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Abstract

Secure coding is crucial for the design of secure and efficient software and computing systems. However, many
programmers avoid secure coding practices for a variety of reasons. Some of these reasons are lack of knowledge of
secure coding standards, negligence, and poor performance of and usability issues with existing code analysis tools.
Therefore, it is essential to create tools that address these issues and concerns. This article features the proposal,
development, and evaluation of a recommender system that uses text mining techniques, coupled with IntelliSense
technology, to recommend fixes for potential vulnerabilities in program code. The resulting systemmines a large code
base of over 1.6 million Java files using the MapReduce methodology, creating a knowledge base for a recommender
system that provides fixes for taint-style vulnerabilities. Formative testing and a usability study determined that
surveyed participants strongly believed that a recommender systemwould help programmers write more secure code.
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1 Introduction
Data breaches continue to plague organizations across the
globe. The 2017 Cost of Data Breach Study conducted by
the Ponemon Institute shows that the average total cost
of a data breach is US$3.62 million [1]. One of the main
causes of data breaches is code-level vulnerabilities [2, 3].
A 2017 report by Tricentis shows that for 11 months in
2016, news articles reported at least 3 software failures per
month that were caused by code-level vulnerabilities [4].
These statistics emphasize the need for improved secu-
rity analytics techniques. Compounding the problem is
the fact that many developers are skeptical of using exist-
ing code analyzers because of high false-positive rates,
the time required to investigate inactionable alerts, and
usability issues [5, 6]. Further, a significant number of
existing code analysis tools are designed to find bugs or
vulnerabilities in program code, but many of these tools
do not offer mitigation support to help programmers
write secure code. If data breaches and other security-
related issues are to be resolved, it is imperative that
developers have useful and effective tools at their disposal
to help them write secure code.
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To address the secure coding problem, this research
presents a recommender system that detects the presence
of insecure program code and offers live recommenda-
tions that include fixes for vulnerabilities based on com-
mon practices in the security field, to make it easier for
programmers to write more secure code. Recommender
systems are software tools and techniques that provide
suggestions for items that are most likely of interest to
a particular user [7]. Traditionally, recommender systems
have been applied to commodities such as books, CDs,
etc. Ricci et al. [7] noted that the attributes of the items
recommended by classic content-based recommendation
techniques are keywords extracted from the descriptions
of the items [7].
The methodology presented in this work uses source

code mining to extract hand-selected features that are
used to detect vulnerabilities in program code and to
select code examples that mitigate certain vulnerabili-
ties. First, a repository of more than 14,000 open-source
projects is mined, and features are extracted based on
vulnerability descriptions provided in the National Vul-
nerability Database (NVD). Next, using the extracted
features, datasets containing safe, and unsafe exam-
ples are prepared and used as knowledge for a rec-
ommender system, which currently detects and assists
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with mitigating taint-style vulnerabilities. The recom-
mender system was designed by taking into account
input from participants in a knowledge elicitation sur-
vey. The classic recommendation approach is used to
present code examples to the programmer that are
most similar to the code being developed instead
of using generic examples, which is the traditional
practice.
The research question is that a recommender system

built using text-mining techniques can assist program-
mers with detection and mitigation of vulnerabilities as
they type code during development. Targeting and cor-
recting unsafe practices as programmers type code will
help to catch bugs earlier than using traditional static
and dynamic approaches. This work makes the following
major contributions:

• The design, implementation, and evaluation of a
recommender system that uses text mining
techniques, coupled with IntelliSense technology, to
recommend fixes for potential vulnerabilities in
program code. The implemented system uses code
running on Apache Hadoop to extract knowledge
from a large body of open-source projects to provide
features for detecting taint-style vulnerabilities

• The use of a knowledge elicitation survey to
determine the current use of code analyzers among
programmers and to elicit their views on the design
of the proposed system

• A bipartite evaluation (scalability and usability) of the
proposed system along with a discussion on the
statistical significance of the usability results.

The article is organized as follows: related work is
presented in Section 2 followed by an overview of the
approach in Section 3. Section 4 provides a thorough dis-
cussion of modeling and detection. Section 5 discusses
the methods followed to design and implement the pro-
posed system. This section also presents a discussion
on a knowledge elicitation survey that was conducted to
obtain information that affect the design of the system as
well as a usability study that ascertains the usability and
usefulness of recommender systems in helping program-
mers write more secure code. Results and discussion of
the user study and a scalability evaluation are presented
in Section 6 followed by conclusions and future work
in Section 7.

2 Related work
In this section, a discussion is provided on works that are
closely related to this work in the area of automated cod-
ing support, particularly in static analysis, and Dynamic
Application Security Testing (DAST) or dynamic analysis
and auto-fixing of programming errors.

2.1 Static analyzers
2.1.1 Lightweight analyzers
Splint is a heuristics-based tool that finds potential vul-
nerabilities by checking to see that source code is con-
sistent with the properties implied by annotations [8].
Splint is limited to American National Standards Insti-
tute (ANSI) C code and does not offer the function-
alities required in agile and data-driven development
environments.
FindBugs is Java-based static analysis tool that is

intended to find coding defects that developers will want
to review and remedy [9]. The concept is based on bug
patterns that can be found based on Java byte code
[9]. FindSecBugs is a FindBugs plugin, which is geared
towards security audits of Java web applications [10].
Alenezi and Javed proposed the Developer Companion

framework to help developers produce secure web appli-
cations [11]. Developer Companion uses several static
analysis tools to analyze program code, cross-references
the results against the Common Weakness Enumeration
(CWE) and NVD, and presents to developers a recom-
mendation based on the aggregated data [11].

2.1.2 Tools that improve static analysis warnings/alerts
Some researchers have proposed tools and frameworks
to prioritize alerts or vulnerabilities to make it easier for
developers and managers to address the more critical
issues [12, 13].
The tool proposed in [12] is known as Autobugs, which

gathers historic alert data from static analysis tools and
combines the alert-data with complexity metrics to build
a classifier that predicts the actionability of an alert from
data and unit properties [12]. Unfortunately, the author
reported that models based on historic alert data could
potentially mislead developers to believe they have no
security issues [12].
In [13], a vulnerability management strategy, known

as VULCON, is proposed to prioritize vulnerabilities for
patching. Using two metrics (total vulnerability exposure
and time-to-vulnerability remediation), the framework
ingests vulnerability scan reports from code analyzers
such as Nessus [14] and outputs security exposure metrics
and vulnerability management plans to managers, opera-
tors, analysts and engineers, so they can decide on which
vulnerabilities to mediate [13].

2.1.3 Static analyzers based on source codemining
Gopalakrishnan et al. [15] presented a bottom-up
approach that recommends architectural tactics (a
quality-attribute-response) based on topics discovered
from source code projects. They used a classifier in addi-
tion to a recommender system to predict where tactics
should be placed in a programming project to improve the
quality, but not security, of the code.
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In [16], Medeiros et al. presented the DEKANT tool that
automatically detects web-based vulnerabilities using hid-
den Markov models (HMM). First, the tool extracts code
slices from source code and translates these slices into an
intermediate slice language (ISL). It then analyzes the rep-
resentation to determine the presence of vulnerabilities in
code written in PHP.

2.1.4 Vulnerable code pattern recognition usingmachine
learning

In a survey of software vulnerability analysis and discov-
ery using machine learning and data mining techniques,
Ghaffarian and Shahriari categorized approaches into four
main areas [17]. Of these four areas, the area most closely
related to this work is “Vulnerable Code Pattern Recogni-
tion.” Under this category, the work by Yamaguchi et al.
[18] is related. In [18], the authors proposed a method
that assists a security analyst with auditing source code.
Abstract Syntax Trees (ASTs) are extracted form source
code (C-code) and then embedded in a vector space, such
that techniques from machine learning can be applied
to analyze the code. Further, latent semantic analysis is
used to determine dominant directions (structural pat-
terns) in the vector space from which code similar to
a known vulnerability is identified and used to detect
vulnerabilities.
In addition, Shar and Tan [19] produced a series of

papers [19–22] on vulnerability detection and mitiga-
tion, each improving upon their previous work. The most
related paper in their work is [19]. In [19], 20 static code
attributes based on data-flow analysis of PHP web appli-
cations are proposed for predicting program statements
that are vulnerable to SQL-injection (SQLI) and cross-
site scripting. The authors extracted control-flow (CFG)
and data-flow graphs (DFG) of a given PHP program
and performed backward data-flow analysis on target sink
statements that may reach certain input source state-
ments [17]. The extracted attributes are used to create
vectors, which are coupled with their known vulnerability
status to train classifiers to predict the vulnerability sta-
tus of unseen sink statements [19]. A source refers to an
untrusted data source from which user input is received
and a sink is a security-sensitive function [23].

2.2 Dynamic analyzers
A plethora of tools [24, 25] exist in the dynamic analysis
domain, the majority of which are commercial. Interest-
ingly, a great deal of focus in DAST is devoted to web
applications [26–28]. Huang et al. proposed a crawler that
allows for a black-box, dynamic analysis of web appli-
cations [26]. Using reverse engineering (to identify all
possible points of attack within a web application) and
a fault injection process, the tool attempts to determine
the most vulnerable points within an application [26].

In addition, Petukhov and Kozlov proposed an extended
tainted1 mode model that incorporates the advantages
of penetration testing and dynamic analysis to widen
the scope of the web application being covered during
testing [28].
Since dynamic analysis involves testing application

behavior, some researchers believe it is a more real-
istic approach than static analysis [29]. However, the
main challenge with dynamic tools is identifying the
source of a bug [6]. Bugs often manifest themselves
as program crashes and this makes them difficult to
mitigate.

2.2.1 Dynamic analyzers based on AI/machine learning
In [30], the authors described a tool, known as HACKAR,
that uses an improved version of Java PathFinder (JPF)
to execute Java programs and identify vulnerabilities. The
tool is a dynamic analyzer that formulates a problem using
Satisfiability Modulo Theory (SMT) and uses symbolic
execution to determine program paths that may lead to
vulnerabilities. In addition, HACKAR uses a goal regres-
sion2 technique proposed by [31] to learn the semantics
of tasks based on program traces in order to produce a
knowledge base for providing advice to programmers on
how to fix vulnerabilities.

2.3 Automated code repair and auto-completion
Several works exist in the area of automated code repair
and code completion. In 2009, the first tools, ClearView
[32] and GenProg [33], that perform automated code
repair on real-world programs were demonstrated [34].
Since that time, focus on automated code repair has grown
steadily with several other tools being developed, each
either proposing an improvement on an existing method-
ology or a unique algorithm (e.g., SPR [35], Kali [36],
AE [34], and Prophet [37]). In 34, Weimer et al. catego-
rized existing code repair tools into two categories: those
that use stochastic search or produce multiple candidate
repairs, which are validated using test cases (e.g., Gen-
Prog, PAR [38], AutoFix-E [39], ClearView, Debroy, and
Wong [40]), and techniques that use synthesis (e.g., Sem-
Fix [41]) or constraint solving (and symbolic execution)
to produce a single patch that is correct by construc-
tion (e.g., AFix [42], FUZZBUSTER [43], FUZZBALL, and
FUZZBOMB [44]). Since many of these tools require test
cases to operate, they fit well in the area of dynamic
analysis.
Raychev et al. proposed an approach that learns a prob-

abilistic model from existing annotated program data and
uses this model to predict properties of new, unseen
programs [45]. The authors also created a scalable pre-
diction engine called JSNICE that predicts names of iden-
tifiers and type annotations of variables. That is, given
an optimized minified JavaScript code, JSNICE generates
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JavaScript code that is annotated with types and identifier
names.
In 46, Gupta et al. proposed the DeepFix algorithm

that uses a multi-layered sequence-to-sequence neural
network to fix common programming errors (e.g., miss-
ing declarations or statements, missing identifiers, and
undeclared variables) in C code [46]. The neural network
comprises an encoder recurrent neural network (RNN) to
process the input and a decoder RNN with attention that
generates fixes using an iterative process [46].
There are also linters3 (e.g., SonarLint [47]), code qual-

ity analyzers (e.g., ASIDE [48] and code-clone detection
tools (XIAO [49]) that attempt to improve the quality of
code within integrated development environments (IDEs).
XIAO is a tool that helps to deal with the issue of code-
cloning where programmers may have repetitious code
within their coding project. The premise is that detect-
ing code clones can be useful in finding similar security
bugs and also improves the quality of code through refac-
toring of code clones [49]. Baset and Denning showed
that SonarLint and many existing IDE-based tools (e.g.,
ESVD [50]) present short description of common pro-
gramming errors, but do not provide example fixes for
security-related vulnerabilities [51].
In [52], Raychev et al. presented an approach to code

completion based on a novel combination of program
analysis with statistical language models. Given a code-
base, their system first extracts abstract histories in the
form of sentences from the data. Then, these sentences
are fed to a language model such as an n-gram model or
recurrent neural network model that learns probabilities
for each sentence.
Also, in [53], the authors described an architecture

that allows library developers to introduce interactive
and highly specialized code generation interfaces, called
palettes, directly into the editor. Both of these code com-
pletion approaches are based on system design and sen-
tence suggestion and have not been applied to vulnerabil-
ity detection and mitigation.

2.4 Difference between the proposed approach and
existing approaches

The methodology proposed and implemented in this
research couples text mining algorithms and IntelliSense
techniques to analyze program code as the programmer
types, compares the user’s code with a knowledge base of
unsafe practices to determine the presence of unsafe code
and recommends fixes by providing ranked example code
to the programmer during development. IntelliSense, also
known as code-completion or code-hinting, refers to pro-
ductivity features that help programmers learn about their
code by keeping track of parameters and providing the
ability to add properties to code during development.
While [30] uses goal regression to learn about the user

program, it requires that the program be symbolically
executed in order to find vulnerabilities. As discussed
in the literature [54], symbolic execution suffers from
path explosion, path divergence and challenges with com-
plex path constraints, especially on real world problems.
This presents challenges with the generalizabilty of the
solution, as confirmed by the authors [30].
In [16], an intermediate language is required to annotate

tainted functions in the code. In contrast, the proposed
model in this research works directly with the parse tree of
the source code to detect patterns for automatic detection
and classification of vulnerabilities based on descriptions
and fixes recommended by the NVD. Further, the pro-
posed approach mines a large code base and uses the safe
examples to provide not only advice but also example fixes
to the programmer.
The proposed approach differs significantly from the

generate-and-path approaches discussed in the preced-
ing section because patches often work for a given set
of test cases, but fail to generalize to other programming
projects. For example, in 36, Qi et al. analyzed reported
patches for GenProg, RSRepair, and AE, and found that
the overwhelming majority of reported patches did not
produce correct outputs even for the inputs in the valida-
tion test suite [36]. GenProg was reported to find patches
for 37 out of 55 defects in a validation suite. However,
the researchers found that patches did not produce cor-
rect output. Likewise, AE was reported to find patches
for 27 out of 54 defects, but did not produce correct
outputs in the evaluation conducted by Qi et al. Fur-
ther reruns by the authors confirmed that GenProg found
correct patches for only 2 out of 105 defects. Qi et al.
attributed the poor performance of these tools to weak
proxies (bad acceptance tests), poor search spaces that do
not contain correct patches, and random genetic search
that does not have a smooth gradient for the genetic
search to traverse to find a solution [36]. These weak-
nesses highlight the challenge with generate-and-patch or
generate-and-validate approaches.
Further, unlike the works that propose stand-alone static

analysis tools [18, 19], the proposed work augments static
analysis with IntelliSense to drive the mitigation process
within IDEs as the programmer types code. As discussed
in the literature [5, 55] and confirmed by the knowledge
elicitation survey conducted in this work (see Section 5.2),
a majority of developers surveyed do not take advantage
of stand-alone static analysis tools. Even though these
tools may perform well, they require the extra time of
going outside of the development environment to per-
form scans and explore mitigation approaches. However,
this new proposed methodology of coupling vulnerabil-
ity scanning with IntelliSense provides live scanning and
mitigation without significantly affecting the developer’s
coding experience. In addition, by using a recommender
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system, this work shows that providing the programmer
with a ranked set of examples that are most similar to the
code being developed allows the programmer to better
understand vulnerabilities as they relate to their projects.
Other auto-fixing approaches (e.g., DeepFix and generate-
and-patch) that automatically transform program code do
not provide the programmer with examples that are very
similar to the code being developed. Moreover, the unique
presentation of information in the form of recommenda-
tions has the added benefit of educating programmers on
how to avoid certain vulnerabilities in future projects.

3 Proposed approach
The approach consists of two main phases (modeling and
application) and two main components (the data analyzer
and the recommender system) as shown in Fig. 1. Here,
each component is described. A more thorough discus-
sion of the modeling phase is provided in Section 4 while
Section 5 covers the application phase (system design and
implementation).
The first phase in the proposed approach is the mod-

eling phase. This phase involves analyzing data collected
from the National Vulnerability Database (NVD) in addi-
tion to open-source programs to identify features for
detecting a set of vulnerabilities. These features are then
used by a data analyzer to process program code using
simple and effective, data-driven vulnerability detectors to
detect each vulnerability. The approach currently focuses
on the Java programming language but is general enough
to apply to other programming languages.
The second phase involves capturing code as the pro-

grammer types and transferring it to the recommender

system that executes vulnerability detectors, which in turn
categorizes the program code based on the knowledge of
the recommender system and outputs recommendations
that include examples for fixing each vulnerability.

3.1 The data analyzer
The data analyzer consists of feature extractors that are
designed based on vulnerability descriptions and fixes
from the NVD. The analyzer accepts as input open-source
program code and outputs feature sets for detecting a set
of vulnerabilities. Open-source projects are mined and
source code is categorized in order to provide knowledge
to the recommender system for detecting and mitigating
each vulnerability. Recommender systems require suffi-
cient data in order to effectively provide useful recom-
mendations to users. Therefore, a distributed framework
such as MapReduce is proposed to extract features from
a large collection of code repositories to drive the data
labeling process. Labeled datasets are used to train the
recommender system to provide to the programmer safe
code examples that fix a set of vulnerabilities.

3.2 The recommender system
The recommender system incorporates vulnerability
detectors that are designed using key insights about vul-
nerabilities based on data provided by NVD and CWE. It
accepts the user’s code and utilizes the data analyzer to
create a feature set/data object from the given program
code. The feature set is used to determine the classifi-
cation of the data object. If the data object is unsafe, a
recommendation that includes a warning that contains
a list of unsafe method(s) and variable(s) found in the

Fig. 1 System architecture
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user’s code is displayed to the user. The recommenda-
tion will also include ranked fixes for each vulnerability.
Fixes are ranked using text similarity schemes in order to
display a list of examples that resemble the code being
developed. IntelliSense technology is used to initiate the
recommender system as the programmer types in order to
help the programmer mitigate potential vulnerabilities as
soon as possible.

4 Modeling and detection
This section discusses the modeling and vulnerability
detection phase of the work. It provides a detailed expla-
nation on data representation and feature extraction.
Included is a discussion on the feature extraction algo-
rithms and the steps followed to prepare the knowledge
base for the recommender system.

4.1 Datasets
Two main datasets (The National Vulnerability
Database/Common Vulnerabilities and Exposures
(NVD/CVE) and Sourcerer 2011) are used in this work
to provide vulnerability descriptions that are important
for feature extraction and source code from which feature
sets and mitigation examples can be extracted.
The National Vulnerabilities Database (NVD/CVE)

CVE is a dictionary of common identifiers for publicly
known cybersecurity vulnerabilities, which is hosted by
the MITRE Corporation[56]. CVE submissions are made
after vulnerabilities are identified in widely used soft-
ware applications. Each submission is reviewed by a team
of experts and is assigned a unique identifier (CVE ID)
by a CVE Numbering Authority (CNA), a description,
and references. The US National Vulnerability Database
is a “comprehensive cybersecurity vulnerability database
that integrates all publicly available US Government vul-
nerability resources and provides references to industry
resources” [56]. NVD is provided by the National Institute
of Standards and Technology (NIST). NVD enhances the
information in CVE to deliver more details for each CVE
entry such as fix information, severity scores, and impact
ratings according to a Common Vulnerability Scoring
System (CVSS)[57].
The Sourcerer 2011 The Sourcerer 2011 dataset is a

collection of artifacts based on over 70,000 Java projects
and approximately 100,000 Java ARchive (jar) files that
were collected from Apache, Google Code and Source-
forge in 2011 [58]. The dataset is divided into four tar
archives, identified as aa to ad. Each of these archives
contains varying numbers of projects, which are num-
bered in a sequential manner. Each project is then
organized into a cache of important files, the con-
tent, which follows the organization system used by
the developers, and a project.properties file, which con-
tains information such as the repo URL and author.

The Java files are processed and used to create the
ground-truth for classification and to provide mitigation
examples.

4.2 Data representation
Each Java file used in this work is modeled as an Abstract
Syntax Tree. An Abstract Syntax tree is an hierarchical
intermediate representation of a program that presents
source code structure according to the grammar of a given
programming language [59]. It is a reduced parse tree in
which nodes are connected through parent-child relation-
ships. The construction of an AST begins with a node
that represents the entire translation/compilation unit fol-
lowed by a number of intermediate levels, then simple
language constructs such as type name, identifier name,
or operator as the leaf nodes [59].
The JavaParser library is used to construct and traverse

an AST from Java source code. JavaParser is an open-
source library that allows native Java interaction with an
AST generated from Java source code [60].

4.3 Feature extraction
Features for detecting vulnerabilities were identified after
careful manual analysis of vulnerability descriptions pro-
vided by the NVD/CVE. Apache Hadoop was utilized
as a MapReduce environment running custom code to
process the Sourcerer dataset in order to extract fea-
tures for detecting the vulnerabilities. MapReduce is a
programming model and an associated implementation
for processing and generating large datasets [61]. The
Apache Hadoop software library is one of the most popu-
lar implementations of the MapReduce methodology that
allows for the distributed processing of large data sets
across clusters of computers using a simple programming
model [62].

4.3.1 MapReduce algorithm for feature extraction
The MapReduce algorithm that was implemented for
execution in Apache Hadoop is shown in Algorithm 1.
Based on the structure of the Sourcerer dataset, it was
necessary that the repository be organized before pro-
cessing using Hadoop. Bash scripts were used to parse
each project.properties within each project in the reposi-
tory to extract information about each project in order to
create a more uniform file structure. Java files were reor-
ganized such that there is one directory for each project.
The filenames were later used as keys for the MapReduce
framework. Since Hadoop splits data files according to a
default block size, a custom record reader was employed,
as shown in the algorithm (line 3), to read each Java file
without splitting it. This enabled complete and accurate
creation of an AST from each file. Moreover, each vul-
nerability requires a different buildFeatureSet procedure
(shown on line 16 of the algorithm). This procedure is
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discussed below for each of the vulnerabilities evaluated
in this work.

Algorithm 1: MapReduce algorithm for mining
features from Java code

input : repository_path: path to repository dataset
output: a set of features for a certain vulnerability

1 foreach project ∈ repository_path do
2 javaDataFiles = selectJavaFiles()
3 createCustomRecordReader() // record

reader to read full java
program file

4

5 foreach javaFile ∈ javaDataFiles do
6 Function map(javaFile):
7 key = getFileName(javaFile)
8 value = extractText(javaFile)

// using
customRecordReader

9 addToIntermediateList(key, value)
10 emit(intermediateList)
11 return

/* each reduce is a
vulnerability detector that
emits a set of features for
identifying a certain
vulnerability */

12 Function reduce(intermediateList):
13 foreach pair ∈ intermediateList do
14 outkey = intermediateList.key
15 inValue = intermediateList.value
16 outValue =

buildFeatureSet(inValue)
// based on abstract
syntax tree

17 emitFinal(outKey, outValue)
18 end
19 return
20 end
21 end

4.3.2 Extracting features for detecting taint-style
vulnerabilities

This work uses two taint-style vulnerabilities (SQL Injec-
tion and Command Injection) to evaluate the proposed
methodology. These vulnerabilities were chosen due to
their high CWE severity score and frequency in the 2017
version of the NVD as shown in Fig. 2. Taint-style vulner-
abilities are caused by the lack of input/output validation
and are traditionally modeled as source-sink problems.

CWE-89—improper neutralization of special ele-
ments used in an SQL command (‘SQL injection’). An
SQL injection (SQLI) attack is one that occurs when an
attacker provides specially crafted input to an applica-
tion that employs database services such that the pro-
vided input results in a different database request than
was intended by the application programmer [63]. SQLI
has been a common vulnerability for many years, secur-
ing position number one on the Open Web Application
Security Project (OWASP) 2010 [64], 2017 [65], and the
CWE 2011 [66] lists. Applications (e.g., web-apps) gen-
erally accept user input, which are then used in execut-
ing database requests. These requests are typically SQL
statements.
SQLI is a serious vulnerability because it could lead

to unauthorized access to sensitive data, cause severe
updates to or deletions from a database, and even result in
devastating shell command execution [67]. Listing 1 fea-
tures sample code that could potentially result in SQLI.
This is because the programmer is incorporating unsani-
tized variables in the creation of a query string.
The use of the PreparedStatement class from Java

Database Connectivity (JDBC) or Java Enterprise Edi-
tion (J2EE) is often recommended as a fix for SQL
injection [68]. This class allows for the use of a place-
holder (“?” character) to create a parametric query that
escapes potentially tainted user input. Using these clear
descriptions of the vulnerability and how it can be
mitigated, six main hand-selected features for detect-
ing and classifying SQLI can be identified. These fea-
tures are described in Table 1, and the algorithm used
to build the feature set is presented as Algorithm 2.
A list of known Java sources and sinks was obtained
from online resources [69–71]. These known sources
and sinks are used as a point of reference along with
static dataflow analysis of the user program to iden-
tify potentially tainted variables. A variable is consid-
ered potentially_sanitized if it is passed to a function
that is not in the list of known tainted sources. Three
techniques are used to check for potential sanitization
throughout a given program file: inline (sanitization done
during the creation of a query string), in-method (san-
itization done as soon as a parameter is passed to
a method), and before-use (sanitization of parameters
before they are passed to methods that invoke query
functions). By using the list of generated features, a data
instance in the dataset is automatically labeled as safe if
the boolean feature quoted_variables_found is false, the
incoming variables are potentially_sanitized, and param-
eterized queries are used to create the SQL statements.
Contrariwise, it is labeled as unsafe. A random sam-
ple of 100 labeled instances was tested and no errors
were found, giving a 99% confidence, which indicates
the effectiveness of the selected features. Live detection
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Fig. 2 Number of vulnerabilities in the NVD 2017 List that were caused by the top 10 SANS/CWE of 2011. The plot also shows the CWE severity score
for each CWE

of SQLI is done in conjunction with Algorithm 2 as
follows:

1 Create an AST from the Java program file.
2 Extract import statements, SQL statements, method

calls, sources, and sinks from the AST.
3 For all SQL statements in the program, check if

variables are potentially sanitized using static
dataflow analysis by comparing the sources and sinks
in the program with a knowledge base of known
sources and sinks and checking if apostrophes and/or
parameterized queries are properly used.

4 If these checks show that data is not properly
sanitized and parameterized queries are not properly
used, then consider the program susceptible to SQLI
and use the recommender system to recommend the
most appropriate fix that is most similar to the
project being developed.

Listing 1 Example Java code that could potentially lead to SQL
injection
import java.sql.*;

class Login {
public boolean doLogin(String username, String

pwd) {
String sqlString = "SELECT * FROM

db_user WHERE username = ’" +
↪→ username + "’ AND password = ’"

+ pwd + "’";
Statement stmt = connection.

createStatement();
ResultSet rs = stmt.executeQuery(

sqlString);
}

}

CWE-78—improper neutralization of special ele-
ments used in an operating system (OS) command (‘OS
command injection’). Command injection is an attack
in which the goal of the attacker is to execute arbitrary
commands on the host operating system via a vulnerable
application [72]. As the name suggests, these commands
are typically targeted to the command shell, which is
a software program that provides direct communication
between the user and the operating system [73]. The com-
mands supplied by the attacker are usually executed with
the same privileges of the vulnerable application.
In Java applications, calls to the Runtime.exec(...)

method could be exploited to allow an attacker to run
arbitrary commands on the host operating system. List-
ing 2 shows example code that is vulnerable to com-
mand injection. This is because it utilizes the Windows
command shell (cmd.exe) to execute the dir com-
mand without proper sanitization. After careful analysis
of this vulnerability, four main features have been man-
ually selected for detection and classification. Table 2
describes each feature while Algorithm 3 outlines the
buildFeatureSet procedure. From the feature set, the fol-
lowing heuristic can be used to automatically categorize
the dataset for command injection: if shell commands are
present and unsanitized, arguments/variables are used in
the command string or any faulty characters are used in
the command string, label the data instance as unsafe.
Otherwise, label the instance as safe. A random sample of
100 labeled instances was also tested, showing no errors
(99% confidence) in the labels assigned to the command
injection dataset.
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Algorithm 2: Procedure for building the feature
set for detecting SQL injection

input : ast: abstract syntax tree of Java code
output: a set of features for detecting SQL

Injection
1 Procedure buildFeatureSet(ast)
2 Initialize featureSet parameters as safe
3 imports = Get list of ImportDeclaration from

ast
4 sqlStatements = Extract all statements

containing SQL Commands from ast
5 methodCalls = Get list of MethodCallExpr

from ast
6 sources = Get list of all tainted sources from

imports
7 sinks = Get list of all sinks from methodCalls
8 Set feature sources = sources
9 Set feature sinks = sinks

10 foreach sqlStatement ∈ sqlStatements do
11 if sqlStatement is concatenated string then
12 Create stmtArray from sqlStatement
13 foreach item ∈ stmtArray do
14 if item is functionCallExpr && item

∈ taints then
15 Set feature

potentially_sanitized = false
16 end
17 if item is variable && item not

passed to potential sanitizer
function then

18 Set feature
potentially_sanitized = false

19 end
20 if item is string && item contains

apostrophes then
21 Set feature

quoted_variables_found = true

22 end
23 end
24 end
25 end
26 if all sqlStatements parameterized then
27 Set feature all_queries_parameterized =

true
28 end
29 if preparedStatement class found ∈ imports

then
30 Set feature prepared_statement_imported

= true
31 end

Listing 2 Example of unsafe Java code that uses runtime exec

import java.io.*;
class ChangeDir {

public static void main(String[] args) {

Runtime runtime = Runtime.getRuntime();
String[] cmd = new String[3];
cmd[0] = "cmd.exe" ;
cmd[1] = "/C";
cmd[2] = "dir " + args[0];
Process proc = runtime.exec(cmd);

}
}

Algorithm 3: Procedure for building the feature
set for detecting command injection

input : ast: abstract syntax tree of Java code
output: a set of features for detecting Command

Injection
1 Procedure buildFeatureSet(ast)
2 Find (all ExpressionStatements � the exec

method) ∈ ast
3 foreach cmd parameter ∈ exec statement do

// the cmd parameter is the
1st parameter based on the
exec method signature

4 if cmd parameter is concatenated string
then

5 updateFeatureSet (cmd)
6 else
7 Find all occurrences of cmd variable

in ast
8 if any occurrence is string then
9 updateFeatureSet

(cmdOccurrence)
10 end
11 end
12 end
13 Function updateFeatureSet(cmdString):
14 if concatenated variables ∈ cmdString ¬

potentially sanitized then
15 Set feature unsanitized_args_processed =

true
16 end
17 if cmdString � a call to a shell command then
18 Set feature shell_command_present = true
19 end
20 return

4.3.3 Results of the text-mining process
To prepare data for the knowledge base within the rec-
ommender system, the MapReduce algorithm was imple-
mented in Java and executed in Apache Hadoop. The
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Table 1 Features for detecting SQL injection

Feature Data type Possible values Description

Sources Multi-valued {getPathInfo, getResource, getName, getServletPath,
getRemoteHost, getLocalAddr, getParameterMap,
getRealPath, getServerName, getPathTranslated,
getInitParameterNames, getHeader, getCookies,
getPath, getComment, getParameter,
getParameterValues, getRequestURL, getHeaders,
getRequestURI, getResourceAsStream,
getRequestDispatcher, getQueryString,
getResourcePaths, getDomain, getValue,
getLocalName, getInitParameter, getRemoteUser,
getHeaderNames, getContentType,
getParameterNames, concatenateWhere,
getNamedDispatcher}

The method that accepts or
processes potentially tainted user
input

Sinks Multi-valued {executeLargeUpdate, updateWithOnConflict,
setGrouping, queryForList, batchUpdate, update,
buildQuery, prepareStatement, delete,
buildUnionSubQuery, queryWithFactory,
rawQueryWithFactory, nativeSQL, queryForInt,
blobFileDescriptorForQuery, longForQuery,
sqlRestriction, newQuery, executeInsert, createQuery,
queryForMap, queryForLong, apply, execSQL,
queryForRowSet, query, stringForQuery,
buildQueryString, <init>, addBatch, execute,
executeQuery, createSQLQuery, createNativeQuery,
setFilter, appendWhere, queryForObject,
newPreparedStatementCreator, as,
compileStatement, createDbFromSqlStatements,
buildUnionQuery, rawQuery, executeUpdate,
prepareCall}

The method that creates, modifies,
or executes a SQL query

Quoted_variables_found Boolean {True, false} Tells whether explicit apostrophes
were used to formulate an SQL
query string

Potentially_sanitized Boolean {True, false} Tells whether user inputs were
passed to untainted functions
before being used in SQL strings

Prepared_statement_imported Boolean {True, false} Specifies whether the
recommended prepared statement
class was imported

All_queries_parameterized Boolean {True, false} Specifies whether the question-
mark wildcard was used as variable
placeholders in query strings

Metadata String – Data (encoded in base 64)
containing SQL statements and
methods found in each Java file to
assist with verification of
classification

Class Binary {Safe, unsafe} The target variable

data in Part aa of the Sourcerer 2011 dataset was
used to create the knowledge base. Table 3 summa-
rizes the distribution of the projects within the sub-
set of the dataset that was analyzed. Specifically, the
Sourceforge projects and Google Code projects were pro-
cessed to create training data and test data, respectively.
Table 4 shows the breakdown of the training and testing
samples.

5 Methods
This section describes the methods followed in design-
ing and implementing the system. First, initial ideas on

the requirements and design of a useful and effective
code analysis tool are delineated. Next, the steps involv-
ing a knowledge elicitation survey that was conducted
to empirically ascertain the current use of code analyz-
ers among programmers and to elicit their views on the
design of the proposed system are presented. Finally, a dis-
cussion on the impact of the survey on the final design of
the system is provided.

5.1 Initial system design
Due to the observation that many programmers are
skeptical of using existing code analyzers, the following
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Table 2 Features for detecting OS command injection

Feature Data type Possible values Description

Shell_command_present Boolean {True, false} Tells whether a shell command is supplied to runtime.exec.
Shell commands include command.com, cmd.exe, /bin/sh
/bin/csh, /bin/ksh, /bin/bash, /bin/tcsh, /bin/zsh, /bin/rc,
/bin/es

Unsanitized_args_processed Boolean {True, false} Specifies whether the programmer passes potentially tainted
user arguments to the runtime.exec method

Faulty_characters_present Boolean {True, false} Specifies whether faulty characters are present in the
command passed to the runtime.exec method

File_permission_imported Boolean {True, false} Tells whether the recommended Java File permission class is
imported to prevent command injection

Metadata String – A field containing runtime examples and methods found in
each Java file

Class Binary {Safe, unsafe} The target variable

requirements are worth considering during the design of
a new system:

• The system must be a part of the IDE to enable
effective scanning and mediation

• The warnings should be brief and actionable (links to
more detailed information should be provided for
interested users)

• Emphasis should be placed on fixing the potential
vulnerabilities and encouraging good programming
practice

• The fixes should not be generic but as specific as
possible to the project being developed

• Scanning of vulnerabilities should be done such that
the programmer’s productivity is not negatively
impacted

By using this inexhaustive list of requirements, a
mockup of the proposed system was created (see Fig. 3).
The proposed tool is called VulIntel, short for Vulnera-
bility IntelliSensor. The tool is intended to be part of the
IDE and uses IntelliSense technology to scan code as the
programmer types. A list is populated with the names/IDs
of potential vulnerabilities. Clicking on a vulnerability in
the list displays a brief description of the vulnerability
including a reference to the unsafe method and variables
involved. Further, a ranked list of examples is presented to
the user to help with mitigation.

Table 3 Distribution of projects in part “aa” of the Sourcerer
dataset

Repository Number of projects Number of java files

Google Code 6865 605809

Sourceforge 7511 1015732

Miscellaneous — 625302

Total 14376 2246843

5.2 Knowledge elicitation survey
It is important to solicit feedback for any system design to
satisfy usability requirements as well as to answer ques-
tions that will assist with development. Consequently,
an online knowledge elicitation survey was conducted
with the main goal of obtaining formative feedback on
the design of the proposed interface and the views of
programmers about a tool that utilizes IntelliSense tech-
nology to find vulnerabilities in program code and pro-
vides recommended fixes for detected vulnerabilities.
Approval4 to conduct the study was obtained from the
Institutional Review Board at Florida Institute of technol-
ogy. The results from the survey are summarized below
and the survey questions are included in Appendix A.1.

5.2.1 Participants
To recruit a diverse population of participants, invitation
emails with a link to the survey were sent to individuals of
various experience levels in industry and academia. The
list consisted of more than 10 organizations from coun-
tries that included the USA, Brazil, Germany, and the UK.
The main criteria for participants was that they have at

Table 4 Breakdown of data within the knowledge base of the
recommender system

Knowledge base

SQLI corpus

Repository Safe Unsafe Total

Google Code 6164 1629 7793

Sourceforge 9459 2584 12043

Total 15623 4213 19836

Command injection corpus

Google Code 482 19 501

Sourceforge 2250 70 2320

Total 2732 89 2821
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Fig. 3Mockup of proposed system as incorporated in an IDE

least 3 years experience with an object-oriented program-
ming language such as Java, C#, or C++. A total of 104
participants completed the survey (44 graduate students,
39 industry professionals, 11 undergraduate students, 7
professors, and 3 others).

5.2.2 Familiarity with programming languages and IDEs
Participants were asked to select their familiarity with a
set of programming languages from a list that uses a 5-
point Likert scale5. Participants’s main language of choice
was the Java Programming language, with 40% indicating
that they are “very familiar” with it and 25% claiming to
be “experts” (see Fig. 5). The IDE that scored the highest
in use frequency (84.62%) among participants was Eclipse.
This was followed by Visual Studio with 73.08% and Net-
beans with 61.52%. The results are summarized in Figs. 4
and 5.

5.2.3 Results and discussion
The answers to four overarching questions that the survey
was designed to address are discussed below along with a
summary of themes that emerged from the survey.

(1) To what extent are programmers using code ana-
lyzers? To answer this question, participants were asked

whether they performed static and/or dynamic analysis
on their code and how useful they found the given rec-
ommendations. 13.46% of the participants stated that they
used a static analyzer such as FindBugs, 3.85% used a
dynamic analyzer such as Java PathFinder, 9.62% used
both dynamic and static analyzers, and 56.73% reported
that they did not scan their code for vulnerabilities.

(2) How useful are the advice/recommendations pro-
vided by existing tools? This question was presented to
participants who indicated that they currently take advan-
tage of existing code analyzers. 25.81% of this group of
participants described as “helpful” the recommendations
they received from the scanners they used and 67.74%
reported that the advice given was “somewhat helpful” in
fixing vulnerabilities.

(3) Would programmers utilize a tool that uses Intel-
liSense technology to find and suggest fixes for vulner-
abilities? Participants were first asked if they currently
take advantage of IntelliSense technology. Sixty-eight par-
ticipants (68%) reported that they currently utilize the
technology while 32 (32%) did not; 4 participants skipped
the question. In addition, the participants were asked their
opinion about the application of IntelliSense technology
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Fig. 4 Participants’ familiarity with IDEs

to vulnerability detection. 87 of the participants (87%)
intimated that they would appreciate a system that can
scan their code for vulnerabilities as they code; 10 (10%)
were not interested in the technology, but believe other
programmers may be interested; 3 participants did not
believe it would be a good idea to apply IntelliSense to
vulnerability detection, and 4 skipped the question.

(4) What are the design criteria and expectations for
a tool that scans code for vulnerabilities and presents
fixes to the user? The participants were then shown
the mockup (see Fig. 3) of the proposed tool and asked
in what situations and for what types of projects they
would utilize it. The responses are summarized in Figs. 6
and 7. Moreover, they were asked their opinion about

Fig. 5 Participants’ familiarity with programming languages
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Fig. 6 Situations under which programmers would use the proposed plugin

what they (dis)liked about the interface and what types of
vulnerabilities they would like to detect using the tool.
Themes that emerged from the survey
Several important themes stood out in the responses

provided by participants in the knowledge elicitation sur-
vey as evaluated using the grounded theory approach [74].
From the list of vulnerabilities provided by the partici-
pants, SQL injection, buffer overflows, and the OWASP
list of vulnerabilities are well-known and important to
programmers. However, there are other vulnerabilities
that are often overlooked by programmers but could
pose significant risks. For example, Fig. 2 shows that
hard-coded credentials (CWE-789) and missing encryp-
tion (CWE-311) account for dozens of vulnerabilities in
the 2017 NVD release, yet these vulnerabilities were not
mentioned by any participant.

Three main themes emerged from the open-ended
responses that were provided by the participants:

Theme 1: usability Some participants were concerned
about the number of objects on the proposed UI. They
suggested that while updates are important, the “news
updates” panel adds clutter to the interface and should be
minimized if possible.

Theme 2: performance While some participants were
in favor of scanning being done in the background, a few
of them were concerned about the impact this may have
on the code editor. For example, one participant
submitted the following response:

“I like that it tells you security vulnerabilities as you
type. I am a little concerned about how efficient

Fig. 7 Types of projects for which programmers would use the proposed plugin
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scanning for these vulnerabilities might be. I would
most likely stop using it if it slowed down my editor.”

Theme 3: fixing vulnerabilities A number of partic-
ipants commented on the plugin’s proposed ability to
provide fixes for the vulnerabilities that it finds. One
participant provided the following feedback:

“Really helpful as it provides you with multiple fixes
and examples and visually appealing.”

5.3 Final system design
The aforementioned themes were used to influence the
design of the final system. For example, the theme of
usability helped to declutter the interface. First, the knowl-
edge base within the recommender system was updated
with knowledge from open-source projects as discussed in
Section 4.3. The model was serialized and imported into
an Eclipse plugin. The Eclipse IDE was chosen because
of its familiarity among surveyed programmers as dis-
cussed earlier. Figure 8 shows a screenshot of the final
system as an Eclipse plugin. The design of the plugin was
influenced by the responses received in the knowledge
elicitation survey. IntellliSense technology was utilized by
extending the Eclipse Code Recommenders [75] system,
which is a fundamental component within the Eclipse
intelligent code completion framework. The IntelliSense

system was programmed to initiate the scanner after the
user enters or removes at least five characters, exclud-
ing spaces. This behavior was chosen after experimenting
with options such as after method completion or after
entering or removing at least 10 characters.

5.4 Recommending fixes for vulnerabilities
It is of interest to use the vulnerability-safe (negative)
examples from the labeled corpora to provide recommen-
dations to help programmers fix the detected vulnerabil-
ities. Several questions arise in determining a similarity
scheme that finds code that is similar to the user’s code
but is safe against the vulnerabilities found in the user’s
code. For example, what is the best trade-off between the
time taken to find similar code that is not only syntac-
tically relevant but also semantically helpful to the user?
To answer this and other questions, experiments were
conducted using three text similarity schemes (cosine sim-
ilarity, MinHash, and SimHash) in order to select one that
takes the least amount of time to find relevant examples.
The cosine similarity between two vectors (or two pro-

grams) is a measure that calculates the cosine of the angle
between them irrespective of the magnitude of the vec-
tors. In this work, the vectors represent the term frequen-
cies of terms that are common between two programs
(methods). The vectors were created by using Apache

Fig. 8 Screenshot of the final design of the plugin as incorporated in the Eclipse environment
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Lucene [76] to tokenize the Java code and remove Java
keywords and other English stop words from the code.
Minhash is a Locality Sensitive Hashing (LSH) tech-

nique based on the min-wise independent permutations
of sets. The goal of MinHash is to estimate the Jaccard
similarity quickly without explicitly computing the inter-
section and union of the sets. Jaccard is the ratio of the
number of elements in the intersection of two sets to the
number of elements in the union.
SimHash is also a LSH for the cosine similarity measure

that maps high-dimensional vectors to small fingerprints
[77]. It is based on the concept of Signed Random Pro-
jections (SRP) that transforms a multi-dimensional vector
into a binary string and stores only the sign of the random
projection values.
Figure 9 presents the results from an experiment that

compares the three similarity approaches. First, the figure
shows a sample user code that is vulnerable to SQLI.

Next, the most similar code that fixes the vulnerability, as
returned by each algorithm, is presented. The figure also
shows the similarity score and the time taken to search
a dataset of 18,842 safe instances for code that is simi-
lar to the user’s code. As can be seen from the results, all
three algorithms finished the search in under 2 s. More-
over, the returned samples suggest that cosine similarity
produced a more semantically similar piece of code to the
user’s code.

5.5 Usability study
The study6 followed the A/B testing format where partic-
ipants used two tools to complete two tasks and provide
feedback based on the experience they had while using
both tools. While A/B tests are traditionally used to com-
pare the performance of or user preferences regarding two
different versions of a particular tool or design, it is used in
this work to compare two different tools with two different

Fig. 9 Finding safe code that is most similar to the user’s code
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interfaces geared towards vulnerability detection and mit-
igation. The proposed tool uses an IntelliSense approach
to detect vulnerabilities while the second tool (FindBugs)
does not use IntelliSense. FindBugs was chosen as the
second tool due to its coverage in the literature [78, 79],
its adoption by major companies such as Google [80], its
open-source nature, and its target language being Java.
First, the goal of the study is outlined, followed by the

methodology, which includes a description of the partici-
pants, the apparatus and materials used, and the methods
employed in the study. The results of the study are then
presented along with a discussion on their significance.

5.5.1 Study goal
The overall goal of the study was to ascertain the useful-
ness and usability of a recommender system in helping
programmers write more secure code.

5.5.2 Participants
Fourteen participants completed the study (1 professor,
1 industry professional, 4 researchers, 3 undergraduate
students, 1 master’s student, and 4 PhD students). These
participants were recruited using a combination of con-
venience and snowball sampling via email and word of
mouth. Nine subjects were in the age group 18–29, four
between 30–49, and one between 50–64. Participants
ranged in coding experience with 13 people having at
least 3 years experience and 1 person between 0–2 years.
Subjects were asked to select their primary programming
languages and 9 of them selected Java and Python as their
languages of choice.

5.5.3 Apparatus andmaterials
All participants used a Dell Latitude 3550 laptop (Intel
Core i3 - 1.70 GHz CPU, 64-bit, 8 GB of RAM) to com-
plete the tasks. The study took place in a classroom in the
Harris Institute for Assured Information at Florida Insti-
tute of Technology, with one participant and one exper-
imenter per interview; each session lasted 30 to 45 min.
The Eclipse IDE (version Oxygen.3a 4.7.3) was installed
on the computer beforehand. The VulIntel plugin and the
FindBugs plugin (version 3.0.1) were also installed before
the study started. To have a fair comparison of tools,
FindBugs, which includes the FindSecBugs plugin, was
configured to target only security Bugs. This was done to
minimize the effect of unrelated issues on the scanning
time or presentation of errors to the participants because
FindBugs is able to find bugs related to bad practice, cor-
rectness, performance, etc., while VulIntel currently scans
for security-related vulnerabilities.

5.5.4 Methods
First, the experimenter presented the participant with an
Informed Consent Form. The experimenter reviewed the
contents of the form and gave participants a randomly

assigned ID that was used to refer to the participant
throughout the study. After reviewing the contents of the
consent form and the required tasks for the study, the par-
ticipant was given the option to withdraw or to proceed
by signing the form. The study then began with a short
demographic-style questionnaire (see Appendix A.2.1)
that was designed using Google Forms. After signing the
consent form, the interviewer told the participant the
order of the tools they would be using. Tool order was
alternated to avoid learning bias (i.e., 7 participants used
FindBugs first before using VulIntel while 7 used VulIntel
before using FindBugs). The interviewer then explained to
participants how to use the first tool to scan their code
for vulnerabilities and how to use the information the
tool provided to fix any potential vulnerabilities. Partici-
pants were told that they should use only the information
provided by the tool, and no other resources, to fix any
reported vulnerabilities.
Next, the experimenter activated screen-capturing (and

audio-recording) software, stepped aside, and allowed the
participant to complete the two tasks using the first tool.
After completing the tasks using the first tool, the partici-
pant was then given a questionnaire (see Appendix A.2.2)
followed by an interview (see Appendix A.2.3) based
on their experience using the tool to scan and fix the
given code of potential vulnerabilities. If a participant was
unable to fix the vulnerabilities using the tool, the exper-
imenter allowed the participant to proceed with the next
tool. The screen-capturing software was closed and the
same experiment was given for the second tool.

Tasks Each participant was given two tasks related to
the top two taint-style vulnerabilities discussed earlier
(see Section 4.3.2). Each task consisted of the user typ-
ing preselected sample code into the text editor of the
Eclipse IDE while the code scanner window was open and
the scanner activated. Two Java classes containing sam-
ple methods were created prior to the experiment with
vulnerable portions of the code removed, so the partici-
pant could type, observe the behavior of the scanner, and
use the information provided by the scanner to fix the
vulnerability.
The code used for Task 1 (SQL injection) is a modified

version of an example provided by the Software Engi-
neering Institute at the Carnegie Mellon University [81]
while the code used for Task 2 (Command Injection) was
obtained from the OWASP website [82].

6 Results and discussion
This section presents the results and discussion of the
usability study and scalability analysis of the proposed
tool.
Figure 10 provides a frequency summary of participants’

responses to four main questions asked on the question-
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Fig. 10 Summary of participants’ responses to four main questions

naire (see Appendix A.2.2) for each tool after participants
completed the tasks. All four questions were presented
using a 5-point Likert scale7. As can be seen from the
Fig. 10, more people agreed with VulIntel satisfying these
questions positively than those who agreed that FindBugs
did the same. If the Likert scale is collapsed into two
categories (agree and disagree) by removing the neutral
responses, the following can be concluded:

• Fourteen participants agreed that VulIntel provided
helpful information including fixes for the two tasks
given whereas only 1 participant agreed that
FindBugs provided the same.

• Fourteen participants agreed that the VulIntel
interface was usable whereas only 6 agreed that the
FindBugs interface was usable.

• Thirteen participants indicated that they think
VulIntel would help them write more secure code

while only 4 participants think that FindBugs would
help them to write more secure code.

• All participants stated that they would use the
VulIntel system when coding while only 3
participants would use FindBugs.

6.1 Scalability
While the goal of this work is to couple text mining tech-
niques with IntelliSense technology to create a recom-
mender system that detects and mitigates vulnerabilities
in user programs, it is also of interest to determine the
scalability of the proposed methodology on projects of
various sizes. To do so, a random sample of 10 Google
Code projects in the dataset was selected and processed
for SQL injection. Table 5 shows the time taken to classify
these projects for SQLI by using a Macbook Pro laptop
(16GB of RAM, 3 GHz Intel Corei7 processor). The exper-
iment was done while other processes were running on

Table 5 Time taken to detect SQLI in various open-source projects

Repository name Number of java files Total LLOC Total classification time (Sec) SQLI found

gwtspeechbubble.googlecode.com 3 82294 0.009 FALSE

ov2java.googlecode.com 4 133122 0.010 FALSE

xmlui.googlecode.com 4 110426 0.044 FALSE

permutationcombination.googlecode.com 12 327806 0.043 FALSE

org2hash.googlecode.com 26 434457 0.136 FALSE

teknoatolye.googlecode.com 39 666449 0.147 FALSE

grimwepa.googlecode.com 43 1315067 0.668 TRUE

lambdacore.googlecode.com 56 969340 0.177 FALSE

gracedm.googlecode.com 266 5951640 2.544 FALSE

oxygensoftwarelibrary.googlecode.com 545 4534779 7.173 FALSE
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the machine in order to mimic the environment of a typ-
ical developer/programmer. The table also provides other
information on the experiment such as the total LLOC
(logical lines of code) for each project and the number
of files in each one. LLOC was computed by counting
the expression statements (an expression followed by a
semicolon) in each AST.
The results show that the approach scales very well

by being able to scan a project of over 4.5 million
lines of code for SQLI in under 8 s while projects of
up to 1 million lines of code take under a second.
Even though the experiment was only done for one
vulnerability, the scanning process can be parallelized
through the use of threads to maintain this performance
while scanning for other vulnerabilities. This paralleliza-
tion is feasible since threads are already being used by
the tool to find similar example code that mitigates
vulnerabilities.

6.2 Discussion
Statistical significance Four paired sample t tests and
analysis of variance (ANOVA) tests were conducted for
the four questions discussed previously. t tests are used to
determine whether the mean difference between two sets
of observations is equal to zero (that there is no differ-
ence between the groups being explored). ANOVA tests
were done to check whether the choices of participants
depended on the order of the tools presented during the
study (i.e., whether there is interaction between tool-order
and participants’ agreement). To obtain numeric data for
carrying out the tests, the Likert scale was converted to an
ordinal scale8. All t tests were two-tailed and defined as
follows: (H0 : μd = 0 and H1 : μd �= 0). The results are
summarized in Table 6.
As can be seen from the table, the p values are statis-

tically significant for the paired-sample t tests on all four
factors regarding participants’ agreement. Therefore, the
null hypotheses are rejected and the conclusion that the
proposed tool was more usable and helpful than FindBugs
in helping programmers write more secure code are sup-
ported. Additionally, the p values for the ANOVA tests

show that the null hypothesis that states that there is no
interaction between tool order and participants’ agree-
ment cannot be rejected. Therefore, the conclusion is that
tool order did not affect the choices of participants. These
results confirm the hypothesis that surveyed participants
strongly believe that a recommender system built using
text mining techniques can help programmers write more
secure code.

6.2.1 Study limitations
The convenience sampling done for the usability study
conducted in this work poses a few limitations.

Sample size The number of participants, which were
limited to professional code developers, though relatively
diverse in experience, was small (N = 14). There is the
potential of obtaining different results with a larger sam-
ple. However, since it is typical in the usability commu-
nity to conduct studies with focus groups between 6 and
10 participants [83], the results presented in this initial
study are acceptable. Further, the statistical significance
reported helps to strengthen the conclusions.

Gap between tool age The gap between the age of both
tools is also worth mentioning. FindBugs was originally
released in 2006, with its most recent release in 2015. The
proposed tool in this study has not yet been released to the
public. Therefore, age difference between the two tools
may have some effect on the results.

Experimenter demand effects Demand effects could
also pose a limitation. However, this limitation may be
very minimal, since none of the participants involved in
the study has ever seen or worked with the featured tools
and tool order was alternated during the study.

7 Conclusions and future work
In this work, a methodology is proposed, designed, and
evaluated to help programmers fix potential vulnerabili-

Table 6 Results from paired-sample t-tests and one-way ANOVA tests for four tool factors. A/B test represents participants who used
FindBugs before using VulIntel whereas B/A test represents the opposite

Paired sample t-Test One-way ANOVA test based on tool order

A/B test B/A Test

Tool factor t statistic DF p value 95% confidence interval F value Pr(>F) F value Pr(>F)

Helpfulness (Q1) 10.3333 13 1.228e-07 [1.7514, 2.6772] 0.1200 0.735 1.0909 0.3169

Usability (Q2) 6.5655 13 1.81e-05 [1.0064, 1.9936] 2.7000 0.1263 0.2500 0.6261

Secure coding ability (Q3) 7.3202 13 5.83e-06 [1.3091, 2.4052] 1.1707 0.3005 0.0000 1.0000

Adoption (Q4) 6.1085 13 3.729e-05 [1.3389, 2.8040] 2.0769 0.1751 0.2500 0.6261
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ties as they type code during development. The proposed
methodology employs the use of text mining techniques
to extract features from code repositories in order to cat-
egorize code and use data-driven vulnerability detectors
to detect vulnerabilities. The vulnerability detectors work
in unison with a recommender system to provide the pro-
grammer during development with ranked code examples
that resemble the project being developed in order to mit-
igate a set of vulnerabilities. This work advocates the use
of a recommender system that uses similarity metrics to
recommend a set of example fixes instead of using the tra-
ditional approach of automatically fixing the user’s code.
Providing the user a set of similar examples that are safer
than the code being developed not only allows the user to
fix vulnerabilities but also educates the program on how
to avoid the errors that lead to vulnerabilities in future
projects.
A usability study showed that all 14 participants

involved agreed that the proposed systemwasmore usable
than the FindBugs system, and it provided more help-
ful advice including fixes for the tasks they completed
using the system. In addition, all but one participant
indicated that the proposed system would help them
to write more secure code. The results were statisti-
cally evaluated, and paired sample t tests and ANOVA
suggest that there is statistical significance, confirm-
ing the applicability of recommender systems to secure
coding.

7.1 Future work
Future directions for this work include the following:

• The use of deep learning and other methods to
determine the features for detecting vulnerabilities
instead of using hand-selected features. While the
features proposed in this work are engineered to a
degree, they provide the ability to ensure data
correctness and to create the end-to-end processing
framework. This is an essential step in creating
datasets that are verifiably correct and provides a
baseline on which to judge the performance of the
methodology. Automatic extraction of features will
allow for the addition of machine learning algorithms
to the methodology.

• Expanding the work by detecting and correcting
more vulnerabilities/weaknesses in the SANS/CWE
2011 list of Most Dangerous Software Errors. The
analysis in this work showed that by correcting the
two featured vulnerabilities, 1300 out of 1500
vulnerabilities in the 2017 NVD release could be
avoided.

• Further improving the user interface based on the
responses received from participants in the usability
study

• Expanding the tool to support more programming
languages and IDEs

• Collecting reports from users on their awareness
about secure coding based on tool usage and tracking
error reduction based on recommendations provided
by the tool

• Performing A/B testing of the features within the
proposed tool

Endnotes
1Data that is unchecked or unsanitized
2A backward-reasoning style proof theory for plan syn-

thesis that considers an action that would achieve a goal
under some specified circumstances and tries to find a
way to achieve the goal by performing the action [84].

3A code analyzer that flags code based on programming
errors, bugs, stylistic errors, and suspicious constructs

4 IRB#: 18-006
5 “None,” “somewhat familiar,” “familiar,” “very familiar,”

“expert”
6 IRB#:18-006
7 “Strongly disagree,” “disagree,” “neutral,” “agree,”

“strongly agree”
8 “Strongly disagree”: 1, “disagree” : 2, “neutral” : 3,

“agree” : 4, “strongly agree” : 5

Appendix A: Appendices
A.1 Knowledge elicitation survey questions

1 What is your occupation? (a) Undergraduate student
(b) Graduate Student (c) Professor (d) Industry
Expert (e) Freelancer (f) Other

2 How would you describe your level of familiarity with
the following programming languages? Use the
Likert Scale: (“None”, “Somewhat familiar”,
“Familiar”, “Very familiar”, “Expert”) (1) Java (2) C#
(3) Visual Basic (4) C (5)C++ (6)Python (7) JavaScript
(8) PHP (9) Perl

3 Please indicate your familiarity with the following
source code editors and/or integrated development
environments (IDEs) using the same Likert scale for
the question above. (1) Eclipse (2) Netbeans
(3)IntelliJ IDEA (4) Visual Studio (5) Emacs (6)
Vi/Vim (7) Other (please specify)

4 How important or unimportant is it for you to
develop secure code? (a) Very important (b)
Important (c) Unimportant (d) Very unimportant

5 How do you currently scan your code for weaknesses
(vulnerabilities) or unsafe practices? (a) I use a static
analyzer such as FindBugs (b) I use a dynamic
analyzer such as Java PathFinder (c) I use both static
and dynamic analyzers (d) I write code and another
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party scans it for vulnerabilities (e) I currently do not
scan my code for vulnerabilities (f) Other

6 If you answered (a) - (c) in question 5, how helpful do
you find the warnings/advice provided by the
selected scanner? (a) The advice is very helpful in
fixing vulnerabilities (b) The advice given is
somewhat helpful in fixing vulnerabilities (c) The
advice provided does not help in fixing vulnerabilities

7 Do you currently utilize IntelliSense technology (also
known as “code completion” or “code hinting” during
coding? (a) Yes (b) No

8 What is your opinion about detecting vulnerabilities
using IntelliSense technology? (a)I would appreciate
a system that can scan my code for vulnerabilities as I
code (b) I do not care about such technology, but I
believe other programmers would appreciate a
system that utilizes this technology (c) I do not think
this would be a good idea
We will now show you a mockup (See Fig. 3) of a tool
we are developing that is designed to help
programmers find and fix vulnerabilities as they
code. The tool will be created using machine learning
techniques and implemented as a plugin in common
IDEs such as Eclipse.

9 Consider situations where you are writing code. In
what situations would you utilize this plugin? (a)
Before code release (b) During a nightly build (c) As I
type code (d) When I finish a module (e) When I
finish a class (f) Other

10 What do you like or dislike about the plugin featured
in the mockup?

11 For what types of project would you use this plugin?
(multiple responses can be selected) (a) work projects
(b) school projects (c) While freelancing (d)Fun
projects (e) Open-source projects (f) Other

A.2 Usability study questions
A.2.1 Pre-task completion questionnaire

1 What is your age group? (a) 18-29 years old (b) 30-49
years old (c) 50-64 years old (d) 65 years and over

2 What is your occupation?
3 Select your primary programming languages (1) Java

(2) C# (3) Visual Basic (4) C (5)C++ (6)Python (7)
JavaScript (8) PHP (9) Perl (10) Other

4 How many years of coding experience do you have?
(a) 0-2 (b) 3-5 (c) 6-8 (d) 9-11 (e) 12-14 (f) 15-20 (g)
Over 20 years

A.2.2 Post-task completion questionnaire
The following Likert scale was used for the following ques-
tions: “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”,
“Strongly Agree”

1 provided me with helpful information including
examples on how to fix vulnerabilities

2 Overall, the interface was usable
3 I think the system will help me to write

more secure code
4 I would use the system when coding
5 I think using the system will allow me to fix

vulnerabilities faster than other tools
6 It is easier for me to fix vulnerabilities based on a

deeper understanding of the vulnerabilities rather
than examples of other fixes.

A.2.3 Post-task completion interview
1 Were you able to complete all the tasks given to you

on the system ? Why or why not?
2 What did you like about using the code analyzer on

the system?
3 What did you dislike about using the code analyzer

on the system?
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