extraction, based on contrast 
reductionist image life trails leading to the extraction of 
critical information pertaining to self-shadows found in 
natural face-images (Fig.  1), and (ii) the training, sub-
ject-specific model building and final testing procedure 
shown in Fig. 2.

The section-specific organization is as follows: the pro-
posed self-shadow formulation, i.e., base for the work in 
this paper where contrast reduced life trails are generated 
using logistic maps [26], is discussed in Section 2. The ana-
lytical frame and model in which the image is abstracted 

as random variable has been used to validate some of the 
claims made particularly linked to the life trails and the 
convergence rates of real and print images in Section  3. 
The self-shadow image statistic which is derived from the 
image life trail and further enhancements have been sup-
ported with an analytical justification in Section 4. Once 
the primary statistics have been finalized, it is known that 
every new illumination environment will demand a re-
calibration and training for its own subjects. A method 
for arriving at the operating point for every new dataset 
is discussed in Section  5. Database description is given 
in Table 1 and the experimental results are presented in 
Section 8. Finally, to impart a certain flexibility a path has 
been proposed in which cross-porting can be done with 
a random scan front followed by a Fourier descriptor, to 
build subject agnostic models in Section 9.

2  Motivation and formulation for extracting 
self‑shadows

Natural faces taken under constrained lighting condi-
tions, with a frontal camera view and the light source 
positioned at an incline related to the face tend to 
exhibit what are known as self-shadows. A self shadow 
is formed mainly because of the following reasons: (i) 
the natural face which is exposed to a particular lighting 

Fig. 1 Block-diagram of feature extraction procedure
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environment has an irregular 3-dimensional surface 
contour, depending on the facial features of the indi-
vidual. (ii) When light is projected onto one side of the 
face, the elevated parts of the face, such as the nose, 
high cheek bones, and facial curvature on either side 
of the cheeks tend to serve as occlusions to the pro-
jected light, leaving behind a self-shadow or a partial 
shadow on the other side. An example of this has been 
illustrated via a clay model as shown in Figs.  3 and 4. 
The camera positioned in front of the individual can be 
marked as the referential northern direction, relative to 
the person’s face (which is in the southern direction). 
This camera (viz. an attached and aligned cell-phone 
camera unit) coupled with the clay-face itself is kept 

fixed for the entire experiment. There are three light 
source orientations relative to the clay-face model indi-
cated in a yellow-shade in Fig. 3.

The images captured with this arrangement for three 
different source locations are shown in Fig. 4a–c. In Fig4a, 
the light source has been positioned top-left-front of the 
person’s face and beside the camera unit (north-west 
direction); in Fig 4b, the source is positioned towards the 
left of the person and partly in front (west position), while 
in Fig. 4c, the source is positioned behind the person in 
the south-west position. Self-shadows are evident in all 
the three images but minimal in the case of the north-
west position and maximum when the light source is 
behind the clay-face (south-west position).

Fig. 2 Block-diagram of training and classification/detection module

Table 1 Selective face anti-spoofing datasets and related parameters

Datasets Year No. of subjects Camera Image representation Spoof‑type Race

CASIA [18] 2012 50 VIS RGB Print photo, cut photo Chinese

MSU-MFSD [23] 2015 35 Phone Laptop RGB Printed photo Asia, Middle east

Hispanic, Europeans

Latin Americans

Oulu NPU [27] 2018 20 VIS RGB Printed photo Europeans and Middle east

CASIA SURF [28] 2018 1000 Real sense RGB/depth Print and cut photos Almost all the races
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Claim 1 The first claim is that these self-shadows can be 
enhanced by first deploying an iterative contrast reducing 
procedure using a non-linear logistic map and then taking 
a relative difference ratio with the parent image. This dif-
ference image carries precious information related to the 
self-shadows.

Claim 2 The second claim is that in the case of a camera 
imaging of a planar print of a particular subject’s face, these 
self shadows remain in a suppressed state. The original self-
shadows which were trapped in the planar print of a natural 

facial image, are no longer fully visible, mainly owing to the 
secondary lighting environment, which leads to the forma-
tion of a much more uniformly illuminated image.

To facilitate an enhancement of this self-shadow pat-
tern in the natural image, a non-linear logistic map-
ping  [26] is deployed. This is an iterated function 
system that operates on an initial scalar value repeat-
edly and eventually converges to a “fixed point.” One of 
the advantages of this logistic map is that on an average 
the convergence rate is quite fast and the fixed point is 

Fig. 3 Experimental setup using a clay model and a fixed cell-phone camera for producing natural images with self-shadows

Fig. 4 Images captured using the experimental setup (Fig. 3), for three different table lamp positions (north-west, west and south-west)
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reached quickly, irrespective of the initial state (on an 
average).

2.1  Logistic maps and image life trails
Assume, I0(x, y) to be the normalized intensity value at 
particular spatial location (x, y) in an N × N  face image 
of a particular subject, such that I0(x, y) ∈ [0, 1] and 
I0(x, y) = 0 represents the completely black; I0(x, y) = 1 
represents the completely white pixel. The logistic map 
is a contrast reducing mapping which when applied to a 
“swarm” of image pixels independently, eventually after 
a few iterations the entire image reduces to a zero con-
trast image. We define an image “swarm” as the com-
munion of all the intensity states of N 2 pixels undergoing 
this non-linear transformation. The length of this con-
trast-reductionist trail has been termed as an “image life 
trail.” The life-line here refers to the number of iterations 
required for the parent image to reach a virtually zero 
contrast image or reach a point wherein almost all the 
pixels in this image swarm have come close to the fixed 
point value. To begin with, this pixel swarm is defined as 
follows:

SWARM(I0) = {I0(x, y), s.t.x, y ∈ {1, 2, ...,N }}

This non-linear iterated function system is defined 
as [26],

with the initial value, I0(x, y) ∈ (0, 1) and In(x, y) is the 
value at the nth, n > 0 iteration with In(x, y) ∈ (0, 1) . Irre-
spective of the initial value the Logistic map directs the 
value towards what is well known as a fixed point which 
in this case happens to be 0.5. By design with every itera-
tion this value drifts closer and closer to the fixed point.

When such a map is applied to the swarm on a pixel 
by pixel basis, the entire swarm undergoes a transfor-
mation with each iteration, eventually producing what 
can be called a sequence of low contrast image (Fig. 5). 
Finally, the swarm results in a zero contrast image when 
almost all the pixels have converged to a value close 
to the fixed point 0.5 (which corresponds to gray level 
value 128).

2.2  Dynamic ranges of real and print face‑images
At this point with respect to the life trail analysis, it is 
important to draw a distinction between the trails of 
a natural and spoof/print image. Any pixel having a 

(1)In+1(x, y) = 2In(x, y)(1− In(x, y))

Fig. 5 Contrast reductionist life trails for real and spoof image samples using the logistic map
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particular normalized intensity in the range (0,  1) will 
converge to the fixed point 0.5 eventually, upon repeated 
application of the logistic map. However, the trail dynam-
ics when considering the pixel swarm or rather the col-
lective convergence will depend on the slowest among 
the myriad pixel convergence trails (over the image), as 
a function of the intensity value spread (or rather the 
dynamic intensity-range). Smaller the dynamic range, 
faster will be the convergence. Hence, trails of low-con-
trast spoof images are likely to converge much faster as 
compared to natural face images.

NATURAL VERSION decays much SLOWER and It 
was surmised in [9] that given two registered face images 
(belonging to the same subject), the original normalized 
intensity version can be linked to the planar printed ver-
sion via a power law relation,

where  gamma > 1 and and subsequent images of planar 
prints can be represented by the relation,

where m ≥ 2 with IORIG(x, y) ∈ [0, 1] and Ipp[m](x, y) ∈ [0, 1] . 
This implies that with subsequent printing, the mod-
erately dark zones become darker and the lighter zones 
become darker. Eventually, as the planar printing is iter-
ated, the entire image becomes completely dark. Hence, 
a planar printing procedure via a gamma power law is 
also a contrast reductionist transformation, wherein the 
transformed image has a lower intensity dynamic range 
as compared to the original image. The other thing that 
comes out of this is that a planar print version will always 
have a lower contrast as compared to that of the parent 
original image.

Consider the generation and deployment of a contrast 
score metric for measuring the dynamic range and score 
generated for eight subjects from the CASIA dataset 
(both real and spoof) [29]. Based on the metric used the 
scores produced for the natural faces are higher as com-
pared to the spoof/print versions of the same subjects. 
Since all images have been resized to N × N  , let the nor-
malized intensity value at position (x, y) be represented/
mapped as:

with (x, y) ∈ 1, 2, ...N  . Pull out the non-trivial intensity val-
ues and let INZ(k), k ∈ 1, 2, ...,M ( M ≤ N 2 ) be given by,

Using these non-zero intensity values, compute the mean 
and standard deviation over the entire image, 

Ipp(x, y) ≈ IORIG(x, y)
γ

Ipp[m](x, y) ≈ Ipp[m−1](x, y)
γ

I((x − 1)N + y) = I0(x, y) ∈ [0, 1]

(2)INZ(k) = I0(x, y); provided I0(x, y) > ǫ1

The final contrast score can be computed as  [9], with a 
slight modification to account for images with very dark 
foregrounds:

To check the validity of this contrast metric from a per-
ceptual view point the scores produced for real and print 
versions are shown in Fig. 6. Print versions tend to have a 
lower contrast scores as compared to natural faces.

To link up this apparent contrast degradation seen in 
print images with the exponential gamma law presented 
earlier in this section and also in [9], the same dynamic 
range numbers have been computed using the standard 
deviations σ (over the intensity profiles), on syntheti-
cally produced images via an application of this gamma-
exponentiation on a natural faces of subjects. For all the 
intensity values in the set derived from a natural image, 
the exponential law is applied as,

where γ > 1 and I(i) ∈ SET0 . The dynamic range 
scores for γ = 1 (i.e., no transformation), and then for 
γ = 1.5, 3, 5 , for natural face images of four subjects are 
shown in Fig.  7. A simple statistical model is used to 
understand the differences between natural and print 
versions and as to how the contrast reductionist life trails 
evolve in both these cases.

3  Analytical frame for validation
The motive for this section is to abstract the image 
(real or print) as a random variable and bring out 
various elements linked to the problem connected 
with image trail and at the same time in-part validate 
some of the results analytically. Two facial images of 
the same subject (one original and one print-version) 
are expected to have intensity distributions which are 
similar to a scale factor (in terms of shape). However, 
the planar print version is expected to exhibit a lower 
dynamic range with respect to the intensity distribu-
tion. The following aspects are evaluated in the subse-
quent sub-sections:

• Statistical model and convergence to a fixed point 
and subsequent proof given in Appendix A.

(3)

µG = 1

M

M

k=1

INZ(k)

σG = 1

M

M

k=1

(INZ(k)− µG)2

(4)CON = σG

µG

Isynthetic(i, γ ) = I(i)γ
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• Life trail dynamics discussing the rate of conver-
gence of the real and print-abstractions as random 
sequences with proof details in Appendix B.

3.1  Fixed point and convergence analysis based 
on a simple statistical model

In this section, a simple statistical model is presented, to 
reflect the difference in dynamic range of natural and print 

Fig. 6 Real and planar prints with contrast scores as per Eqn. (4)

Fig. 7 Impact of the Gamma power law on the degradation of the contrast profile of the original image (in the corresponding synthetic versions). 
Results are shown for γ = 1 (no transformation) and for 1.5, 3, 5
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images. The original image is modeled as a random vari-
able X0 with a uniform distribution over the range (0, 1), 
while the print version is mapped to a uniform random 
variable Y0 , with reduced range (0, 1/a), where a > 1.

Impact of the iterative map function map on these two 
types of random variables is examined and some of the 
proofs are elaborated in Appendix A.

Let fx(x) ; x ∈ (0, 1)  represent the referential probability 
density function (PDF) of a normal face image corre-
sponding to the global pixel-intensity distribution. In a 
crude way, its low contrast version after planar printing 
is defined based on the functional mapping based on the 
exponential law discussed in the earlier section,

and this is expected to have a PDF,

with a > 1 , a shrinking of the referential density function 
is created, without compromising on the overall struc-
ture of the intensity probability density function (the 
number of inflection points and their relative positioning 
would remain the same). Note that y ∈ [0, 1a ]; a > 1 with, 
a = e1/γ with γ > 1 . Upon the application of the logistic 
map [26] to both these random variables and its planar-
printed and low contrast counter-part, Y0 = X

γ
0  , second-

ary random variables (after one iteration) X1 and Y1 are 
formed, X1 = 2X(1− X) and Y1 = 2Y (1− Y ).

It can shown that if fX0(x) UNIFORM[0, 1] , then over 
successive iterations of this logistic map,

the PDF of the transformed natural random variable, Xn , 
via this logistic map in the nth, n ≥ 1 iteration is,

with x ∈ [0, 0.5] , which implies that once the logistic map 
is applied, for all the following iterations the points stay 
on the left side of x = 0.5 and approach the fixed point 
from the left. As n becomes large, it can be shown that 
fXn(x) ≈ δ(x − 1

2 ) , i.e.,

Similarly starting off with Y0 UNIFORM[0, (1/a)]; a > 1 
(uniformly distributed but reduced dynamic range) and 
applying the logistic map several times, one can manipu-
late the equations to obtain the result:

This is illustrated in Appendix A.

(5)Y0 = X
γ
0

fY0(y) = a× fX0(ay)

(6)Xn = 2Xn−1(1− Xn−1); n ≥ 1

(7)fXn(x) =
(

1

2

)n−1[ 1√
1− 2x

]n

(8)Xn → 0.5 with prob. ’1’ for large n

(9)Yn −→ 0.5 with probability ’1’ for n >> 1

3.2  Life trail dynamics
The intention here is to demonstrate when an image hav-
ing a higher dynamic range in terms of intensity is sub-
jected to the same logistic mapping, the convergence rate 
towards the fixed point is slower. For images with smaller 
dynamic ranges, the convergence is faster. The iterative 
functional mappings for both the natural (modeled by 
random variable X and print abstractions (modeled as 
random variable Y are:

with n > 0 , and X0 = XŨNIFORM[0, 1].

with n > 0 , and Y0 = Y ŨNIFORM[0, 1/a] such that 
a > 1 . To monitor and track the fixed point convergence, 
the normalized first order difference metric is defined as,

It is shown in Appendix  B, that the print-abstraction 
error sequence sequence, Hn converges faster in compar-
ison with its counterpart, Gn , the real-image-abstraction 
error-sequence. Thus, it follows that the parent Yn print-
sequence because of a reduced dynamic range converges 
faster than the corresponding parent real image sequence 
Xn . In other words, life trails of low-contrast print images 
are shorter than the trails of real images.

3.3  Actual image life trails
While waiting for a precise convergence of all points is 
not necessary, in a practical image analysis setting, this 
convergence is approximate and designed to meet per-
ceptual grounds with respect to a zero contrast image.

For a particular pixel positioned at location, (x,  y), 
which is subjected to this non-linear mapping, the pixel 
is considered active if the value in the next iteration is 
significantly different from the earlier value. When two 
or more successive values are close, then the pixel in an 
approximate sense has assumed to have reached a satu-
ration point and close enough to the fixed point. If In is 
the intensity level at iteration n, the pixel is considered to 
have converged and reached a saturation point if,

All the pixels with a non-zero intensity state are expected 
to drift towards the fixed point, which is 0.5 eventually. 
Note that the convergence rates are non-uniform and a 

Xn = 2Xn−1[1− Xn−1]

Yn = 2Yn−1[1− Yn−1]

Gn = Xn − Xn−1

Xn−1
= 1− 2Xn−1; n ≥ 1

Hn = Yn − Yn−1

Yn−1
= 1− 2Yn−1; n ≥ 1

(10)
|In − In−1|

In
< ǫ
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function of the initial value (or intensity state) of a par-
ticular pixel within the swarm. Hence, greater the spread 
of intensity levels (or diversity in the intensity profile), 
slower will be the swarm convergence. The entire swarm 
SWARM(I0) is said to have converged at iteration n = s , 
where s is the approximated saturation point of the com-
plete image swarm if more than γ percent of the N 2 pix-
els ( γ ≥ 0.9 ) have met the convergence constraint given 
in Eq. 10 individually. This swarm convergence trend has 
been tapped using a saturation curve based on a func-
tion P(n) (Fig. 8), where n is the iteration number. Typical 
saturation curves for natural and spoof images are shown 
in Fig. 8.

Figure 5 shows the contrast life trails of both natural and 
spoof images along with the termination points/satura-
tion points. The overall swarm will converge only if almost 
all the pixels have converged and now the final image 

saturation time to some extent depends on the MAXI-
MUM over all possible saturation timings across individ-
ual pixels. It is obvious that the more diverse the intensity 
profile, the greater the spread of intensity values, slower 
will be the swarm convergence. Natural face images tend 
to exhibit a higher dynamic range with respect to intensity 
in comparison with their planar print counter parts. The 
planar print versions tend to usually be of a lower quality, 
typically lower contrast [9], and limited color [17] as com-
pared to the natural face images. Subsequently, on a sub-
ject specific note, these planar print images tend to have 
a shorter overall swarm life trail as compared to natural 
images. This can be seen in Fig. 5.

In the CASIA data-set, it was observed that there were 
some cases where the print versions had a very high qual-
ity and good clarity. Such cases turn out to be anomalies 
when examined from a life trail perspective. An example 

Fig. 8 Saturation curves which bring out the trends linked to the rate at which the initial image samples (either natural or spoof ) converge to a 
zero-contrast image in the life trail
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of this is CASIA subject-11 shown in Fig. 5e, f, wherein 
the print quality almost matches the natural face quality.

Images with scale changes also tend to exhibit some 
form of anomalous behavior. Certain subjects tend to pre-
sent their faces much more closer to the camera compared 
to others. A scale increase in a face turns out to be tanta-
mount to a contrast reduction as the amount of detail in 
the image is reduced because of this zoom-in effect.

The swarm activity trails can be captured in the form of 
a global-image saturation level spotted at each iteration. 
These saturation graphs can be termed as S-graphs which 
tend to reflect an inverse trend in some cases. Hence, 
under scale variations and printing quality differences, 
the spoof detection may not prove to be fully effective. 
To attack this lack of universality with respect to the life 
trail lengths or S-curve trends, the focus is shifted to self-
shadows. These self-shadow enhanced versions can be 
siphoned and generated from the same Image life trail 
when the original image swarm is passed through this 
logistic map.

4  Enhancing the self‑shadows
One trend that is universal and remains independent of 
scale change in natural images and printing quality varia-
tions is the notion of perceptible self-shadows. These self-
shadows are less prominent in spoof-print images, where 
they remain in a suppressed mode mainly owing to print-
ing limitations and the superposition of secondary fron-
tal lighting during the re-imaging process. Particularly, in 
the case of planar printing, the same natural image origi-
nally gathered from some unknown route is printed and 
presented again to an unmanned camera unit with a view 
to overcome the counter-spoofing system. Typically, such 
presentations are designed for low-end systems such as 
smart-phones which rely on their local mobile cameras 
for performing facial recognition to grant access to legiti-
mate cell-users. Since in the case of planar spoofing the 
attacker must ensure a full face presentation with proper 

uniform illumination to guarantee him/her access to a 
phone unit which belongs to another individual, a part 
of the originally trapped self-shadow information pre-
sent in the printed photo tends to get suppressed by this 
secondary lighting. It is precisely this difference that this 
body of work picks out by extracting and enhancing the 
self-shadows.

This type of analysis is viable in indoor lighting and 
capture scenarios where invariably the sources are posi-
tioned towards one side of the individual’s face creating 
in some cases a partial self-shadow. Given the original 
intensity normalized image I0(x, y) , when this is passed 
through the logistic map [26] (one iteration only), a con-
trast reduced image is obtained, I1(x, y) such that,

A differential image can be generated from the life trail in 
one of the following ways,

where, α ≥ 1 . Since all these ratios can be exclusively 
expressed as a function of the original intensity pattern: 
I0(x, y) , this can be treated as an intensity transformation.

The TWIN-image  [30] in Fig.  9  has been used to 
illustrate the impact of the exponent α under two dif-
ferent illumination conditions: diffused lighting (right 
image) and virtually no self-shadows and regular out-
door lighting (left image) with the facial image show-
ing prominent self-shadows. The main objective was 
to illustrate that when this exponent α is increase from 
“1” to a larger number, visually, the separation between 
the two images (RIGHT vs LEFT) with virtually the 

(11)I1(x, y) = 2I0(x, y)[1− I0(x, y)]

(12)R1(x, y) = |I1(x, y) − I0(x, y)| = |I0(x, y) − 2
[
I0(x, y)

]2|

(13)R2(x, y) =

[ |I1(x, y) − I0(x, y)|
I0(x, y)

]
= |1 − 2I0(x, y)|

(14)R3(x, y) = [R2(x, y)]
α

Fig. 9 TWIN-image where one version is taken under normal outdoor lighting and the other one under diffused sunlight
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same pose is best for some intermediate value of α . 
The right-twin image represents a spoofed low con-
trast image with virtually no self-shadows while the 
left-twin image mimics a natural image with promi-
nent self-shadows further enhanced by the introduc-
tion of the exponential parameter α.

This exponentiation leads to an intensity transfor-
mation, which, makes the penumbral zones darker 
(zones where there are partial self-shadows). The part 
where there is no penumbra is made lighter. This is pre-
cisely why a power-law arrangement of the form y = x2 
or y = xα , where α > 1 was deployed. Thus, the final 
enhanced image-statistic was, Eα(x, y) = Rn=1(x, y)

α.
For most natural images, it was found that when this 

α was increased beyond a certain point, even the non-
penumbral zones were darkened. On the other hand, too 
small a value of α did not have much of an impact on the 
original self-shadows. This process of arriving at the opti-
mal α can be done more reliably with an analytical twist 
using the same probability model discussed earlier.

4.1  Justification for first, first‑order difference ratio
Analytical proof as to why the first, first-order differ-
ence provides maximum information related to the 
self-shadows is provided in this segment. Given the nor-
malized error term for the natural image abstraction, 
Gn = (1− 2X0)

2n for n ≥ 2 and G1 = (1− 2X0) , where, 
X0 has a uniform PDF over the interval [0, 1].

For n ≥ 2 , the PDF of Gncan be derived using the classi-
cal random variable transformation analysis [31] as,

where  g ∈ [0, 1] . The continuous/differential entropy 
([32]) of Gn can be evaluated as,

where the expectation is with respect to Gn = G.

Can show that this evaluates to,

which is a decreasing function of n, with the value 
obtained for n = 2 as, H [G2] = 2× 0.693− 3 = −1.6137 . 
For n = 1 , since the same random variable evaluated at 
n = 1, i.e.,G1 = 1− 2X0 is uniform over the interval 
[−1, 1] , the entropy H [G1] = ln(2) = 0.693 is MAXI-
MUM and is greater than the entropies evaluated for 
n ≥ 2 . This is a decaying trend with respect to entropy.

(15)fGn(g) =
1

2n

(

g (
1
2n−1)

)

(16)H [Gn] = −EGn

[

ln
(

fGn(G)
)]

H [Gn] = −
∫ 1

g=0
fGn(g)ln[fGn(g)]dg

H [Gn] = ln(2n)− 2n+ 1

This implies that the self-shadow statistic provides maxi-
mal information when Gn = 1 is used as the normalized 
ratio statistic. All other differences larger than n = 1 , pro-
vide less information than the information contained in 
the first difference ratio. Since, the distribution for G1 is 
uniform in a larger sense this can serve as a SUFFICIENT 
STATISTIC for trapping maximal self-shadow information.

4.2  Connection of the exponential parameter 
with the statistical model

The first difference normalized ratio as seen in the earlier 
section, traps the self-shadow pattern to a certain degree 
of statistical sufficiency. Thus, it is enough to use this 
ratio statistic to derive the final feature vector for build-
ing a subject-specific 2-class SVM model. From the point 
of view of model building there were two motives for 
choosing this additional parameter and not just feeding 
on the ratio statistic:

• While the conditional ratio statistics, G1 = 1 − 2X0 and 
H1 = 1 − 2Y0 where X0 ∶ UNIF [0, 1]andY0 ∶ UNIF [0,

1

a
] carry 

sufficient information to trap self-shadow informa-
tion, one factor which is of prime importance is the 
class separation with respect to real and spoof. It may 
be possible to post process these stats in such a way 
that the self-shadow profiles associated with real and 
spoof images are pushed further apart. This has been 
attempted via an exponentiation procedure as the 
exponentiation is likely to modify the dynamic ranges 
of both ratios.

• Let RREAL = [G1]α and RSPOOF = [H1]α with α > 0 . 
Define �H(α) = H [RREAL] −H [RSPOOF ] , as the dif-
ference between the information contained in the self-
shadow profiles of the real and spoof versions, where 
H [RREAL] = −ER[lnfREAL(R)] . Selection of α must be 
done to ensure −�H(α) is as small as possible.

• On the other hand, the absolute information con-
tained in the self-shadow profile of the natural 
face image, i.e.,  H [RREAL] = EREAL(α) . should not 
be reduced significantly as this would impede the 
detection procedure.

Claim 3 The selection of the exponent α is based on 
judicious tradeoff between maximizing the self-shadow 
information present in natural faces while at same time 
increasing the class-separation between the self-shadow 
distributions of the real and spoof classes. These two 
requirements are slightly conflicting.

Thus, the choice of the exponential parameter must be 
done to ensure −�H(α) , is lowered as much as possible 
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without compromising on the information contained 
in the absolute entropy of modified ratio statistic corre-
sponding to the real face image, i.e., EREAL(α) must be as 
large as possible.

It can be shown that,

and

with a > 1 . Using the random variable transformation 
formulation from Papoulis et al. [31],

where r ∈ [0, 1] and

where r ∈ [0, 1a
α] . Subsequently,

for a > 1 and α > 0 . This gives two important metrics, 
(i) connected with the difference between real and spoof 
self-shadow entropies,

|G1| : UNIF [0, 1]

|H1| : UNIF [0,
1

a
]

(17)fRREAL(r) = (
1

α
)r

1
α
−1

(18)fRSPOOF (r) = (
aα

α
)r

1
α
−1

(19)H [RREAL] = ln[α] + 1− α

(20)H [RSPOOF ] = ln(
α

a
)+ (1− α)(1+ ln(a))

and (ii) absolute entropy of the natural face self-shadow 
statistic as,

When the dynamic range parameter a is known or is esti-
mated from the real and spoof versions corresponding to 
a particular calibration set, the operating point is decided 
by the point of intersection of the two constraints for the 
measured â . This is illustrated in Fig. 11. For different val-
ues of a different sets of contraints are obtained out of 
which one has to be picked based on the computation. 
Keeping in mind that the attacker will ensure a reasonable 
quality associated with planar prints, one need not expect 
a to go above 2-units. A value of a = 2 would correspond 
to a 50% drop in the dynamic range of the print version in 
relation to the natural intensity profile (Fig. 10).

5  Operating point and initial calibration
The right choice of exponent α to strike a balance 
between the quantum of self-shadow information 
obtained from the differential ratio statistic taken 
from the life trail of natural faces and the differential 
entropy statistic is decided by a calibration process. 
The family of curves (seen in Fig. 11) is dependent on 

(21)−�H(α) =H [RSPOOF ] −H [RREAL]

(22)=− α × ln(a)

(23)EREAL(α) = ln(α)+ 1− α

Fig. 10 Impact of changes in the exponential parameter α on both the versions from the TWIN-image set [28]. As the exponent increases, the 
self-shadows become much more discernible for the version where the lighting is normal. Beyond a certain point the ratio images corresponding 
to both the normal version and the diffused version become dark
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the knowledge of the dynamic range parameter â , con-
nected with the print-spoof image intensity profile. It is 
therefore imperative that there be an elaborate proce-
dure for estimating this parameter â , on both relativis-
tic as well as approximate grounds, via measurements 
taken over the real and spoof image sets derived from 
calibration data. This calibration procedure for α is 
designed as follows,

• Take 5 subjects with a total of 75-samples from both 
real and spoof classes, from the the dataset being 
scrutinized.

• For a particular image sample in the real-class, generate 
the global contrast score [9], (obtained from Eq. (4)). 

• The mean contrast score for natural faces is, 

 where  NCALREAL is the number of real subject face 
samples and SETCALIBREAL is the set of indices of real 
images deployed towards calibration.

(24)CRi = σi/µi

(25)CONREAL(E) =
1

NCALIBREAL

∑

i∈SETCALIBREAL

CRi

Fig. 11 The selection of the operating point, as the point of intersection towards the right of the RED and BLUE curves, to maximize class 
separation (not the one on the left) is shown for different values of α
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• Similarly, for the spoof/print segment from the cali-
bration set, 

 where NCALSPOOF is the number of spoof/print sub-
ject face samples and SETCALIBSPOOF is the set of 
indices of spoof images deployed towards calibration.

• To cross-reference this measurement profile against the 
analytical model and the curves shown in Fig.  11, the 
mean contrast score of the real-calibration set is refer-
enced against the spoof set taking a ratio of the two: 

Note that if this relativistic normalized dynamic range 
parameter, âF , is close to UNITY or is smaller than unity, 
then the counter-spoofing system based on contrast reduc-
tionist life trails will not be very effective. However, because 
of the physical acquisition process, the spoof print version 
will always have a lower contrast as the corresponding origi-
nal version. This will induce a high likelihood towards the 
EVENT, âF > 1 , from the measurements taken over the cali-
bration set. This also explains why this method may not work 
on backlit planar images produced by tablets and laptops.

Use the family of curves from Fig. 11 (or an elaborate 
lookup table) and pick out the optimal value of α for 
that dataset based on the corresponding quantum-value 
associated with âF ∈ [1.1, 1.3, 1.5, 1.7, 1.9, 2.1] . For the 
CASIA-dataset, 5 subjects, with 75 samples per class, 
the parameters estimated were  CONREAL(E) = 0.5889 ; 
CONSPOOF(E) = 0.4716 ; and âF = 1.2487 . This quan-
tum corresponds to a = 1.2487 pointing to an operating 
point of αCASIA = 2.7.

6  Final feature extraction procedure 
and client‑specific classification

Block diagrams of the feature extraction procedure fol-
lowing by the classification and testing are shown in 
Figs. 1 and  2 respectively.

6.1  Secondary statistics
To derive the feature sets and statistics for every image 
I0 , a size normalization was done and all images were 
resized to N × N  pixels, with N = 250 . The enhanced 
self-shadow image R(x, y), is constructed by passing this 
swarm SWARM(I0) , through a logistic map, to produce 
contrast reduced image represented by SWARM(I1) in 
the life trail. A secondary differential ratio image as dis-
cussed earlier was generated:

(26)CONSPOOF (E) =
1

NCALIBSPOOF

∑

i∈SETCALIBSPOOF

CSi

(27)âF = CONREAL(E)

CONSPOOF(E)

where  α̂ can be obtained via a calibration process dis-
cussed in the previous section. This self shadow enhanced 
image with parameter α̂  is placed in a rectangular grid 
and intensity standard deviations are computed for every 
patch. The patch size was chosen as 10% of the image size 
for this initial simulation setup. The secondary statistics 
matrix can be written as,

with,

where

The complete algorithm from the image to the final fea-
ture and scalar statistics (both normalized and un-nor-
malized) is discussed below :

6.2  Complete algorithm: generating self‑shadow statistics 
from images

Step 0: Image size normalization while preserving the 
aspect ratio

Resizing the original N1 × N2 image to N × N  , with 
N = 250

Step 1: Formation of swarm/collection of pixel intensity 
values over the entire image

where I0(x, y) ∈ [0, 1] is the normalized luminance inten-
sity level in the facial image.

Step 2: Application of the non-linear mapping to the 
entire swarm individually. Evaluate this iteratively for the 
entire SWARM for n = 1, n = 2, . . . , n = nTYPICAL where 
nTYPICAL = 30.

(28)Eα(x, y) = R3(x, y) =
[ |I1(x, y)− I0(x, y)|

I0(x, y)

]α̂

(29)S =







σ1,1 σ1,2 ... σ1,n
σ2,1 σ2,2 ... σ2,n
... ... ... ...
σn,1 σn,2 ... σn,n







(30)�i,j =

√
1

W 2

∑ ∑

(x,y)∈PATCH (i,j)

(R3(x, y) − �i,j)
2

(31)µi,j =
1

W 2

∑ ∑

(x,y)∈PATCH(i,j)

R3(x, y)

DOMAIN0 =
{

(x, y) s.t. x ∈ {1, 2, .....250} and
y ∈ {1, 2, .....Nc}

}

SWARM0 = {I0(x, y) : s.t. (x, y) ∈ DOMAIN0}

∀(x, y) ∈ DOMAIN0, In(x, y) = 2In−1(x, y)
[
1 − In−1(x, y)

]
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Based on observations across subjects picked from the 
CASIA dataset, typical convergence timing, in terms 
of number of iterations for natural images, is around 
10 and for spoof images is around 8. To ensure com-
plete convergence as far as the life trail is concerned, 
the maximum number of iterations has been set to 
nTYPICAL >> MAX(NTYP−NAT ,NTYP−SPOOF ).

Step 3: Self-shadow enhancement via first-order differ-
ences as one traverses the LIFE trail

Stop with the first iteration: I(n=1)(x, y) ∶ (x, y) ∈ DOMAIN0 
Define

Step 4: Computing the patch-wise intensity diversity statistic. 
Let β ∈ (0, 1) be the fractional patch size with respect to the 
ratio image (Eα(x, y) = R(x, y)α) , which is of the same size 
as the original image, i.e., 250× 250 . Set β = β∗ ∈ (0, 1) 
( β ∈ {2%, 5%, 10%, 20%} of N = 250 , based on simula-
tion experiments conducted and the tuning procedure 
related to a specific dataset. Let the patch size be W ×W  
with W = ⌊β × N⌋ . Let(xp, yp) , be the top-left corner of the 
patch within the RATIO image statistic: i.e., Eα(x, y).

∀(x, y)DOMAINPatch(p) Compute

Step 5: Statistics for analysis. Two types of statistics were 
computed.  TYPE − 1 : Pure variances from the ratio-
image patches and their mean as the scalar statistic. This 
arrangement suffered from a statistical aperture effect 
with respect to patch size fractional increase (i.e., due to 
an increase in β ). Hence, a normalized version was devel-
oped as TYPE − 2 . The latter, i.e., TYPE-2 was deployed 
in the final test, while TYPE-1 was used in the calibra-
tion segment with respect to the trimmed version of the 
CASIA dataset (14 subjects). The scalar feature parame-
ter can be chosen for the given image as, the mean diver-
sity from the ratio image,

R(x, y) =
(

|I1(x, y)− I0(x, y)|
)

I0(x, y)

Eα(x, y) =R(x, y)α̂

DOMAINPatch(p)







(x, y) : s.t
∈ x ∈ {xp, ..., (xp +W − 1)}
y ∈ {yp, ..., (yp +W − 1)}







µp = 1

W 2

∑

(x,y)∈DOMAINPatch(p)

Eα(x, y)

σp =
√

√

√

√

1

W 2

∑

(x,y)∈DOMAINPatch(p)

[

Eα(x, y)− µp

]2

(32)STATRAW (I0) =
1

Npatches

∑

∀patches
σp TYPE1

The vector feature is a simple raster scan of all the σ 
parameters.

6.3  2‑class SVM models for each client/subject
The original CASIA set  [18] was deployed in the final 
testing round (50 subjects, 3× 30 variations per subject 
at three different quality levels: low, medium, and high). 
From the original CASIA set, a reduced version was used 
as a calibration set from the point of view of algorithm 
refinement, final feature selection, keeping difficult sub-
jects, and their variations in the backdrop. Final round 
test databases chosen for unbiased evaluation were 
OULU-NPU [27] and CASIA-SURF [28].

The reduced CASIA set had 14 subjects with 30 varia-
tions per subject covering both natural and print-spoof 
images. Thus, there were a total of 420 images across 14 
subjects for natural and 420 images covering 14 subjects 
for print-spoofing. Out these 14 subjects, subjects 4, 6, 
and 11 have been identified as the anomalous and diffi-
cult ones (Fig. 12) keeping in mind various factors:

• From the point of view of subject 4, there was a sig-
nificant scale change/increase since the subject was 
closer to the camera than normal. This reduced 
the dynamic range in the intensity space leading to 
shorter life trails for natural faces as compared to the 
spoof ones (Fig. 12a, first and second images).

• From the point of view of subject 6, there were cases where 
the light source was present in front but above the subject. 
This suppressed the self-shadow profile considerably for 
some natural images (Fig. 12a, third and fourth images).

• In subject 11, the problem was very different and existed 
in the spoofing segment (Fig. 12b, fifth and sixth images), 
wherein the printing and re-imaging quality was very 
high and comparable to that of a natural face image.

Thus, the life trail lengths turned out to be similar for 
natural and spoof faces for these anomalous cases.

To check the precision of the proposed algorithm, the 
CASIA set was segregated subject-wise (across both natural 
and spoof segments) and 50% of the variations per natural 
or print-version was used to build a 2-class-subject-specific 
SVM model [17, 20]. The remain 50% of the samples from 
both the natural and spoof segments were used for testing. 
The t-SNE maps [33] of the reduced CASIA set test set on a 
subject specific basis are shown in Fig. 13. The correspond-
ing error rates for the test samples are shown alongside. The 
overall error mean equal error rate (EER) across all subjects 
for this reduced calibration CASIA dataset is 0.48% for the 
ratio-mapping parameter α = 2.5 . The error rates climb for 

(33)LSTATNORM(I0) =
2

Npatches

∑

∀patches

[
|ln(�p)|

]
TYPE2
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values less than α = 2.5 and larger than α = 3.5 . The client/
subject specific cluster separations have been generated using 
t-SNE mappings [33] (a stochastic map which presents a fairly 
realistic lower dimensional representation of higher dimen-
sional data) in Fig. 13. In all the subject specific subplots of the 
test-data, Fig. 13a–n, the cluster separation was found to be 
excellent, attesting and reinforcing CLAIMS 1 and 2.

7  Database description
In this section, a description of three different datasets, 
CASIA  [18], OULU  [27], and CASIA-SURF  [28] is pro-
vided, then in the second phase of the calibration protocol 
in which the parameter β∗ is decided based on a parameter 
sweep for database-specific values of α∗ obtained using the 
calibration protocol discussed earlier. Based on these opti-
mized parameters, subject-specific model building, test-
ing, and comparisons form the last few subsections.

A summary of the datasets used for final round testing of 
the proposed life trail algorithm is provided in Table 1. The 
original CASIA face dataset  [18] shown in Fig.  14 which 
was created from Chinese individuals showed significant 
variability on both the natural face front as well as the pla-
nar spoofing front. The variability as far as the natural faces 
were concerned encompassed minor pose variations, sig-
nificant light source positional variations, scale changes, 
etc. The variability as far as print-spoofing was concerned 
stemmed from color variations and minor scale variations 
depending on the manner in which the printing was done. 
The CASIA print set had 50 subjects and images were cap-
tured under different image acquisition resolutions (low, 
medium, and high). Each resolution level had 30 variations 

per subject for both natural and print classes. The OULU-
NPU dataset [27] shown in Fig.  15, on the other hand, 
contained spoof samples related to print-photo and video 
attacks, along with natural face samples. The face presenta-
tion attack sub-database consisted of 4950 real access and 
attack videos that were recorded using front facing cam-
eras of six different smartphones over a varied price range. 
The print attack was created using two printers (printer 1 
and printer 2) and two display devices (display 1 and dis-
play 2) out of which 20 subjects were publicly available. The 
enrolled users were mostly Europeans and people from the 
middle east. Pose and scale changes were minimal here.

The CASIA-SURF [28] shown in Fig.  16  is a wide 
dataset with real and spoof samples along with depth 
profiles. This dataset contained samples of 1000 Chi-
nese individuals from 21000 videos across three modal-
ities (RGB, Depth, IR). There were six scenarios under 
which the print-photo attacks were implemented:

• Attack 1: Person holding his/her flat face photo with 
the eye-region cut

• Attack 2: Person holding his/her curved face photo 
with eye-region cut

• Attack 3: Person holding his/her flat face photo with 
eye and nose regions cut

• Attack 4: Person holding his/her curved face photo 
with eye and nose regions cut

• Attack 5: Person holding his/her flat face photo when 
eye, nose and mouth regions are cut

• Attack 6: Person holding his/her curved face photo 
when eye, nose and mouth regions are cut

Fig. 12 Anomalous cases in CASIA which have a tendency to induce mis-classifications (Subjects 4, 6 and 11); (a) Some natural variations; (b) Spoof 
variations; Ordering is Subject 4, 6 and then 11
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Fig. 13 Cluster separation (subject-wise) in a 2-class setting, for the reduced CASIA-dataset comprising of 14-subjects (out of a total of 50) in which 
50% of the variations per subject, were used for testing

Fig. 14 Examples (both natural and spoof-print versions) from the original CASIA dataset [18]



Page 22 of 31Katika and Karthik  EURASIP Journal on Information Security          (2023) 2023:1 

8  Final customized calibration and testing 
on different datasets

There are two parameters which are a function of the 
acquisition process and the environment in which the 
face images are generated. These are the exponent α , 
which is associated with the first, normalized first dif-
ference ratio statistic which captures the self-shadow 
information with a certain degree of sufficiency and 
other happens to be the patch size-fraction β ∈ [0, 1] 
which decides the dimensionality of the feature space.

In close cropped images from datasets such as CASIA 
and CASIA-SURF, the face is virtually fully inscribed 
inside the “image-rectangle” (we take this as the referen-
tial 1:1 scenario). Here, the patch fraction β is expected 
to be around 10% to 20%. However, in datasets such as 
OULU, where the face is small part of a bigger back-
ground (here the ratio of face to whole rectangular area 

drops to 1:4), the optimal patch fraction ( β ) is expected 
to decrease, keeping the volume of perceptual informa-
tion connected with self-shadow details the same.

To shortlist the optimal parameter for each dataset, 5 
subjects with a total of 75 samples from each class were 
chosen and used to generate the class separation scores. 
To compensate for the statistical aperture effect stem-
ming from the patch size increase, a normalizing factor 

inversely proportional to the square root of the size of the 
patch was introduced (this is mentioned as the TYPE-2 
statistic in the scalar abstraction in the Algo. 6.2(Step 5).

If σp is the patch standard deviation, the quantum of 
self-shadow information present in it can be approxi-
mately represented as,

where ǫ is a small positive number. The average self-shadow 
information for a given image can then be computed as,

Let u1,u2, ...,ur be the LSTAT-scores computed from the 
natural face calibration set and let v1, v2, ...vr ( r = 75 ) be 
the LSTAT-scores produced from the spoof-set. From 
these conditional LSTAT-scores, two conditional means 
and two conditional variances are computed:

The separation between the two clusters as function 
of the parameter β for a particular calibrated α∗ can be 
determined based on the symmetric version of the Kull-
back-Liebler (KL) divergence  [34], under a conditional 
Gaussian assumption for the two classes: real and spoof. 
This metric based on KL-divergence for two univariate 
Gaussian distributions can be computed as:

The impact of a � parameter sweep for specific values 
of α , i.e., obtained via the initial exponential parameter 
calibration procedure is shown in Table.  2. For a spe-
cific database, when β is varied for a fixed α , the separa-
tion scores show a clear maximum for some β = β∗ . It 
was observed that for the CASIA-SURF dataset, where 
the dynamic ranges of both the natural and spoof/print 
faces were close, optimal βCASIA−SURF = 0.15 corre-
sponding to an αCASIA−SURF = 1.7 . On the other hand 

(34)Lp = |ln
(

ǫ + σp
)

|

(35)LSTAT = 1

Npatches

Npatches
∑

p=1

Lp

(36)

µREAL =1

r

r
∑

k=1

uk

µSPOOF =1

r

r
∑

k=1

vk

σ 2
REAL =1

r

r
∑

k=1

(uk − µREAL)
2

σ 2
SPOOF =1

r

r
∑

k=1

(vk − µSPOOF )
2

(37)SEPARATIONKLD =
(

σ 2
REAL

σ 2
SPOOF

+ σ 2
SPOOF

σ 2
REAL

)

+ (µREAL − µSPOOF )
2

(

1

σ 2
REAL

+ 1

σ 2
SPOOF

)

Fig. 15 Examples (both natural and spoof-print versions) from the 
original OULU-NPU dataset [31]
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for the standard CASIA dataset, such fine grained scru-
tiny of the self-shadow image was not required and the 
optimal βCASIA = 0.25 for an αCASIA = 2.7 . For OULU, 
however, since the face information was a small part of 
a larger background, it was natural to expect the optimal 
β∗ to drop to βOULU = 0.1 for an αOULU = 3.4 . The final 
parameters from the two-stage calibration procedure 
have been captured in Table 3.

8.1  Testing: Experimental results and comparison 
with literature

There are two primary paradigms designed to suit two 
different types of applications: (i) the subject identity 
not known a priori, i.e., a face is presented to the camera 
and the counter-spoofing system must decide whether 
face-presentation is natural [4, 15, 18, 23, 35], and (ii) the 
subject identity is known to the counter-spoofing system 
(more like an authentication environment) [17, 20].

The proposed image trail architecture was evaluated 
over a client specific frame (i.e., Type-(ii), subject ID 
known). Since client specific architectures effectively sup-
press subject-mixing noise or registration noise, the error 
scores are much lower here (Table  4) as compared to 
the subject-independent error scores (Table  5). The best 
among them is the random walk/scan-based algorithm [4, 
5] which uses short-stepped random walks to not just 
trap the short-term spatial correlation statistics but also 
to generate several equivalent randomly scanned realiza-
tions of the same parent face-image to transform an image 
feature to blob (or an ensemble), which can be used highly 
reliably to capture the natural immersive environment 
in a truly subject agnostic fashion. Error rates for the 
print-presentation attack (CASIA) for the random scan 
algorithm were reported as 3.5122% (without auto-pop-
ulation) and 1.8920 % (with auto-population). To begin 
with, this became one of the benchmark error measures 

against which the proposed life trail based approach in a 
client-specific setting needed to be compared.

For the complete CASIA print dataset (50 subjects, 
3× 30 variations per subject for three different qual-
ity levels), the proposed life trail algorithm showed a 
comparable error rate of 0.310% Table 4. With respect 
to state of the art client-specific face counter-spoofing 
architectures, the proposed life trail algorithm per-
formed better than most on the planar-printing front.

The error rates of the proposed algorithm observed 
for the OULU-NPU dataset  [27] was 1.192% and that 
for the CASIA-SURF  [28] was found to be 2.246%. 
These numbers were comparable with the convolu-
tional neural network (CNN)-based solutions shown 
in Table.  4. Notice that in the case of CASIA-SURF, 
the CNN-based solutions available in [43], depth map 
information was augmented with RGB information to 
support the learning process. With pure RGB informa-
tion, these error numbers will be higher.

9  Random scan extension to facilitate 
cross‑validation

Random scans [4, 5] were developed to capture acquisi-
tion noise statistics while suppressing both content and 
subject-content interference. Contiguous random scans 
in the form of space filling curves (SPCs)  [44], were 
originally designed for communications applications to 
facilitate compression of videos after shuffling. These 
contiguous random scans when deployed towards face 
counter-spoofing have a few interesting properties:

• The scans preserve the first, second and third order 
pixel-intensity correlation statistics in a particular 
image.

• By executing the same scan multiple times on the 
same image or patch, one can auto-populate the fea-
tures or statistics derived from a typical scan, at an 
ensemble level. An illustration of a short contiguous 
scan in given in Fig. 17.

• Secondary differential statistics can be computed 
over the scanned vectors of the first, second, and 
third order to trap the mean acquisition noise 
energy over the entire image. Thus, every image 
can be abstracted as a 3-dimensional feature vec-

Table 2 Separation scores for all three datasets: CASIA, OULU, and CASIA-SURF

Parameters ←− β −→

0.05 0.1 0.15 0.2 0.25 0.3

αCASIA = 2.7 1.75 1.79 1.97 3.43 4.80 2.43

αOULU = 3.4 42.26 95.27 64.80 48.44 40.70 56.74

αCASIA−SURF = 1.7 4.75 3.05 6.90 1.09 1.20 1.14

Table 3 Database and optimal parameter values for various 
databases, based on the tuning procedure

Database and Optimal parameters α∗ β∗

CASIA 2.7 0.25

OULU 3.4 0.1

CASIA-SURF 1.7 0.15
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tor, which may contain crucial information regard-
ing a certain phenomenon such as, BLUR-diversity 
(due to a PINHOLE LENS-effect [8]) or self-shadow 
prominence (in this paper).

• The features and statistics are content and subject 
agnostic.

One has to note that these contiguous random walks tend 
to diverge considerably beyond a certain number of steps. 
Rather, when viewed conversely, given a walk length of d 
units, one can construct a graph from the destination pixel 
to one of its myriad origins d − foot − steps − away (or 
walk units away). This has been illustrated in Fig. 17: CON-
TIGUOUS RANDOM WALK, where the final destination 
is flagged by a RED-CIRCLE and length of the walk has 
been chosen as d = 3 units. The original source pixel from 
which the 3-unit distance walk had originated and the dis-
tinct paths traversed are shown in Fig. 17, where the final 
mile entry is from the bottom. The entry can similarly be 
from the left or right or above. Thus, the number of distinct 

paths is, Npaths = 9× 4 = 36 for d = 3-walk-length-units. 
Some exemplar generated walk patterns are shown in 
Fig. 18. Since the random scan can be fed with any target 
image or image-like-statistic, for this application which is 
concerned with life trails and self-shadows, it is fed with the 
following first, first difference ratio image,

where

with X0(x, y) = IMnorm(x, y) ∈ (0, 1) representing the 
original normalized real and natural intensity image. An 
enhanced version of this is created by raising G1(x, y) to 
the power α = 2.5 (fixed) to ensure that the self-shadows 
in the natural face image are brought out much more 
clearly. This enhanced version is given by,

(38)G1(x, y) = |X1(x, y)− X0(x, y)|/X0(x, y)

(39)X1(x, y) = 2X0(x, y)[1− X0(x, y)]

(40)G1E(x, y) = G(x, y)α

Table 4 State of the art methods within a client specific frame.Csp : represents the subject-specific or client specific mode of training 
and testing; inProtocol − Ibelow used on the OULU set, the sameCspmode has been deployed

Method Classifier Train data Test data Threshold EER

LBP [36] GMMUBM CASIA CASIA Csp 10.09

Two-class SVM CASIA CASIA Csp 9.87

LBP-TOP [36] GMM UBM CASIA CASIA Csp 6.36

Two-class SVM CASIA CASIA Csp 3.95

Motion [36] GMMUBM CASIA CASIA Csp 9.66

Two -class SVM CASIA CASIA Csp 11.27

MSLBP [20] Two-class SVM CASIA CASIA PS-iFAS Test-S 5.60

Two-class SVM CASIA CASIA PS-iFAS Test-T 2.26

Two-class SVM CASIA CASIA PS-iFAS Test 3.59

HOG [20] Two-class SVM CASIA CASIA PS-iFAS Test-S 0.82

Two-class SVM CASIA CASIA PS-iFAS Test-T 5.045

Two-class SVM CASIA CASIA PS-iFAS Test 3.35

CNN [37] Deep CNN CASIA CASIA Csp,α,β , γ 1.85

Radiometric distortion [12] Two-class SVM RBF CASIA CASIA Csp 0.00

CPqDN [38] CNN OULU-NPU OULU-NPU ProtocolI [39] 6.9

GRADIANT [38] CNN OULU-NPU OULU-NPU ProtocolI [39] 6.9

STASN [40] CNN OULU-NPU OULU-NPU ProtocolI [39] 1.9

FaceDs [41] CNN OULU-NPU OULU-NPU ProtocolI [39] 1.5

STPM [42] CNN OULU-NPU OULU-NPU Csp , RGB+Depth 1.0

NHF [28] CNN CASIA-SURF CASIA-SURF Csp , RGB+Depth 4.7

Single-scale SEF [28] CNN CASIA-SURF CASIA-SURF Csp , RGB+Depth 2.4

Multi-scale SEF [28] CNN CASIA-SURF CASIA-SURF Csp , RGB+Depth 0.8

PSMM-Net [43] CNN CASIA-SURF CASIA-SURF Csp , RGB+Depth 0.4

PSMM-Net(CeFA) [43] CNN CASIA-SURF CASIA-SURF Csp , RGB+Depth 0.2

Proposed image life trail Two-class SVM linear CASIAα = 2.7,β = 0.25 CASIAα = 2.7,β = 0.25 Csp 0.3106
Proposed image life trail Two-class SVM linear Oulu-NPUα = 3.4,β = 0.1 Oulu-NPUα = 3.4,β = 0.1 Csp 1.1928
Proposed image life trail Two-class SVM linear CASIA-SURFα = 1.7,β = 0.15 CASIA-SURFα = 1.7,β = 0.15 Csp 2.2462
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This enhanced first first difference ratio G1E is then fed to 
the random scan algorithm. Let the scanned self-shadow 
intensity vector of length L-walk units for a particular 
instance k ∈ 1, 2, ..NS be:

where NS is the size of the ensemble of scans or number 
of differently scanned vectors from the same self-shadow 
image/statistic.

9.1  Need for a secondary Fourier descriptor
Note that the motive in this segment is to detect the 
presence of the self-shadow, irrespective of its size, 
shape and positions. This size, shape, self-shadow 
prominence, and location is a function of an interplay 
between the light source orientation relative to the 
face-surface topography which is being photographed 
by a frontal camera. Most poses are assumed to be full-
frontal, but mild scale changes and pose variations are 
allowed and expected. Thus, under natural lighting con-
ditions there are clear bright and dark zones, the only 
issue being that the fraction of the zone that is dark and 
constitutes the self-shadow remains uncertain. When 
an image of a planar print is analyzed, in relation to the 
diffused lighting analogy of the TWIN-image of Fig. 9, 
the difference between the two cases is in the presence 

(41)S̄(G1E , k) = [sk ,1, sk ,2, ..., sk ,L]

of darker zones for natural images versus suppressed 
umbral-penumbral zones for planar print images. Thus, 
a spectral analysis eventually leading to a computation 

Fig. 16 Examples (both natural and spoof-print versions) from the 
original CASIA-SURF dataset [32]

Table 5 State of the art methods which assume a client/subject 
independent frame and the corresponding error rates

Method Classifier Train data Test data Threshold EER

LBP [36] GMMUBM CASIA CASIA Cgb 21.69

Two-class 
SVM

CASIA CASIA Cgb 15.42

LBP-TOP [36] GMM UBM CASIA CASIA Cgb 12.65

Two-class 
SVM

CASIA CASIA Cgb 8.53

Motion [36] GMMUBM CASIA CASIA Cgb 12.52

Two-class 
SVM

CASIA CASIA Cgb 11.53

IMQ [11] One-class 
SVM

CASIA CASIA - 23.07

BSIF [11] One-class 
SVM

CASIA CASIA - 36.06

LPQ [11] One-class 
SVM

CASIA CASIA - 35.19

LBP [11] One-clas 
SVM

CASIA CASIA - 25.06

Random 
scan [4]

One-class 
SVM

CASIA CASIA NS = 1 3.5122

Random 
scan [4]

One-class 
SVM

CASIA CASIA NS = 20 1.8920

Fig. 17 CONTIGUOUS RANDOM WALK: Destination pixel marked in 
RED and last-mile entry is from the bottom pixel (i.e. pixel located 
below the final destination pixel)
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of parameters such as spread of power over the discrete 
frequency space should be able to segregate natural 
spectra derived from self-shadow images from print 
spectra.

Claim 4 In this section, it is claimed that the bandwidth of 
the first, first difference ratio statistic G1 , carries enough dis-
criminatory information to distinguish natural face images 
from print spoof version via a self-shadow spectral analysis. 
Furthermore, it is also claimed that a contiguous random 
walk starting from the center of the image preserves the cor-
relation statistics and subsequently some of the 2D-spectral 
parameters in the self-shadow image-statistic. Thus, by exe-
cuting the random walk on the self-shadow image statistic 
G1 and then analyzing its magnitude spectrum, one can con-
struct a robust Fourier descriptor for the natural face image.

The 1D-discrete Fourier transform (DFT) of the 
scanned vector S̄(G1E , k) , corresponding to instance or 
walk realization k is given by,

where WL is the Twiddle factor, given by WL = e−(j∗2∗pi)/L , 
where j =

√
−1 . The magnitude spectrum is given by,

(42)FSG1E ,k(r) =
L−1
∑

n=0

sk ,nW
nr
L

(43)MFSG1E ,k(r) =
√

FSG1E ,k(r)× FS∗G1E ,k
(r)

Assuming L to be an even integer, the following BAND-
related, spectral cumulative statistics are computed:

To ensure robustness to self-shadow variations, shape 
and size mainly, another set of spectral statistics are 
derived from the above set:

The final feature or descriptor which can now be 
deployed in the cross-validation experiment is now:

for scan-instance k.

(44)

A(1) =
4

L

L∕4−1∑

r=0

MFSG1E ,k
(r)

A(2) =
4

L

L∕2−1∑

r=L∕4

MFSG1E ,k
(r)

A(3) =
4

L

3L∕4−1∑

r=L∕2

MFSG1E ,k
(r)

A(4) =
4

L

L−1∑

r=3L∕4

MFSG1E ,k
(r)

(45)

B(1) =A(1)+ A(2)

B(2) =A(2)+ A(3)

B(3) =A(3)+ A(4)

B(4) =A(2)+ A(3)+ A(4)

(46)FDCRV ,k = [A(1),A(2),A(3),A(4),B(1),B(2),B(3),B(4)]

Fig. 18 Some exemplar random walk patterns leading to the central pixel. Walk length is d = 7 units and the size of ensemble (or extent of 
auto-population) was 15-scans
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9.2  Calibration with CASIA dataset
Sixty images across 10 subjects from the CASIA set 
(real and spoof) were used for testing the spectral frame 
and also for calibrating the parameters. All images were 
resized to 100× 100 , and then the self-shadow image-
statistic was computed. The exponent α was fixed as 2.5, 
and what was fed to the random walk process was the 
enhanced self-shadow image-statistic:

The final feature descriptors were produced for each 
image. Fig. 19, shows the t-SNE plot of the real descrip-
tors versus the print descriptors. A good separation with 
a small overlap can be seen in Fig. 19.

9.3  Cross‑validation with OULU dataset
To check whether the model developed using subjects 
and images from the CASIA set can be applied to other 
datasets, one can take one of two pathways:

• Single sided training: Characterize the natural space 
class alone  [9, 11], via the self-shadow feature and 
its secondary statistics using the random scans and 
Fourier descriptor.The training model is confined to 
the CASIA dataset and is built across subjects (this 
subject-agnostic training is helped in part by the 
contiguous random scan which does not require 
feature registration [4]). Once the 1-class SVM [11] 
model is built, this is then tested on another data-
set, OULU  [27]. The complete image set, natural 
and print versions from OULU are used for testing. 
No part of OULU is used in model building.

• Two-class training: Here, the training model is 
built with natural and spoof samples from CASIA. 

(47)G1E(α) = Gα
1

Testing is done in the same way as described ear-
lier over OULU.

The parameters for the 1-class and 2-class model building 
were as follows:

• 1-class model: 14 subjects from a reduced CASIA 
dataset with 15 variations per subject for the natural 
face class alone was used to form the 1-SVM model 
with the final random scan-induced Fourier descrip-
tors, discussed in the early of this section. All images 
were resized to 100× 100 , and the ratio statistic G1 
was computed first and then raised to an exponent 
α = 2.5 (fixed). These enhanced self-shadow statis-
tics Gα

1 were then resized to 21× 21 and subjected to 
a random scan followed by a Fourier analysis to gen-
erate final descriptors.

• 2-class model: The only difference here is that 14 
subjects with 15 variations across subjects from 
BOTH CASIA classes were used to form the 2-class 
SVM model. All other parameters remained the 
same.

Table 6 shows the error rates on the OULU set when the 
proposed random scan based with Fourier descriptor, self-
shadow model (learnt on the CASIA dataset) was applied. 

Fig. 19 Clusters from 60-natural spectral descriptors and 60 print spectral descriptors. N S = 1 (which means only one random scan was 
generated per image statistic) and scan parameters were: Image-statistic or patch size W × W , W = 21 and walk length (complete) covering full 
image-statistic, L =  W2

Table 6 Error rates when features are trained on CASIA and 
tested on OULU exclusively

Method Train dataset Test dataset EER ( %)

Proposed features + 2 class SVM CASIA OULU 2.3475

Proposed features+ 1 class SVM CASIA OULU 5.8676
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The error rates for both one- and two- class SVMs were 
on the lower side (5.86% and 2.34% respectively) and 
comparable with the results obtained when customized 
calibration was done for the OULU-dataset (1.19%). This 
modified approach de-links the data-set training from the 
data-set testing and makes it more general (Table 7).

10  Summary and conclusions
In this paper, a novel contrast reductionist life trail 
based image sequence is generated using a non-linear 
logistic map, in such a way that successive images down 
the pipeline tend to have a progressively lower contrast 
when compared with previous iterations. Eventually, 
the sequence converges to a zero contrast image. A sim-
ple statistical model was used to show not just the proof 
of convergence but also arrive at fact that the first, first 
difference ratio statistic from the life trail carried suf-
ficient and maximum information pertaining to self-
shadows. This corroborated with the observations from 
the TWIN-image life trail analysis. The model also pro-
vided an insight into the selection of the optimal param-
eter α∗ based on an intersection between two constraints: 
(i) absolute self-shadow entropy from the natural face 
ratio-statistic after exponentiation and (ii) class separa-
tion parameter −�H(α) , leading to the crystallization 
of the operating point α∗ if the dynamic range parameter 
(̂a)F = â can be extracted via measuremen (Fig. 19).

For each dataset which was being tested, a small frac-
tion of samples (both classes) were set aside for calibra-
tion which was done in two phases, and this was done 
in a subject agnostic fashion: (i) estimation of α∗ based 
on measurements and the two constraints and (ii) vary-
ing the patch fraction β to trap the localized entropy 
score related to the self-shadow statistic and checking the 
separation between the real and spoof conditional distri-
butions. The β which corresponding to the highest sepa-
ration value was chosen as the optimal β∗.

When tested on three datasets, error rates for the 
proposed algorithm when applied to CASIA (the 
calibration database) and OULU-NPU and CASIA-
SURF were found to be 0.3106% ( α∗ = 2.7,β∗ = 0.25 ), 
1.1928% ( α∗ = 3.4,β∗ = 0.1 ), and 2.2462% 
( α∗ = 1.7,β∗ = 0.15 ) respectively for planar-print-type 
spoofing operations.

To impart a certain degree of flexibility in the solution 
and avoid repeated calibration and tuning each time the 
acquisition and illumination environment is changed, a 
model was built on the basic enhanced self-shadow statis-
tic using random scans, to make the information gathering 
subject agnostic. The basic idea was to focus on detect-
ing only the presence of self-shadows and not in profiling 
the shape, position, and prominence of this self-shadow 
present. The moment the focus shifted from profiling to 
detection, this called for a Fourier analysis, particularly 
because self-shadow statistics from natural images tend 
to have dominant higher frequencies and exhibit higher 
bandwidths as compared to their print counterparts. Based 
on this random scan-induced Fourier descriptor, the pro-
posed model which was trained on the CASIA set alone, 
was found to very effective when cross-ported to OULU.

The proposed algorithm and pipeline has other dis-
tinct advantages:

• Since the main computation involves a swarm of 
parallel pixel-wise intensity manipulations using 
the logistic map, the model building is very simple 
and fast. Note that interestingly the computation 
is so simple that not even a simple image filter-
ing operation is done. In a way, this trail building 
process demands a certain purity in the acquired 
image. While resizing introduces some quantum 
of interpolation noise, self-shadow profiles are not 
compromised. Thus, owing to its simplicity, it can 
be used a quick-check in most counter-spoofing 
applications.

• A high accuracy was obtained with the proposed 
frame, both with calibration and customization and 
also while cross-porting (with a random scan inclusion 
and Fourier-descriptor subject-agnostic twist) to other 
datasets and environments such as OULU-NPU.

We however note that while the proposed solutions 
(including cross-validation) are precise enough to detect 
print-planar spoofing, it may not be effective against 
digital planar image presentation cases based on tablets 
and laptops. This is so because the back-lighting tends to 
enhance the self-shadow profiles present even in digitally 
spoofed segments.

Appendix A: Proof of convergence 
of the print‑image‑mapped Y‑sequence
Problem: Starting off with Y0 UNIFORM[0, (1/a)]; a > 1 
(uniformly distributed but reduced dynamic range) and 
applying the logistic map several times prove that:

Table 7 EEE for optimal values of α∗ and beta∗ for

Database α∗ β∗ EER ( %)

CASIA 2.7 0.25 0.3106

Oulu 3.4 0.10 1.1928

CASIA-SURF 1.7 0.15 2.2462
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Proof
The iterative function map with respect to the Y-sequence is,

Thus, subtracting Yn from 0.5, we get,

Multiplying both sides by factor of 2, the above equation 
can be re-written as,

Let,

It can be shown that the positive power of the random 
variable Z, i.e.,

will approach a deterministic zero with probability ‘1’ as 
n becomes very large, i.e.,

where, δ(.) is the DIRAC-DELTA function. This leads to 
the result that for large n,

This implies that based on Eq.  (51) and then Eqs.  (51), 
(52) and (53),

Since, Yn ∈ [0, 0.5]; n ≥ 1 , it follows that,

Thus, the proof.

(48)Yn −→ 0.5 with probability ’1’ for n >> 1

(49)Yn = 2Yn−1(1− Yn−1); n ≥ 1

(50)

1

2
− Yn =

(

1

2
− 2Yn−1 + 2Y 2

n−1

)

=2×
(

1

2
− Yn−1

)2

=2× 22 ×
(

1

2
− Yn−2

)4

1− 2Yn =24 ×
(

1

2
− Yn−2

)4

=(1− 2Yn−2)
4

=(1− 2Y0)
2n

(51)Z = (1− 2Y0)
2

(52)Qn = Zn; n >> 1

(53)fQn(z) −→ δ(z) for n >> 1

(54)Prob(Zn −→ 0) −→ 1; n >> 1

(55)Prob(1− 2Yn −→ 0) −→ 1; n >> 1

(56)Yn −→ 0.5 with probability ’1’ for n >> 1

Appendix B: Convergence rates of real and print 
life trail sequences
Problem: It is to be shown that the print-abstraction 
related sequence Yn , converges faster as compared the 
real-image-abstraction sequence Xn . It suffices to show 
that the dynamics associated with the error sequence 
Hn is greater as compared to the original error 
sequence Gn . This means the change and drift to a zero 
contrast image is faster for a print version as compared 
to a natural one.

Proof
To monitor and track the convergence rates of the two 
trails, the normalized first order difference (or error) met-
ric is defined as,

Furthermore, it can be shown that,

Can show that,

It follows that,

with G1 = 1− 2X0 ; Similarly,

where, H1 = 1− 2Y0 ; Now, let the expected value, 
E[Hn] = µH . Given E[Hn] = µH and

Gn = Xn − Xn−1

Xn−1
= 1− 2Xn−1; n ≥ 1

Hn = Yn − Yn−1

Yn−1
= 1− 2Yn−1; n ≥ 1

(57)
Gn − Gn−1 =2[Xn−2 − Xn−1]

=2

[

Xn−2 − Xn−1

Xn−2

]

Xn−2

(58)=− 2Gn−1Xn−2; n ≥ 2

(59)Gn = Gn−1(1− 2Xn−2) = G2
n−1; n ≥ 2

(60)Gn = (G0)
2n; n ≥ 2

(61)Hn = (H0)
2n = (2Y0 − 1)2n; n ≥ 2

(62)E[Hn] =a

∫ u=1/a

u=0
(2u− 1)2ndu

(63)= a

2(2n+ 1)

[

1+
(

2

a
− 1

)2n+1
]
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Taking the limit as a −→ 1+ , since a is a number larger 
than ’1’,

It can be shown and verified analytically/numeri-
cally that for three different values of the parameter 
a ∈ 1.1, 1.25, 1.5 , the function, 

This result is in fact valid for all a > 1 . This means that 
the error sequence associated with the print version has 
a greater magnitude as compared to the original error 
sequence. Two observations can be drawn from this: 

• The original (natural image related) sequence Xn 
decays much slower as compared to the print  (i.e. 
spoof image related) sequence Yn . This happens 
because E[Hn] > E[Gn] for all n > 1 and for a > 1.

• The separation between two errors E[Hn] − E[Gn] , 
is maximum for n = 1 , which implies that the class 
separation is maximum for the first, first order differ-
ence.

Thus, the proof.
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