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Abstract

Several methods for synthetic audio speech generation have been developed in the literature through the years. With
the great technological advances brought by deep learning, many novel synthetic speech techniques achieving
incredible realistic results have been recently proposed. As these methods generate convincing fake human voices,
they can be used in a malicious way to negatively impact on today’s society (e.g., people impersonation, fake news
spreading, opinion formation). For this reason, the ability of detecting whether a speech recording is synthetic or
pristine is becoming an urgent necessity. In this work, we develop a synthetic speech detector. This takes as input an
audio recording, extracts a series of hand-crafted features motivated by the speech-processing literature, and classify
them in either closed-set or open-set. The proposed detector is validated on a publicly available dataset consisting of
17 synthetic speech generation algorithms ranging from old fashioned vocoders to modern deep learning solutions.
Results show that the proposed method outperforms recently proposed detectors in the forensics literature.
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1 Introduction
The possibility of manipulating digital multimedia objects
is within everyone’s reach. Since a few years ago, this
was possible thanks to several user-friendly software
suites enabling audio, image, and video editing. Nowa-
days, media manipulation has become even easier thanks
to the use of mobile apps that perform automatic oper-
ations such as face-swaps, lip-syncing, and audio auto-
tune. Moreover, the huge technological advances deter-
mined by deep learning has delivered a series of artificial
intelligence (AI)-driven tools that make manipulations
extremely realistic and convincing.
All of these tools are surely a great asset in a digital

artist’s arsenal. However, if used maliciously to generate
fake media, they can have a strong and negative social
impact. A recent example of synthetically manipulated
media that raised a lot of concern is that of deepfakes [1,
2]. Indeed, deepfake AI-driven technology enables replac-
ing one person’s identity with someone else in a video
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[3]. This has been used to disseminate fake news through
politician impersonation as well as for revenge porn dis-
tribution.
If malicious use of deepfakes is a threat per se, deepfake

deception power increases even more when paired with
synthetic speech generation techniques. Indeed, synthetic
generation of both a video and an audio track opens the
doors to new kinds of frauds, security breaches, and con-
vincing fake news spreading methods. However, despite
multiple forensic detectors have been proposed for video
deepfake analysis [4–7], only a few techniques have been
tailored to AI-generated speech analysis [8, 9]. For this
reason, in this paper we focus on synthetic audio speech
detection.
The problem of synthetic speech detection is partic-

ularly challenging due to the wide variety of available
methods for fake speech generation. Indeed, synthetic
speech can be obtained by simple cut-and-paste tech-
niques performing waveform concatenation [10], in some
cases available as open source toolkit. Alternatively, it
can be obtained by vocoders exploiting the source-filter
model of speech signal [11]. More recently, even multiple
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convolutional neural networks (CNNs)-based methods
for synthetic audio generation have been proposed [12].
These produce extremely realistic results that are hard to
disambiguate from real speech also from human listeners.
The more general problem of synthetic speech gener-

ation detection has been faced through the years within
the audio anti-spoofing research community. In this con-
text, multiple algorithms based on either hand-crafted or
data-driven features analysis have been proposed [13, 14].
However, since CNN-based methods for synthetic audio
generation have been proposed in the last few years, many
of the older detectors are bound to fail.
In this paper, we propose a method for synthetic speech

audio detection. Given a speech audio track, the goal con-
sists in detecting whether the speech is synthetic (i.e., it
has been generated through some algorithms) or bona
fide (i.e., it belongs to a real human speaker). In particu-
lar, we consider both closed-set and open-set scenarios.
In the closed-set scenario, the proposed method detects
whether the speech is bona fide or synthetic. In the case of
synthetic speech, it also detect which algorithm has been
used to generate the speech. In the open-set scenario, the
proposed method is also able to highlight whether a fake
speech has been generated through an algorithm that has
never been seen before.
In order to capture traces from different kinds of syn-

thetically generated speech tracks, we combine a series
of features inspired by the speech processing literature.
In particular, we propose a set of features based on the
idea of modeling speech as an auto-regressive process.
Differently, from other state-of-the-art methods [15], we
consider multiple different auto-regressive orders at once
to define this feature set. Moreover, we explore the effect
of combining the proposed features with the bicoherence-
based features proposed in [9] to understand whether they
complement each other.
In order to validate the proposed method on multi-

ple kinds of synthetically generated speech signals, we
performed an extensive set of analyses on the publicly
available ASVspoof 2019 dataset [16, 17]. This dataset
contains synthetic speech tracks generated through 17 dif-
ferent speech synthesis techniques, ranging from the older
(e.g., waveform concatenation, vocoders, etc) to novel
ones based on CNNs approaches. The latter are partic-
ularly challenging to detect even by human listeners as
they produce realistic speech excerpts. The results show
that the proposed method proves more accurate than the
approach recently proposed in [9]. In some cases, the
combination of all the features is also beneficial.
The rest of the paper is organized as follows. First, we

introduce some background on synthetic speech genera-
tion techniques, also reviewing some state of the art in
terms of fake audio detection. We then proceed to illus-
trate each step of the proposed method, from the feature

extraction process to the classification stage. After that,
we describe the breakdown of our experimental campaign
and report the achieved results. Finally, we conclude the
paper highlighting the open questions for future research.

2 Background
In this section, we provide the reader with some
background on state-of-the-art algorithms for synthetic
speech generation and synthetic speech detection. These
pieces of information are useful to better understand the
challenges that lie behind the synthetic speech detection
problem.

2.1 Fake speech generation
Synthetic speech generation is a problem that has been
studied for many years and addressed with several
approaches. For this reason, in the literature a large num-
ber of techniques that achieve good results are present and
there is not a single unique way of generating a synthetic
speech track.
In the past, text-to-speech (TTS) synthesis was largely

based on concatenative waveform synthesis, i.e., given a
text as input, the output audio is produced by select-
ing the correct diphone units from a large dataset of
diphone waveforms and concatenating them so that intel-
ligibility is ensured [18–20]. Additional post-processing
steps allow to increase smoothness in transition between
diphones, simulate human prosody, and retain a good
degree of naturalness [21]. The main drawback of con-
catenative synthesis is the difficulty of modifying the voice
timbral characteristics, e.g., to change speaker or embed
emotional content in the voice.
To increase the variety of voice qualities or speaking

styles, some methods, called HMM-based speech syn-
thesis system (HTS) have been proposed. These operate
with contextual hidden Markov models (HMMs) trained
on large datasets of acoustic features extracted from
diphones and triphones [22–24].
Another family of approaches, known as parametric

TTS synthesis algorithms, aims at expanding the vari-
ety of generated voices. These methods take inspiration
from the concept of vocoder, firstly proposed in 1939
[25]. In this case, starting from a set of speech parame-
ters (e.g., fundamental frequency, spectral envelope and
excitation signal), a speech signal is generated, typically
as an auto-regressive process. However, parametric TTS
synthesis produce results that sound less natural than
concatenative one. Nonetheless, in the last years, more
sophisticated and high-quality vocoders have been pro-
posed [11, 26, 27]. The simplicity of the approach allows
to obtain good results at a reduced computational cost,
suitable for real-time scenarios.
The advent of neural networks (NNs) has broken

new ground for the generation of realistic and flexible
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synthesized voices. In particular, modeling audio sam-
ple by sample has always been considered really chal-
lenging, since speech signal usually counts hundreds of
samples for second and retains important structures at
different time scales. But in the last few years, CNN
and recurrent neural networks (RNN) have enabled to
build completely auto-regressive models, hence to syn-
thesize directly raw audio waveforms [12, 28, 29]. These
end-to-end speech synthesis architectures stand out with
respect to classic methods in terms of timbre, prosody,
and general naturalness of the results and further high-
light the necessity of developing fake speech detection
methods.
In the proposed method, we exploit a property com-

mon to these methods, i.e., they all operate in the time
domain and hence inevitably create signals with memory.
This feature, in our opinion, is crucial in the discrimina-
tion between fake (also called spoof or synthetic) and real
(also called bona fide) speech signals.

2.2 Fake speech detection
Detecting whether a speech recording belongs to a real
person or is synthetically generated is far from being an
easy task. Indeed, synthetic speeches can be generated
through a wide variety of different methodologies, each
one characterized by its peculiar aspects. For this reason,
it is hard to find a general forensic model that explains
all possible synthetic speech methods. Moreover, due to
the rise of deep learning solutions, new and better ways
of generating fake speech tracks are proposed very fre-
quently. It is therefore also challenging to keep pace with
the speech synthesis literature development.
Despite these difficulties, the forensic community has

proposed a series of detectors to combat the spread of fake
speech recordings.
Traditional approaches focus on extracting meaning-

ful features from speech samples able to discrimi-
nate between fake and real audio tracks. Specifically, it
was proved that methods which choose effective and
spoof-aware features outperform more complex clas-
sifiers. Moreover, long-term features should be pre-
ferred with respect to short-time features [30]. Examples
are the constant-Q cepstral coefficients (CQCC) [31],
based on a perceptually inspired time-frequency analysis,
magnitude-based features like log magnitude spectrum
or phase-based features like group delay [32]. More-
over, it has been noticed that traces of synthetic speech
algorithms are distributed unevenly across the frequency
bands. For this reason, sub-band analysis was exploited for
synthetic speech detection, presenting features like linear-
frequency cepstral coefficients (LFCC) or mel-frequency
cepstral coefficients (MFCC) [13]. In [15], the feature
extraction step is based on a linear prediction analysis
of the signals. These features are usually fed to simple

supervised classifiers, often based on Gaussian mixture
models.
More recentmethods explore deep learning approaches,

inspired by the success of these strategies in speech syn-
thesis as well as other classification tasks. NNs have
been proposed both for feature learning and classification
steps. For example, in [8], a time frequency representation
of the speech signal is presented at the input of a shallow
CNN architecture. A similar framework is tested in [14].
In this case, the CNN is used solely for the feature learning
step, whereas a RNN able to capture long-term depen-
dencies is used as a classifier. In this case, several inputs
have been tested, ranging from classic spectrograms to
more complex novel features like perceptual minimum
variance distortionless response (PMVDR). Also, end-to-
end strategies have been proposed for spoofing detection
[33]. These avoid any pre- or post-processing of the data
and fuse the classification and feature learning step in a
unique sleek process.
One of the most recently proposed method to detect

audio deepfakes is [9], which we consider as our baseline.
Given the signal s(n) under analysis, the authors split it
into W windows sw(n). By defining the Fourier transform
of sw(n) as Sw(ω) and the complex conjugate operator as
∗, they compute the bicoherence as

B(ω1,ω2) =
∑W−1

w=0 Sw(ω1)Sw(ω2)S∗
w(ω1 + ω2)

√∑W−1
w=0 |Sw(ω1)Sw(ω2)|2 ∑W−1

w=0 |S∗
w(ω1 + ω2)|2

.

(1)

Finally, the authors extract the first four moments of the
bicoherence magnitude and phase and concatenate them
in a feature vector which is fed to a simple supervised clas-
sifier to distinguish whether a speech is synthetic or bona
fide.

3 Synthetic speech detectionmethod
In this paper, we face the problem of synthetic speech
detection. This means to detect whether a speech audio
track actually represents a real speech or a synthetic one.
We face this problem at three different granularity levels:
binary classification, closed-set classification, and open-
set classification. To do so, we propose a set of audio
descriptors based on short-term and long-term analysis of
the signal temporal evolution. Indeed, speech signals can
be well modeled as processes with memory. It is there-
fore possible to extract salient information by studying
the relationship between past and current audio sam-
ples. Notice that, differently from other state-of-the-art
methods exploiting linear prediction analysis with a single
prediction order [15], we propose to use multiple orders
at once.
In the binary scenario, the proposed method simply

tells whether the audio recording under analysis is a real
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speech or a synthetically generated one. In the closed-set
scenario, the proposed method is also able to recognize
which synthetic speech generation algorithm has been
used within a set of known algorithms. In the open-set
scenario, the proposed method is able to detect whether
the analyzed speech has been produced with a known or
an unknown algorithm.
For each investigated scenario, the proposed pipeline

is shown in Fig. 1: we extract some descriptors from
the audio track under analysis; we feed the descriptors
to a classifier trained to solve the binary, closed-set, or
open-set problem. In the following, we illustrate the data
model behind the proposed features; we provide all the
details about features computation and describe the used
classification methods.

3.1 Data model
Speech is physically produced by an excitation emitted by
the vocal folds that propagates through the vocal tract.
This is mathematically well represented by the source–
filter model that expresses speech as a source signal simu-
lating the vocal folds, filtered by an all-poles filter approx-
imating the effect of the vocal tract [34, 35]. Formally, the
speech signal can be modeled as

s(n) =
L∑

i=1
ais(n − i) + e(n), (2)

where ai, i = 1, . . . , L are the coefficients of the all-poles
filter, and e(n) is the source excitation signal. This means
that we can well estimate one sample of s(n) with a L-
order short-memory process (i.e., with a weighted sum of
neighboring samples in time) as

ŝ(n) =
L∑

i=1
ais(n − i), (3)

where the filter coefficients ai, i = 1, . . . , L are also called
short-term prediction coefficients. By combining (2) and
(3), it is possible to notice that the short-term predic-
tion residual s(n) − ŝ(n) is exactly e(n) if the model and
predictor filter coefficients ai are coincident.
For all voiced sounds (e.g., vowels), the excitation signal

e(n) is characterized by a periodicity of k samples, describ-
ing the voice fundamental pitch. It is therefore possible to
model e(n) as

e(n) = βke(n − k) + q(n), (4)

where k ∈ [kmin, kmax] is the fundamental pitch period
ranging in a set of possible human pitches, βk is a gain
factor, and q(n) is a wide-band noise component. Accord-
ing to this model, we can predict a sample of e(n) with a
long-term predictor that looks at k samples back in time
as

ê(n) = βke(n − k). (5)

By combining (4) and (5), it is possible to notice that the
long-term prediction residual e(n) − ê(n) is exactly q(n) if
the delay k and the gain βk are correctly estimated.
According to this model, a speech signal can be well

parameterized by the coefficients ai, i = 1, . . . , L and the
residual e(n), which on its turn can be parameterized by
βk and the noisy residual q(n). As already mentioned, sev-
eral speech synthesis methods exploit this model. Even
methods that do not explicitly exploit this model (e.g.,
CNN, RNN, etc.) generate a speech signal through opera-
tions in the temporal domain (e.g., temporal convolutions,
recursion, etc.). It is therefore reasonable to expect that

Fig. 1 Pipeline of the proposed method. A feature vector is extracted and fed to different classifiers depending on the problem to be solved
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features within this model parameters domain capture
salient information about the speech under analysis [15].

3.2 Features
Motivated by the idea just illustrated, we propose a set of
features based on the aforementioned set of parameters
computed as follows. Given a speech signal under analysis
s(n) of length N, the feature extraction is divided in two
steps, as shown in Fig. 2.
In the short-term analysis phase, prediction weights

ai, i = 1, . . . , L are estimated in order to minimize the
energy of e(n). Formally, this is achieved by minimizing
the cost function

JST(ai) = E
[
e2(n)

] = E

⎡

⎣

(

s(n) −
L∑

i=1
ais(n − i)

)2⎤

⎦ ,

(6)

where E is the expected value operator. By imposing
∂JST/∂ai = 0 for i = 1, 2, . . . , L, we obtain a set of well-
known equations at the base of linear predictive coding
[35], i.e.,

r(m) −
L∑

i=1
air(m − i) = 0, m = 1, 2, . . . , L, (7)

where r(m) is the autocorrelation of the signal s(n). By
expressing (7) in matrix form, we obtain

⎡

⎢
⎢
⎢
⎣

a1
a2
...
aL

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

r(0) r(−1) . . . r(1 − L)

r(1) r(0) . . . r(2 − L)
...

... . . .
...

r(L) r(L − 1) . . . r(0)

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎢
⎣

r(1)
r(2)
...

r(L)

⎤

⎥
⎥
⎥
⎦

(8)

or a = R−1r where a is the coefficient vectors, R is the
autocorrelation matrix and r is the autocorrelation vec-
tor. The inversion of R is usually performed using the
Levinson-Durbin recursive algorithm [36]. Once the set
of prediction coefficients are estimated, the short-term
prediction error e(n) is obtained as

e(n) = s(n) −
L∑

i=1
ais(n − i). (9)

Long-term analysis aims at capturing long-term correla-
tions in the signal by estimating the two parameters k and
βk . As already mentioned, the delay k ranges between kmin
and kmax, determined by the lowest and highest possible
pitch of the human voice. The parameter k is obtained
minimizing the energy of the long-term prediction error
q(n). This is done by minimizing the cost function

JLT (k) = E
[
q2(n)

] = E
[
(e(n) − βke(n − k))2

]
, (10)

where βk is approximated as βk = r(k)/r(0) [35]. As for
the short-time step, the long-term prediction error q(n)

can be obtained as

q(n) = e(n) − βke(n − k). (11)

In the proposed system we set kmin = 0.004s, cor-
respondent to a speech fundamental frequency of f0 =
250Hz, kmax = 0.0125s, correspondent to f0 = 80Hz.
The features employed in the proposed method are

directly derived from e(n) and q(n). In particular, we
extract the prediction error energy (E) and prediction gain
(G) for both short-term (ST) and long-term (LT) analysis,
defined as

EST = 1
N

N−1∑

i=0
e(i)2, ELT = 1

N

N−1∑

i=0
q(i)2,

GST =
1
N

∑N−1
i=0 s(i)2

1
N

∑N−1
i=0 e(i)2

, GLT =
1
N

∑N−1
i=0 e(i)2

1
N

∑N−1
i=0 q(i)2

.

(12)

Rather the computing the prediction error energy and
prediction gain on the whole signal as just described, the
short-term and long-term analysis is applied to a speech
signal segmented using rectangular windows. The quanti-
ties defined in (12) for each window w define the vectors

EST =
[
E0ST, E

1
ST, . . . , EW−1

ST

]
,

ELT =
[
E0LT, E

1
LT, . . . , EW−1

LT

]
,

GST =
[
G0
ST, G

1
ST, . . . , GW−1

ST

]
,

GLT =
[
G0
LT, G

1
LT, . . . , GW−1

LT

]
,

(13)

where W is total number of windows. In the proposed
method, we used a boxcar window of length equal to
0.025ms.

Fig. 2 STLT feature extraction. In this figure, s(n) is the speech signal, e(n) is the source excitation signal, and q(n) is the wide-band noise signal
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To obtain a compact description for each speech sig-
nal, mean value, standard deviation, minimum value, and
maximum value across the windows are extracted, obtain-
ing a vector

f =[μEST , σEST ,max (EST) , min(EST),
μELT , σELT ,max(ELT), min(ELT),
μGST , σGST ,max(GST), min(GST),
μGLT , σGLT ,max(GLT), min(GLT)] .

(14)

The entire procedure described up to this point assumes
that a specific prediction order L is used. However, a
good prediction order to be applied may change from
signal to signal. Moreover, also this parameter L may be
characteristic of some specific speech synthesis methods.
For this reason, the entire feature extraction procedure is
repeated with different short time prediction orders L ∈
Lmin, . . . , Lmax. The resulting fl feature vectors, where l is
the considered order, are concatenated to obtain the final
feature vector

fSTLT = [
fLmin , fLmin+1 , . . . , fLmax

]
. (15)

In the proposed implementation Lmin = 1 and Lmax =
50; hence, we obtain a feature vector of total length equal
to 16 × 50 = 800 elements.

3.3 Classification
During the classification step, a supervised classifier is
used to associate a label to the feature vector fSTLT. The
classification training step depends on the scenario we
face (i.e., binary, closed-set or open-set classification). It is
worth noticing that no assumptions are made on the clas-
sification method. Indeed, any supervised classifier, like
support vector machine (SVM) or random forest, can be
used in all the scenarios.

3.3.1 Binary
In the binary case, the supervised algorithm is trained
on a dataset where the possible labels are 0, correspon-
dent to real bona fide speech, or 1, correspondent to
synthesized speech. In this scenario, we basically train a
classifier to distinguish between bona fide or synthetic
speech, regardless of the used synthetic speech generation
method.

3.3.2 Closed-set
In the closed-set case, a supervised algorithm is trained in
a multiclass fashion, where theN+1 labels can have value
in [ 0, 1, 2, . . . ,N]. In this case, the label 0 is assigned to
bona fide speech signals, whereas the labels ranging from
1 to N are assigned to synthetic speech samples gener-
ated with N different algorithms. In this case, we basically
train a classifier to recognize whether a speech track is
bona fide or synthetic. In case it is synthetic, we also detect
which method has been used among a set of known ones.

3.3.3 Open-set
The third configuration addresses an open-set scenario.
In this case, the possible labels are [ 0, 1, 2 . . . ,N ,N + 1],
where the label 0 is assigned to bona fide samples, labels
from 1 toN are assigned to speech samples generated with
N known algorithms, while the label N + 1 corresponds
to synthetic speech signals obtained with unknown algo-
rithms. In other word, in this case, the classifier can tell
whether the speech under analysis is bona fide, is fake and
generated with a known method, or belong to a class of
unknown speech generation methods.

4 Experimental setup
In this section, we report all the technical details related
to our experiments. We first provide the description of
the used dataset. Then, we report some implementation
details behind the used classifiers. Finally, we describe the
used training methodology.

4.1 Dataset
In all our experiments, we used the ASVspoof 2019 dataset
described in [16, 17]. This dataset has been proposed to
evaluate a wide variety of tasks related to speech veri-
fication, from spoofing detection to countermeasures to
replay attacks. For this reason, we only considered the part
of the dataset consistent with the synthetic speech detec-
tion problem considered in our work, defined as logical
access dataset in [16].
This dataset is derived from the VCTK base corpus [37]

that includes bona fide speech data captured from 107
native speakers of English with various accents (46 males,
61 females), and it is enriched with synthetic speech tracks
obtained through 17 different methods. The data is par-
titioned into three separate sets: the training set Dtr, the
validation set Ddev, and the evaluation set Deval. The
three partitions are disjoint in terms of speakers and the
recording conditions for all source data are identical. The
sampling frequency is equal to 16000Hz and the dataset is
distributed in a lossless audio coding format.
The training set Dtr contains bona fide speech from 20

(8 male, 12 female) subjects and synthetic speech gen-
erated from 6 methods (i.e., from A01 to A06 using the
convention proposed in [17]). The development set Ddev
contains bona fide speech from 10 (4 male, 6 female)
subjects and synthetic speech generated with the same 6
methods used in Dtr (i.e., from A01 to A06). The eval-
uation set Deval contains bona fide speech from 48 (21
male, 27 female) speakers and synthetic speech generated
from 13 methods (i.e., from A07 to A19). Notice that A16
and A19 actually coincide with A04 and A06, respectively.
Therefore, Deval only shares 2 synthetic speech genera-
tion methods with Dtr and Ddev, whereas 11 methods are
completely new. The complete breakdown of the dataset
is reported in Table 1.
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Table 1 Breakdown of the used dataset showing the training,
development and evaluation splits composition per number of
samples, speakers, and synthesis methods

Dtr Ddev Deval Category

Samples Bona fide 2580 2548 7355

Synthetic 22800 22296 63882

Speakers Bona fide 20 10 48

Synthetic A01 � � NN

Methods A02 � � VC

A03 � � VC

A04 = A16 � � � WC

A05 � � VC

A06 = A19 � � � VC

A07 � NN

A08 � NN

A09 � VC

A10 � NN

A11 � NN

A12 � NN

A13 � NN

A14 � VC

A15 � VC

A17 � VC

A18 � VC

The column “Category” roughly indicates the approach used for waveform
generation by the synthetic speech generation algorithm, where NN = neural
network, VC = vocoder, and WC = waveform concatenation

The synthetic speech generation algorithms considered
in this dataset have different nature and characteristics.
Indeed, some make use of vocoders, others of waveform
concatenation, and many others of NN. In the following, a
brief description of each one of them [17]:

A01 is a NN-based TTS system that uses a powerful
neural waveform generator called WaveNet [12]. The
WaveNet vocoder follows the recipe reported in [38].

A02 is a NN-based TTS system similar to A01 except
that the WORLD vocoder [11] is used to generate
waveforms rather than WaveNet.

A03 is a NN-based TTS system similar to A02 exploit-
ing the open-source TTS toolkit called Merlin [39].

A04 A waveform concatenation TTS system based on
the MaryTTS platform [10].

A05 is a NN-based voice conversion (VC) system
that uses a variational auto-encoder (VAE) [40] and
WORLD vocoder for waveform generation.

A06 is a transfer-function-based VC system [41]. This
method uses source-signal model to turn a speaker

voice into another speaker voice. The signal is synthe-
sized using a vocoder and overlap-and-add technique.

A07 is a NN-based TTS system. The waveform is syn-
thesized using the WORLD vocoder, and it is then pro-
cessed by WaveCycleGAN2 [42], a time-domain neural
filter that makes the speech more natural-sounding.

A08 is a NN-based TTS system similar to A01. How-
ever, A08 uses a neural-source-filter waveform model
[43], which is faster than WaveNet.

A09 is a NN-based TTS system [44] that uses Vocaine
vocoder [27] to generate waveforms.

A10 is an end-to-end NN-based TTS system [45] that
applies transfer learning from speaker verification to
a neural TTS system called Tacotron 2 [28]. The syn-
thesis is performed through WaveRNN neural vocoder
[29].

A11 is a neural TTS system that is the same as A10
except that it uses the Griffin-Lim algorithm [46] to
generate waveforms.

A12 is a neural TTS system based on WaveNet.
A13 is a combined NN-based VC and TTS system that

directly modifies the input waveform to obtain the
output synthetic speech of a target speaker [47].

A14 is another combined VC and TTS system that uses
the STRAIGHT vocoder [26] for waveform reconstruc-
tion.

A15 is another combined VC and TTS system simi-
lar to A14. However, A15 generate waveforms through
speaker-dependent WaveNet vocoders rather than the
STRAIGHT vocoder.

A16 is a waveform concatenation TTS system that uses
the same algorithm as A04. However, A16 was built
from a different training set than A04.

A17 is a NN-based VC system that uses the same VAE-
based framework as A05. However, rather than using
the WORLD vocoder, A17uses a generalized direct
waveform modification method [47].

A18 is a non-parallel VC system [48] that uses a vocoder
to generates speech fromMFCC.

A19 is a transfer-function-based VC system using the
same algorithm as A06. However, A19 is built starting
from a different training set than A06.

4.2 Classifiers
The proposed features can be used with any super-
vised classifier. In our experimental campaign, we focused
on simple and classical classifiers in order to study the
amount of information captured by the proposed features.
Specifically we used a random forest, a linear SVM and a
radial basis function (RBF) SVM.
In each experiment, we have always considered a train-

ing set used for training and parameters tuning and a
disjoint test set. Parameters tuning has been performed by
grid-searching the following set of parameters:
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• Random forest: the number of trees is searched in
[ 10, 100, 500, 1000]; both Gini Index and Entropy
split criteria are tested.

• Linear SVM: the margin parameter (often denoted as
C) is searched in [ 0.1, 1, 10, 100, 1000]

• RBF SVM: same values of C for the linear SVM are
searched. The RBF γ parameter, i.e., kernel
coefficient, is searched in [ 1, 0.1, 0.01].

In additional to the classifiers parameters, also differ-
ent feature normalization techniques have been used. In
particular, we used min-max normalization (i.e., we scale
features in the range from 0 to 1) and z-score normaliza-
tion (i.e., we normalize the features to have zero mean and
unitary standard deviation).
After all parameters have been selected based on grid-

search on a small portion of the training set, results are
always presented on the used test set. The implementation
of all classification-related steps have been done through
the Scikit-Learn [49] Python library.

5 Results
In this section, we collect and comment all the results
achieved through the performed experimental campaign.
We first report an analysis that justify the use of mul-
tiple prediction orders in the feature extraction proce-
dure. Then, we report the results depending on the used
classification framework: binary, closed-set, and open-
set. Finally, we conclude the section with a preliminary
experiment on encoded audio tracks.

5.1 Impact of prediction order
As mentioned in the Section 2, other methods proposed
in the literature make use of the source-filter model
to extract characteristic features [15]. However, these

techniques typically exploit a single prediction order. Con-
versely, we propose to aggregate features computed con-
sidering multiple prediction orders.
To verify the effectiveness of our choice, we run an

experiment considering the binary classification scenario
while spanning multiple amounts of prediction orders
ranging from 1 to 50. Let us define L as the set of used
prediction orders such that L ∈ L. This experiment can be
interpreted as a feature selection step. In practice, we have
iteratively trained and tested a RBF SVM, adding at each
iteration the short-term and long-term features obtained
from an additional order L.
Figure 3 reports the best accuracy obtained onDeval and

Ddev for each possible cardinality of L. It is possible to
notice that the use of a higher number of orders in the
short-term analysis improves the detection ability of the
system, enabling acceptable results also onDeval.

5.2 Binary results
In this experiment, we consider the binary classification
problem. Given an audio recording, our goal is to detect
whether it is pristine or synthetic, independently from the
used speech generation algorithm.
For this test, we used Dtr as training set. As fea-

tures, we compared the baseline bicoherence-based ones
[9] (Bicoherence), the proposed features (STLT), and the
combination of both (STLT + Bicoherence). As bicoher-
ence features can be computed with different window
sizes affecting the resolution in the frequency domain, we
tested windows of size 512, 256 and 128 samples with
overlap half of the window length. For this reason, we have
three different Bicoherence results, and three different
STLT + Bicoherence results.
Table 2 shows the results achieved considering the best

classifier and preprocessing combination for each feature

Fig. 3 Accuracy achieved in the binary scenario onDdev andDeval for different cardinalities ofL
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Table 2 Bona fide vs. synthetic accuracy on datasetDdev for each synthetic speech algorithm

Bicoherence STLT STLT + Bicoherence

512 256 128 512 256 128

A01 0.615 0.526 0.570 0.929 0.917 0.919 0.941

A02 0.881 0.873 0.863 0.940 0.940 0.939 0.946

A03 0.859 0.846 0.847 0.952 0.948 0.950 0.962

A04 0.546 0.505 0.499 0.886 0.827 0.879 0.915

A05 0.805 0.801 0.778 0.946 0.943 0.945 0.955

A06 0.655 0.628 0.609 0.898 0.868 0.898 0.932

All 0.726 0.695 0.687 0.926 0.907 0.921 0.942

set. In particular, we report the accuracy in detecting syn-
thetic tracks depending on the used algorithm, as well
as the average accuracy considering all synthetic algo-
rithms together. It is possible to notice that Bicoherences
alone perform reasonably, but are always outperformed
by the proposed STLT. The best result is always achieved
in the STLT + Bicoherence case, where windows have a
128 sample length. Specifically, it is possible to achieve an
average accuracy of 0.94, and none of the synthetic speech
generation is detected with accuracy lower than 0.91.
Table 3 shows the same results breakdown when the

trained classifiers are tested on the Deval dataset. This
scenario is far more challenging, as only two synthetic
methods used in training are also present in the test set
(i.e., A04 and A06 being A16 and A19, respectively). All
the other synthetic speech algorithms are completely new
to the classifier. In this scenario, some algorithms are
better recognized by the Bicoherence methods, some by

STLT, and some by STLT + Bicoherence fusion. On aver-
age, it is still possible to notice that STLT outperforms
Bicoherence. The best results are obtained by the fusion
STLT + Bicoherence, which provides an accuracy of 0.90
on known algorithms at training time, and 0.74 accuracy
on average also considering unknown algorithms.
Concerning the choice of the classifier, the SVMs always

outperforms the Random Forest. The grid search has
highlighted that RBF kernels are often more effective on
Bicoherence methods, whereas STLT + Bicoherence and
STLT methods work better with linear kernels. These
considerations are valid also on closed-set and open-set
results.
As an additional remark on the binary setup, it is worth

noting that we also tested the purely data-driven method
proposed in [8]. However, due to the heterogeneous
nature of the used datasets, and the limited amount
of available data when considering balanced classes, we

Table 3 Bona fide vs. synthetic accuracy on datasetDeval for each synthetic speech algorithm

Bicoherence STLT STLT + Bicoherence

512 256 128 512 256 128

A07 0.541 0.505 0.501 0.865 0.813 0.864 0.905

A08 0.693 0.627 0.591 0.951 0.955 0.955 0.954

A09 0.543 0.508 0.508 0.835 0.882 0.865 0.835

A10 0.534 0.516 0.504 0.511 0.492 0.487 0.493

A11 0.617 0.685 0.762 0.629 0.489 0.481 0.474

A12 0.547 0.524 0.511 0.509 0.504 0.498 0.487

A13 0.768 0.779 0.767 0.948 0.955 0.955 0.945

A14 0.718 0.708 0.726 0.882 0.916 0.906 0.880

A15 0.567 0.514 0.507 0.466 0.479 0.473 0.465

A16 0.544 0.516 0.509 0.872 0.833 0.871 0.908

A17 0.510 0.532 0.578 0.656 0.649 0.660 0.653

A18 0.515 0.534 0.537 0.869 0.849 0.843 0.849

A19 0.611 0.586 0.575 0.882 0.863 0.885 0.906

All 0.592 0.578 0.578 0.739 0.741 0.737 0.735
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could not achieve an accuracy higher than 0.72 on Ddev
and 0.71 onDeval. As a matter of fact, it is well known that
proper CNN training relies on the availability of a huge
amount of training data, which is not often available in
forensic scenarios.

5.3 Closed-set results
In this experiment, we considered the closed-set multi-
class scenario. In practice, we consider speech tracks gen-
erated by different algorithms as different classes. There-
fore the goal is to detect whether the speech is bona
fide (i.e., BF) or synthetic, and to which synthetic class it
belongs.
Figure 4 shows the confusion matrix obtained using

the baseline Bicoherence, the proposed STLT, and the
fusion Bicoherence + STLT methods training the classi-
fiers on Dtr and testing on Ddev. This is possible as Dtr
and Ddev share the same algorithms. For each method,
we show the best results achieved through grid-search in
terms of balanced accuracy, even though the same trend
can be observed using different classifiers and parameters.
In this scenario, it is possible to notice that the baseline
approach performs poorly, but it can be used to enhance
the STLT method. The best balanced accuracy achieved
by Bicoherence + STLT is 0.93.
Figure 5 show the same results achieved by training on

a portion of Deval (i.e., 80%) and testing on the remain-
ing portion of Deval (i.e., 20%). This was necessary as only
two methods from Deval are present in Dtr. Therefore, to
be able to classify in closed-set all the other methods, we
had to show some speech tracks generated with them to
the classifier. Also, in this case, STLT and the fusion Bico-
herence + STLT provide satisfying results. The methods
on which the classifiers suffer the most are A10 and A12,
which exploit WaveRNN and WaveNet. Additionally, also
A16 based on waveform concatenation seems to be more
difficult to detect than other categories of fake speech.
The reason behind this behavior can be explained as

it follows. Both WaveRNN (A10) and WaveNet (A12)
are end-to-end methods. This means they are completely
data-driven; thus, the produced audio tracks reasonably
conform less with the assumed source-filter model. Addi-
tionally, they are among the methods that provide the
most realistic listening results. For what concerns A16,
the problem is different. Fake speech tracks generated
through waveform concatenation are roughly portions of
bona fide speech atoms spliced together with some pro-
cessing. For this reason, distinguishing them completely
from real bona fide may prove more challenging.

5.4 Open-set results
In this experiment, we evaluate the open-set performance.
The goal is to train the classifier on a limited set of classes
(i.e., bona fide and some synthetic speech methods), and

Fig. 4 Confusion matrices showing closed-set results for each used
feature vector on datasetDdev
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Fig. 5 Confusion matrices showing closed-set results for each used
feature vector on datasetDeval

be able to classify the known classes as such, and unknown
classes as unknown. In particular, as all unknown classes
are synthetic speech by definition (i.e., there is only one
bona fide class), the important point is to avoid mixing
bona fide with fakes.
Figure 6 shows the results achieved training on Dtr and

testing on the union of Ddev and Deval. Specifically, we
used as known classes the bona fide one plus 4 of the
6 synthetic classes present in Dtr. We select as known-
unknown the two remaining synthetic speech methods
from Dtr (i.e., KN-UNKN). The classifier can classify the
excerpt under analysis into 6 classes: bona fide (i.e., BF),
one of the 4 known synthetic methods, or unknown (i.e.,
UNKN). In evaluating the results, we keep the known
classes separated, as they should be recognized correctly.
Moreover, we separate A16 and A19 classes, as they
should be recognized as A04 and A06, respectively. All
other classes are grouped as unknown (i.e., UNKN), as the
classifier cannot distinguish sub-classes among them.
Figure 6a shows the results achieved selecting the pair

(A02, A05) as known-unknown. In this case, it is possible
to see that all known classes are correctly classified, also
considering A16 and A19. Unknown classes are unfortu-
nately detected as bona fide 49% of the times. This means
that, if the classifier predicts that the speech is synthetic
or unknown, the classifier is most likely correct. How-
ever, when it predicts bona fide, there is a chance that the
speech has been generated through a synthetic method.
Figure 6b shows the same results in the case of known-
unknown equal to the pair (A04, A06). In this case, A16
and A19 are correctly classified as unknown (i.e., the class
to which A04 and A06 belong), and the same conclusions
made before can be done.
By digging more into the unknown speeches wrongly

detected as bona fide, we noticed an interesting fact.
Independently from the known-unknown pair selected at
training time among the ones available inDtr, the wrongly
classified unknowns are A10, A11, A12, and A15. In fact,
they are misclassified as bona fide in the 89% of the cases.
These are methods based on WaveNet, WaveRNN, and
Griffin-Lim. The first two families of methods produce
very likely speech. The last family is never represented in
the known-unknown set. All methods based on vocoders,
waveform concatenation, and waveform filtering even if
post-processed with a GAN are correctly guessed. There-
fore, to solve the open-set issue of wrongly classifying this
subset of methods, it is probably necessary to increase the
amount of known-unknowns.

5.5 Preliminary test on encoded audio tracks
Nowadays, audio tracks are often shared through social
media and instant messaging applications. This means
that audio signals are customary compressed using lossy
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Fig. 6 Confusion matrices showing Bicoherence + STLT open-set
results on the union ofDdev andDeval

standards. This is the case ofWhatsApp, which makes use
of Opus audio coding scheme.
In order to further assess the robustness of the proposed

method on encoded audio tracks, we performed a prelim-
inary simple experiment. We simulated WhatsApp audio
sharing by encoding a random selection of 1000 audio
tracks of Ddev dataset using Opus codec with a bitrate
compatible with WhatsApp. We tested the system trained
on the original audio tracks in the binary configuration
using as input the encoded audio files. The results we
obtained are interesting and promising. Even tough the
lossy coding operation has lowered the quality of the audio
signals, the proposed system is able to discriminate the
synthetic speech from the real speech signals with 79%
accuracy. Despite these experiments are just preliminary,
we believe they highlight an interesting future research
path.

6 Conclusions
In this paper, we proposed a method to detect AI-
generated synthetic speech audio tracks. The proposed
method is based on a classical supervised-learning
pipeline: a set of features is extracted from the audio
under analysis; a supervised-classifier is trained to solve
the classification problem based on the extracted fea-
tures. The proposed features are motivated by the broad
use of source-filter model for the analysis and synthe-
sis of speech signals. As a matter of fact, we propose to
extract different statistics obtained by filtering the signal
under analysis with short-term and long-term predictors,
considering different prediction orders.
The proposed features have been compared with the

recently proposed baseline method [9] exploiting bico-
herence analysis on the ASVspoof 2019 dataset [17].
The results show that the proposed method outperforms
the bicoherence-based one in the binary, closed-set, and
open-set scenarios. Moreover, the joint use of the pro-
posed features and the bicoherence-ones provides an
accuracy gain in some situations.
Despite the achieved promising results, several sce-

narios need further investigation. For instance, it is still
challenging to accurately detect some families of syn-
thetic speech tracks in the open-set scenario due to the
huge variety of synthetic speech generation methods.
Moreover, we only considered the logical access synthetic
speech detection problem, i.e., we analyze a clean record-
ing of each speech. It is therefore part of our future studies
to consider what happens if speech tracks get corrupted
by noise, coding, or transmission errors. This scenario is
particularly important if we consider that synthetic speech
recordings may be shared through social platforms or
used live during phone calls.
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