
Narang et al. EURASIP Journal on Information Security 2014, 2014:15
http://jis.eurasipjournals.com/content/2014/1/15

RESEARCH Open Access

PeerShark: flow-clustering and
conversation-generation for malicious
peer-to-peer traffic identification
Pratik Narang1*, Chittaranjan Hota1 and VN Venkatakrishnan2

Abstract

The distributed and decentralized nature of peer-to-peer (P2P) networks has offered a lucrative alternative to
bot-masters to build botnets. P2P botnets are not prone to any single point of failure and have been proven to be
highly resilient against takedown attempts. Moreover, smarter bots are stealthy in their communication patterns and
elude the standard discovery techniques which look for anomalous network or communication behavior. In this
paper, we present a methodology to detect P2P botnet traffic and differentiate it from benign P2P traffic in a network.
Our approach neither assumes the availability of any ‘seed’ information of bots nor relies on deep packet inspection. It
aims to detect the stealthy behavior of P2P botnets. That is, we aim to detect P2P botnets when they lie dormant (to
evade detection by intrusion detection systems) or while they perform malicious activities (spamming, password
stealing, etc.) in a manner which is not observable to a network administrator.
Our approach PeerShark combines the benefits of flow-based and conversation-based approaches with a two-tier
architecture, and addresses the limitations of these approaches. By extracting statistical features from the network
traces of P2P applications and botnets, we build supervised machine learning models which can accurately
differentiate between benign P2P applications and P2P botnets. PeerShark could also detect unknown P2P botnet
traffic with high accuracy.

Keywords: Botnets; Peer-to-peer; Machine learning; Security

1 Introduction
The past decade has seen the immense rise of the peer-
to-peer (P2P) computing paradigm. In the beginning of
the twenty-first century, the P2P architecture attracted a
lot of attention of developers and end-users alike, with
the share of P2P over the Internet in different continents
being reported to be in the range of 45% to 70% [1]. As
an increasing number of users got access to powerful pro-
cessors, large storage spaces, and increasing bandwidths,
P2P networks presented a great opportunity to share and
mobilize resources.
Peer-to-peer overlay networks are distributed systems

consisting of interconnected nodes which self-organize
into network topologies. They are built with specific pur-
poses of sharing resources such as content, CPU cycles,

*Correspondence: p2011414@hyderabad.bits-pilani.ac.in
1BITS-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
Full list of author information is available at the end of the article

storage, and bandwidth. P2P networks have the ability to
accommodate a transient population of nodes while main-
taining acceptable connectivity and performance. They
also operate without requiring the intermediation or sup-
port of a global centralized server or authority [2]. The
construction of P2P networks is on the top of IP layer,
typically with a decentralized protocol allowing ‘peers’ to
share resources. The immense success of P2P applications
is primarily attributed to the ease of resource sharing pro-
vided by them - be it in the form of music, videos, files
(BitTorrent), or sharing of computing resources (SETI @
home project). Apart from these, P2P paradigm has also
been widely deployed for IPTV (LiveStation) and voice
over IP-based services (Skypea).
However, the P2P paradigm has been plagued with

issues of privacy, security, and piracy to name a few
[3-5]. Such issues, coupled with the advent of other pop-
ular content-sharing platforms (like YouTube and Netflix)

© 2014 Narang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: p2011414@hyderabad.bits-pilani.ac.in
http://creativecommons.org/licenses/by/4.0

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 2 of 12
http://jis.eurasipjournals.com/content/2014/1/15

have led to decline in the share of P2P applications over
the Internet to a mere 10% [6].
As P2P networks are inherently modeled without any

centralized server, they lack a single point of failure [7].
This resilience offered by P2P networks has also attracted
the attention of adversaries in the form of bot-masters
(a.k.a. bot-herders). A ‘bot’ is a computer program which
enables the operator to remotely control the infected sys-
tem where it is installed. A network of such compromised
end-hosts under the remote command of a master (i.e.,
the bot-master) is called a ‘Botnet’. The ability to remotely
command such bots coupled with the sheer size of bot-
nets (numbering to tens of thousands of bots) gives the
bot-masters immense power to perform nefarious activi-
ties. Botnets are employed for spamming, Bitcoin mining,
click-fraud scams, distributed denial of service (DDoS)
attacks, etc. on a massive scale, and generate millions
of dollars per year in revenue for the bot-master [8]. Bot-
nets are being touted as the largest threat to modern
networks [9].
Botnets can either adopt a centralized or a distributed

architecture for their command-and-control (C&C) com-
munications. Earlier botnets were known to be centralized
(e.g., Spybot, R-bot, Gaobot, etc.), and commonly used
IRC or HTTP to receive commands from a single bot-
master. But they suffer from a single point-of-failure since
bringing down the bot-master effectively brought down
the entire botnet. The distributed and decentralized P2P
infrastructure has offered a lucrative alternative to bot-
masters to build botnets which are not prone to any
single point-of-failure. They have also proven to be highly
resilient against takedown attempts [10].
Detection of P2P botnets by analysis of their network

behavior has frequently utilized ‘flow-based’ approaches.
Owing to certain limitations of these approaches in identi-
fying modern P2P applications (discussed in Section 2.2),
alternatives have been proposed in the form of super-
flow-based and conversation-based approaches. However,
these approaches are not yet mature and suffer from
several drawbacks.
To this end, we present PeerShark, with a ‘best of both

worlds’ approach utilizing flow-based approaches as well
as conversation-based approaches in a two-tier architec-
ture. PeerShark can differentiate between benign P2P
traffic and malicious (botnet) P2P traffic, and also detect
unknown P2P botnets with high accuracy. We envision
PeerShark as a ‘P2P-aware’ assistant to network admin-
istrators wanting to segregate unwanted P2P traffic and
detect P2P botnets.
PeerShark does not assume the availability of any

‘seed’ information of bots through blacklist of IPs. It does
not rely on deep packet inspection (DPI) or signature-
based mechanisms which are rendered useless by bot-
nets/applications using encryption. It aims to detect the

stealthy behavior of P2P botnets, that is, when they lie dor-
mant in their rally or waiting stages (to evade intrusion
detection systems which look for anomalous communica-
tion patterns) or while they perform malicious activities
(spamming, password stealing, etc.) in a manner which is
not observable to a network administrator.
PeerShark begins with the de facto standard 5-tuple

flow-based approach and clusters flows into different cat-
egories based on their behavior. Within each cluster, we
create 2-tuple ‘conversations’ from flows. Conversations
are oblivious to the underlying flow definition (i.e., they
are port- and protocol-oblivious) and essentially capture
the idea of who is talking to whom. For all conversa-
tions, statistical features are extracted which quantify the
inherent ‘P2P’ behavior of different applications, such as
the duration of the conversation, the inter-arrival time of
packets, the amount of data exchanged, etc. Further, these
features are used to build supervised machine learning
models which can accurately differentiate between benign
P2P applications and P2P botnets.
To summarize our contributions:

• A ‘best of both worlds’ for P2P botnet detection
which combines the advantages of flow-based and
conversation-based approaches, as well as overcomes
their limitations.

• Our approach relies only on the information obtained
from the TCP/UDP/IP headers. Thus, it does not
require DPI and cannot be evaded by
payload-encryption mechanisms.

• Our approach can effectively detect activity of
stealthy P2P botnets even in the presence of benign
P2P applications in the network traffic.

• We extensively evaluate our system PeerShark
with real-world P2P botnet traces. PeerShark could
also detect unknown P2P botnets (i.e., those not used
during the training phase) with high accuracy.

In the next section, we give a brief background of P2P
botnets (Section 2.1) and discuss past efforts on P2P bot-
net detection (Section 2.2). In Section 3, we discuss the
system design of PeerShark. Section 4 gives the details
of design choices and implementation of PeerShark,
followed by its evaluation in Section 5. In Section 6,
we discuss about the limitations and possible evasions
of PeerShark, and briefly mention about multi-class
classification. We conclude in Section 7.

2 Background and related work
2.1 Background
A number of P2P-based botnets have been seen over the
past decade, and a few of them have been taken down
only recently with the combined effort of multiple nations.
The massive Citadel botnet (a variant of the Zeus (or

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 3 of 12
http://jis.eurasipjournals.com/content/2014/1/15

‘Gameover’) P2P botnet) is believed to have stolen more
than US $500million from bank accounts over 18months.
It was reported in the past year that the 88% of the botnet
has been taken down by the combined efforts ofMicrosoft
and several security agencies and authorities of more than
80 countries [11]. However, recent reports claim that the
botnet is on the rise again with a tweaked version being
used to target a small number of European banks [12].
A variant of the Zeus P2P botnet also targeted Nokia
phones using Symbian OS [13]. The botnet operated by
installing a malware on the smart phone (via drive-by
download from infected websites), which was used to
steal the username-password credentials of the victim’s
online bank account transactions. The stolen details were
forwarded to the bot-master.
Storm, a state-of-the-art botnet of its time, was known

to comprise of at least a few million ‘bots’ when at its
peak. It was involved in massive spamming activities in
early 2007. Even the anti-spamming websites which tar-
geted Storm came under a DDoS attack by the botnet [14].
Researchers have confirmed that theWaledac botnet is an
improved version of the Storm botnet [15]. Waledac was
capable of sending about 1.5 billion spam messages a day.
It also had the capabilities to download and execute bina-
ries and mine the infected systems for sensitive data. It
was taken down in the year 2010.
A P2P bot’s life cycle consists of the following stages:

• Infection stage, during which the bot spreads (this
might happen through drive-by downloads, a
malicious software being installed by the end-user,
infected USB sticks, etc.)

• Rally stage, where the bot connects with a peer list in
order to join the P2P network

• Waiting stage, where the bot waits for the
bot-master’s command (and does not exhibit much
activity otherwise)

• Execution stage, in which it actually carries out a
command, such as a denial of service (DoS) attack,
generate spam emails, etc.

To evade detection by intrusion detection systems
(IDSs) and firewalls, botnets tend to keep their communi-
cation patterns (with the bot-master or other bots) quite
stealthy. IDSs and Firewalls, which rely on anomalous
communication patterns to detect malicious behavior of
a host, are not very successful in detecting such botnets.
Generating little traffic, such bots ‘lie low’ and thus pass
under the radars of IDSs/firewalls.
With the advent of the Internet of Everything, the pos-

sibility of malware taking control of ‘smart’ appliances
such as television, air-conditioners, refrigerators, etc. will
not be limited to theory. In fact, there have been recent
reports of ‘smart’ refrigerators and cars being hacked, and

wi-fi-enabled LED bulbs having security weaknesses [16].
As the creators of botnets continue to adopt innovative
means in creating botnets, detection of stealthy botnets
continues to be a challenging paradigm.

2.2 Related work
Most prior work has either focused on P2P traffic classifi-
cation from the perspective of a more general problem of
Internet traffic classification [17-19], or has given special
attention to detection of botnets (centralized or dis-
tributed) in Internet traffic [20-22]. The challenging con-
text of detection of stealthy P2P botnets in the presence
of benign P2P traffic has not received much attention.
Initial work on detection of P2P botnets involved

signature-based and port-based approaches [23]. Solu-
tions such as BotMiner [20] rely on DPI which can
easily defeated by bots using encryption. Some of the
recent work has used supervised [24,25] and unsupervised
[26,27] machine learning approaches and other statistical
measures [28]. PeerRush [24] created ‘application pro-
file’ from the network traces of multiple P2P applications.
Their work utilized payload sizes and inter-packet delays
to categorize the exact P2P application running on a host.
The approach of Zhang et al. [26,27] used ‘control flows’
of P2P applications to extract statistical fingerprints. P2P
bots were identified based on certain features like finger-
print similarity, number of overlapping contacts, persis-
tent communication, etc. However, their work can detect
P2P bots inside a network only when there are multi-
ple infected nodes belonging to the same botnet. Yen and
Reiter [28] attempt to segregate P2P bots from benign P2P
apps based on metrics like the volume of data exchanged
and number of peers contacted. Unfortunately, their fea-
tures are not sufficient to correctly differentiate P2P bots
and apps. Furthermore, their approach fails to detect bots
when bots and apps run on the same machine.
Most of the past works have employed the classical 5-

tuple categorization of network flows. Packets were clas-
sified as ‘flows’ based on the 5-tuple of source IP, source
port, destination IP, destination port, and transport layer
protocol. Flows have bidirectional behavior, and the direc-
tion of the flow is decided based on the direction in which
the first packet is seen. This traditional definition of flows
has been greatly employed and has seen huge success
in the problems of Internet traffic classification [29] and
even in the early days of P2P traffic classification [30]. This
definition relies on port number and transport layer pro-
tocol. The latest P2P applications as well advanced P2P
bots are known to randomize their communication port(s)
and operate over TCP as well as UDP. Such applications
will not be well-identified by these traditional approaches.
Since such a behavior is characteristic of only the latest
variants of P2P applications (benign or malicious), it is
obvious that past research did not touch upon this aspect.

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 4 of 12
http://jis.eurasipjournals.com/content/2014/1/15

In response to this, a recent work [22] has used the 2-
tuple ‘super-flows’ based approachwith a graph-clustering
technique to detect P2P botnet traffic. Although authors
in [22] presented interesting insight and obtained good
accuracy in detecting the traffic of two P2P botnets, their
approach has certain limitations. Their work evaluates the
detection of P2P botnets only with regular web traffic
(which was not analyzed for the presence or absence of
regular P2P traffic). This is a serious limitation because
P2P botnet traffic (quite obviously) exhibits many simi-
larities to benign P2P traffic. Furthermore, graph-based
approaches work on a ‘snapshot’ of the network. P2P net-
works have high ‘churn-rate’ (joining and leaving of peers).
Since the network is changing fast, any solution suggested
for a ‘snapshot’ of the network would quickly become
obsolete. Thus, their approach would fail in the presence
of benign P2P traffic. Distinguishing between hosts using
regular P2P applications and hosts infected by a P2P bot-
net would be of great relevance to network administrators
protecting their network.
Another recent work [31] has seen the use of

‘conversation-based’ approach in the P2P domain, but
for a different problem, namely, the detection of over-
lapping P2P communities in Internet backbone. Their
work does not focus on identification of any specific P2P
application—whether malicious or benign.
A preliminary version of our work [32] adopted

conversation-based approach for the detection of P2P bot-
nets. In [32], we looked for high-duration and low-volume
conversations in order to separate P2P bots from apps and
used their timing patterns as a distinguishing feature for
categorization of different P2P apps and bots. None of the
past works employing super-flow or conversation-based
approaches ([22,31,32]) address an inherent drawback of
these approaches: they fail to detect botnet activity if
P2P bots and apps are running on the same machine
(which might be a rare scenario, but cannot be ruled

out nonetheless). This is because conversations (or super-
flows) try to give a bird’s eye view of the communications
happening in the network and thus miss certain finer
details.

3 System design
3.1 System overview
P2P botnets engage in C&C using custom or well-known
P2P protocols. As a result, their traffic can blend with
benign P2P traffic flowing in a network and thus pass
undetected through IDSs or firewalls.
PeerShark uses a two-tier approach to differentiate

P2P botnets from benign P2P applications. The first phase
clusters P2P traffic-flows based on the differing behavior
of different applications. In the second phase, conversa-
tions are created from flows within each cluster. Several
statistical features are extracted from each conversation
and are used to build supervised machine learning mod-
els for the detection of P2P botnets. In Section 5, we will
evaluate the effectiveness of our detection scheme with
traces of known and unknown (i.e., not used in the training
phase) P2P botnets.
Figure 1 gives the architecture of PeerShark. The

system design of PeerShark is explained here:

3.2 Flow-clustering phase
Flow-based analysis has been the de facto standard for
Internet traffic classification and has yielded great suc-
cess in the past [29,30]. Typically, ‘flows’ are constructed
based on the 5-tuple: <Src. IP, Dest. IP, Src.
port, Dest. port, Proto> (where ‘Src.’ stands for
‘source’, ‘Dest.’ stands for ‘destination’, and ‘Proto’ implies
the transport layer protocol (TCP or UDP)). The direction
of the flow is determined by the direction in which the first
packet is seen. An important difference between flows of
P2P applications and traditional client-server applications
is that P2P traffic is inherently bi-directional in nature.

Figure 1 PeerShark: architecture.

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 5 of 12
http://jis.eurasipjournals.com/content/2014/1/15

This differentiating factor has been leveraged by some
recent works [24,25] as well.
We leverage the bidirectional behavior of P2P traffic

to segregate flows into different clusters based on their
differing behavior. The correct classification (in terms of
benign or malicious application) is not a concern at this
point. At this stage, we want to separate flows into differ-
ent clusters based on their behavior. As an example, we
observed a peculiar behavior in the network traces of the
Zeus botnet. Flows between two hosts switched between
TCP and UDP. However, the communication over TCP
was always fast but short-lived (a few hundred packets
exchanged within a matter of seconds), while commu-
nication over UDP was stealthy and long-lived (two or
three packets exchanged in half-an-hour duration). At this
stage of flow clustering, these differing flows of Zeus are
expected to get separated into different clusters.
For the purpose of clustering, we extract a five-feature

vector for every flow: Protocol, Packets per
second (f/w), Packets per second (b/w),
Avg. Payload size (f/w), and Avg. Payload
size (b/w), with ‘f/w’ and ‘b/w’ signifying the forward
and the backward direction of the flow, respectively.
The primary motivation behind the choice of these fea-
tures is to exploit the bidirectional nature of P2P traffic
and separate flows based on their ‘behavior’ in terms
of the transport layer protocol used and packets and
payload exchanged. A more detailed discussion on the
choice of features and clustering algorithm will follow in
Section 4.

3.3 Conversation-generation phase
Once a bot-master infects a particular machine, it is in
the prime interest of the bot-master to not lose connec-
tivity with his bots. The bot-peers near to each other in
the P2P overlay network maintain regular communication
amongst themselves to check for updates, to exchange
commands, and/or to check if the peer is alive or not. If
such messages are exchanged very frequently, the bots are
at a risk of getting detected by IDS/firewalls monitoring
the network. Hence, the communication between the bot-
master and his bots, or that of bots amongst themselves,
is expected to be low in volume (note here that this usu-
ally corresponds to the rally and waiting stages; ‘execution’
stage can be aggressive or stealthy depending upon the
activity for which the bots are used; DDoS attack can
be quite aggressive, while password stealing may remain
stealthy).
Since certain botnets (and even benign P2P applica-

tions) are known to randomize their port numbers over
which they operate, the classical ‘flow’ definition will not
be able to give a clear picture of the activity a host is
engaged in. The traditional ‘flow’ definition will create
multiple flows out of what is actually a single conversation

happening between two such peers (although happening
on different ports) and thus give a false view of the com-
munications happening in the network. To get a bird’s
eye view of the conversations happening between the P2P,
hosts can be beneficial for a network administrator to
hunt for malicious conversations between the bots.
As has been explained before, the present works utiliz-

ing conversation-based (or super-flow based) approaches
[22,32] did not have the capabilities to detect a system
infected by a P2P bot if it is running benign P2P applica-
tions as well. The main reason behind this flaw was that
conversations attempt to provide a bird’s eye view of the
network activity to the network administrator but miss
out certain finer details: since all flows between two IPs
are aggregated into a single conversation, this approach
will create a single conversation for two IPs having mali-
cious as well as benign flows between them and thus fail
to detect the malicious traffic. To combat this drawback,
we use flow-clustering in the first phase which separates
flows into different clusters based on their differing behav-
ior. By this, we attempt to perform a coarse separation of
P2P apps and bots based on their differing behavior.
In the second phase, we create conversations from flows

within each cluster. Note that in our previous work and
in other works, conversations were created by aggregating
all flows/conversations between IP1 and IP2 into a sin-
gle ‘conversation’. Here, we limit conversation creation to
the flows within each cluster. Since flows within the same
cluster have similar behavior, we are creating conversa-
tions out of only those flows which show similar behavior.
Thus, the drawback of aggregating all flows/conversations
between two IPs into a single conversation (and thus
missing out finer details) is addressed.
Furthermore, all P2P applications—whether malicious

or benign—operate with their ‘app-specific’ control mes-
sages which are used by peers to connect to the P2P
network, make file searches, leave the network, etc. Since
each application has its own specific control messages, we
exploit the timing patterns of these control messages to
differentiate between P2P applications by considering the
median value of the inter-arrival time of packets for each
P2P application. Moreover, as has been explained before,
bot traffic tends to be stealthy. Hence, bot conversations
are expected to have higher inter-arrival time of packets
than benign P2P conversations.
In summary, after creating conversations from flows, we

extract four statistical features from each conversation:

1. The duration of the conversation
2. The number of packets exchanged in the

conversation
3. The volume of data exchanged in the conversation
4. The median value of the inter-arrival time of packets

in that conversation

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 6 of 12
http://jis.eurasipjournals.com/content/2014/1/15

These features are then used to build supervised
machine learning models to differentiate between benign
and malicious P2P traffic. More details will follow in the
next section.

4 Design choices and implementation details
In this section, we present the implementation aspects
and design choices of PeerShark in detail:

4.1 Data
This work uses data of benign P2P applications and P2P
botnets obtained from two different sources. The data of
four benign P2P applications, namely uTorrent, eMule,
Vuze, and Frostwire, and the data of three P2P botnets,
namely Storm, Waledac, and Zeus, was obtained from
the University of Georgia [24]. The data for P2P appli-
cations was generated by the authors in [24] by running
those applications in their lab environment for a num-
ber of days, using AutoIt scripts to simulate human-user
activity on the P2P hosts. The data of P2P botnets corre-
sponds to real-world traces obtained by them from third
parties. The dataset of P2P botnet Nugache also cor-
responds to real-world traces obtained from authors of
[33]. Altogether, we used four bots and four apps for this
work.
As explained in the previous section, network traces of

each application were parsed to create flows and further
generate conversations (more details will follow in this
section). The conversations thus obtained were labeled to
create a ‘labeled dataset’ for training and testing purposes.
For all conversations corresponding to P2P applications,
we use the label ‘benign’.
In the network traces of each of the P2P botnets,

there are certain ‘known malicious hosts’ (Storm had 13,
Waledac had 3, Zeus had 1, and Nugache had 4 ‘known
malicious hosts’). However, it is not known whether the
other IP addresses seen in the network traces are benign
or maliciousb. Hence, in order to create a ‘ground truth’
for our evaluation, we treat a conversation as ‘malicious’
if either of the IPs (either source or destination) is known
to be ‘malicious’. If none of the IPs in the conversation
are known to be malicious, we treat that conversation as
benign. Full details of this dataset are given in Table 1. Our
training/testing datasets are representative of the real-
world where the majority of traffic flowing in any network
is benign. Our datasets contain more than 90% benign
traffic.

4.2 Packet filtering module
PeerShark operates on a dump of network traces. The
first module takes network logs in the form of raw packet
data (pcap files) as input and parses them using the
Libpcap library. The module reads each packet and iso-
lates those which have a valid IPv4 header. For the purpose

Table 1 Dataset details

Name Number of flows Number of conversations Purpose

eMule 413,995 293,704 Train/Test

uTorrent 1,409,291 458,624 Train/Test

Vuze 1,207,963 603,145 Train/Test

Frostwire 890,300 234,335 Train/Test

Storm 95,316 59,157 Train/Test

Waledac 81,778 5,765 Train/Test

Zeus 43,593 2,751 Unseen test

Nugache 51,428 49 Unseen test

of data sanitization, all packets without a valid IPv4 header
are deemed invalid and discarded. The packets are further
filtered to retain only those packets which have a valid
TCP or UDP header and a non-zero payload. From each
packet, the Timestamp, Source IP, Source port, Destina-
tion IP, Destination port, and Payload size are extracted
and stored for future use. In addition to these, we also
extract the TCP flags (SYN, ACK, RST, FIN etc.) for
all TCP packets.
This module is algorithmically explained in Algorithm 1.

Algorithm 1 Packet filtering module
1: procedure FILTERPACKETS(packetCapture)
2: ArrayList < ModifiedPkt > filteredPkts;
3: for Packet p in packetCapture do
4: time ← p.getTimestamp();
5: if p has IPHeader then
6: ip ← p.getIPHeader();
7: IP1 ← ip.getSourceIP();
8: IP1_port ← ip.getSourcePort();
9: IP2 ← ip.getDestIP();

10: IP2_port ← ip.getDestPort();
11: if p has TCPheader or UDPheader then
12: header ← p.getTransportHeader();
13: pSize ← header.getPayloadSize();
14: if payloadSize not null or zero then
15: nextPkt ← ModifiedPkt(IP1, IP1_port,
16: IP2, IP2_port, pSize, time);
17: filteredPkts.add(nextPkt);
18: end if
19: end if
20: end if
21: end for
22: return filteredPackets;
23: end procedure

4.3 Flow creation module
The output of the packet filtering module is fed into
this module to generate bidirectional flows. Each flow is
identified by <Src. IP, Dest. IP, Src. port,

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 7 of 12
http://jis.eurasipjournals.com/content/2014/1/15

Dest. port, Proto>, as explained before. All pack-
ets corresponding to a 5-tuple are gathered and sorted
based on timestamp. Flows are created based on the
5-tuple and a TIMEGAP value. TIMEGAP is defined as
the maximum permissible inter-arrival time between two
consecutive packets in a flow, beyond which we mark
the latter packet as the beginning of a new flow. For
TCP flows, in addition to TIMEGAP criteria, we initiate
a flow only after the regular TCP three-way handshake
has been established. The termination criteria for a
TCP flow is met either by TIMEGAP or the TCP close
connection sequence (in terms of FIN packets or RST
packets), whichever is encountered first. In case of UDP’s
(virtual) flows, only the TIMEGAP can be employed.
The module is explained algorithmically in Algorithm 2
(TCP connection establishment or termination sequences
are skipped from the algorithm for the sake of
brevity).
Note that TIMEGAP is a ‘tunable’ parameter, which

must be decided by a network administrator based on
his understanding of his network. From our experiments,
we observed that a high TIMEGAP value was more suit-
able since many bots exchanged very few packets after
long intervals of time. A low TIMEGAP value would imply
just one or two packets per flow, which will be useless to
extract any useful statistical metrics. We used a TIMEGAP
value of 2,000 seconds.

Algorithm 2 Flow creation module
1: procedure CREATEFLOWS(filteredPackets)
2: ArrayList < Flow > initFlowList;
3: ArrayList < PacketGroup > pgList;
4: pgList ← filteredPkts.groupPktsBy5tuple();
5: for PacketGroup pg in pgList do
6: sort packets in pg by timestamp;
7: nextFlow ← Flow(NULL);
8: for Packet p in pg do
9: if p.timestamp between

10: (nextConv.start - TIMEGAP) &&
11: (nextConv.end + TIMEGAP) then
12: nextFlow.addPacket(p);
13: else
14: nextFlow ← Flow(p);
15: initFlowList.add(nextFlow);
16: end if
17: end for
18: end for
19: return initFlowList;
20: end procedure

For every flow, a number of statistical features are
extracted, such as:
1. Transport layer protocol
2. Avg. payload (forward and backward)
3. Total payload exchanged
4. Packets per second (forward and backward)
5. Bytes per second (forward and backward)
6. Total number of packets exchanged
7. Duration of the flow
8. Median of inter-arrival time of packets

Some of these are utilized for the flow clustering mod-
ule, while some are retained for later use in the conversa-
tion generation module.

4.4 Flow clustering module
The flow clustering module aims to separate flows into
different clusters based on their differing behavior. In
order to keep our approach suitable for large networks,
the choice of a fast clustering algorithm was necessary. At
the same time, we would want the number of clusters to
be chosen automatically as per the behavior seen in the
data. To this end, we use the X-means clustering algorithm
[34]. X-means algorithm is a variant of K-means which
scales better and does not require number of clusters to
be supplied by the user.
Clustering is an unsupervised learning approach. But

since we had a labeled dataset available to us, we adopted
the route of classes-to-clusters evaluation. In classes-to-
clusters evaluation, the class label is initially ignored and
the clusters are generated. Then, in a test phase, class
labels are assigned to clusters based on the majority value
of the class attribute in that cluster. Further, the classifica-
tion error is computed, which gives the percentage of data
points belonging to the wrong cluster. This classification
error gives us a rough idea of how close the clusters are to
the actual class labels of the instances.
Since the transport layer protocol naturally distin-

guishes between TCP and UDP flows, it was a natural
choice for a feature to be used for clustering. In order to
choose the rest of the features, we beganwith a superset Sn
of n pair of features which represent bidirectional behav-
ior of flows, such as: bytes per second (forward) & bytes
per second (backward), packets per second (forward) &
packets per second (backward), avg. payload (forward) &
avg. payload (backward), etc. We computed the classifi-
cation error obtained from classes-to-cluster evaluation
with Sn and recomputed it for all Sn−2 sets by removing
one pair of features at a time (note that all features occur in
pairs of ‘forward’ and ‘backward’). The classification errors
for Sn and all sets of Sn−2 were compared. The set with the
lowest classification error was chosen. If that set was Sn,
the computation terminated. Else, the set Sn−2 with low-
est classification error was chosen, and the process was
repeated until the classification error did not drop further.

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 8 of 12
http://jis.eurasipjournals.com/content/2014/1/15

The final set of features thus obtained were:
protocol, packets per second (f/w), packets
per second (b/w), avg. payload size (f/w),
and avg. payload size (b/w).
The classification error obtained with these features was

50.1163%. Irrespective of the number of features used, the
X-means algorithm always created four clusters from the
training data. Since our dataset is a representative dataset
with the 4 P2P apps having the majority of instances, an
outcome of four clusters was quite expected.

4.5 Conversation generation module
Within each cluster, the flows created previously are
aggregated into conversations. Conversations are gener-
ated for a FLOWGAP value as desired by a network admin-
istrator. Flows between two IPs are aggregated into a
single conversation if the last packet of flow 1 and first
packet of flow 2 occur within the FLOWGAP time. Here,
the network administrator is given the flexibility to mine
data for the time period desired by him, say 2 h, 24 h, etc.,
thus giving him visibility into the network logs as required.
Such flexibility is especially valuable for bots which are
extremely stealthy in their communication patterns and
exchange as low as a few packets every few hours. For this
evaluation, the value being used is 1 h. This module is
explained algorithmically in Algorithm 3.

Algorithm 3 Conversation generation module
1: procedure CONVOGENERATION(initFlowList,

FLOWGAP)
2: ArrayList < Conversation > ConvoList;
3: ArrayList < ConversationGroup > cgList;
4: cgList ← initFlowList.groupByIPpair();
5: for ConversationGroup cg in cgList do
6: sort IPpairs in cg by timestamp;
7: nextConvo ← Conversation(NULL);
8: if cg.timestamp between
9: (nextConvo.start - FLOWGAP) &&

10: (nextConvo.end + FLOWGAP) then
11: nextConvo.addConvo(cg);
12: else
13: nextConvo ← Conversation(cg);
14: ConvoList.add(nextConvo);
15: end if
16: end for
17: return ConvoList;
18: end procedure

Using the features extracted from every flow, we extract
fresh features for every conversation: number of packets,
conversation volume (summation of payload sizes), con-
versation duration, and the median value of inter-arrival

time of packets in the conversation. The reasons behind
choosing these features have already been explained in the
previous section.
The median of inter-arrival time of packets was

observed to be a better metric than the mean because
PeerShark aggregates several flows into a single con-
versation as per the FLOWGAP value supplied. In such a
scenario, it is quite possible that flow 1 and flow 2 get
merged into a single conversation while the last packet of
flow 1 and first packet of flow 2 occur several minutes (or
even hours) apart. This will skew the mean value, and the
use of median value was found to be more suitable from
our experiments.

5 Results and evaluation
5.1 Training and testing datasets
The labeled data of all four P2P apps along with Storm
and Waledac was used for training and testing purposes.
Altogether, the dataset contained 1,654,730 conversations
(1,589,808 benign and 64,922 malicious). This dataset was
split into training and testing datasets in a 2:1 ratio. The
training dataset had 1,092,122 conversations (1,049,242
benign and 42,880 malicious), and the test split contained
558,348 conversations (540,566 benign and 22,042 mali-
cious). The training as well as test splits contain more than
90% benign data. Although such class imbalance makes
the task of detecting P2P botnets more challenging, this
ratio is representative of the real-world scenario where
majority of traffic flowing in a network is benign.
After building the models on the training set and test-

ing them with the test set, we evaluate our models against
unseen botnet datasets (i.e., not used in training) of Zeus
and Nugache. Since the network traces of Zeus contain
only one ‘known malicious host’, they are not adequate
to train detection models. Similarly, although traces of
Nugache contain data of four malicious hosts, the dataset
is very small (see Table 1) and thus not suitable to build
detection models. Nevertheless, they can be used to eval-
uate PeerShark’s capability on profiling unknown P2P
bots.

5.2 Classifiers
The training and testing of our models was performed
using the Weka machine learning suite [35].
Our training and testing dataset contains a high ‘class

imbalance’ towards the benign class. This imbalance was
kept on-purpose in order to have a dataset representative
of real Internet traffic. Hence, we need to utilize learning
algorithms which can handle class imbalance. Moreover,
the classifiers must be fast to train. We use J48 decision
trees, which are simple to train and fast classifiers and can
handle class imbalance problems well.
Second, we use random forests. Random forests create

an ensemble of decision trees and output the final class

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 9 of 12
http://jis.eurasipjournals.com/content/2014/1/15

that is the mode of the classes output by individual trees.
It randomly chooses a set of features for classification for
each data point and uses averaging to select the most
important features. It can effectively handle overfitting of
data and run efficiently on large datasets.
Along with tree-based classifiers, we use a stochastic

learning algorithm—Bayesian network. Bayesian net-
works are probabilistic graphical models that can han-
dle class imbalance, missing data and outliers quite well.
They can also identify relationships amongst variables of
interest.
Ten-fold stratified cross-validation was used over the

training dataset to build detection models with these clas-
sifiers. Themodels were tested with the test dataset. These
results are presented in Table 2.

5.3 Evaluation metrics
We use established metrics such as precision, recall, and
false positive rate for evaluation of our approach. We
briefly define them here:

• Precision is the ratio of the number of relevant
records retrieved to the total number of relevant and
irrelevant records retrieved. It is given by TP

TP+FP .• Recall (or true positive rate) is the ratio of the
number of relevant records retrieved to the total
number of relevant records in the complete dataset.
It is given by TP

TP+FN .• False positive rate is given by the total number of
false positives over the total number of true negatives
and false positives. It can be expressed
mathematically as FP

FP+TN .

TP stands for true positive, TN stands for true nega-
tive, FP stands for false positive, and FN stands for false
negative.
As the results in Table 2 show, PeerShark could con-

sistently detect P2P bots with high accuracy and very low
false positives. We emphasize that these results are over
the test set and not the training data. All three classifiers
achieved high precision and recall. Since the train and
test datasets have higher number of ‘benign’ instances,
benign traffic is naturally classified with much higher
accuracy. However, even in the presence of more than 90%
benign traffic, false positive rate for the ‘malicious’ class
(i.e., benign conversations incorrectly classified as mali-
cious) was quite low. This is important for any malicious

traffic classifier since it must not create false alarms by
classifying benign traffic as malicious.

5.4 Testing on unseen data
To further evaluate the effectiveness of PeerShark on
profiling new and unseen P2P botnet traffic, we use
the three models trained above and test them against
the conversations of Zeus and Nugache which were
not used in training the models. It is evident from the
results presented in Table 3 that the approach adopted
by PeerShark is effective and generic enough to detect
unseen P2P botnets with high accuracy.
An ardent reader may note that the detection accu-

racy achieved for the validation set of Nugache and Zeus
is higher than that of the test set composed of Storm
and Waledac. We would like to make two points in this
regard. Firstly, our training and testing datasets were
highly variegated, being composed of four benign P2P
applications and two P2P botnets, with a huge number of
flows/conversations of each and the proportion of benign
traffic being more than 90%. With such variety, the results
presented by us are indicative of what one might expect in
a real-world scenario. But we did not have the same luxury
with the validation datasets. Had there been more vari-
ety in the network traces of Nugache and Zeus, it is quite
possible that the detection rate would have been slightly
lower.
Secondly, wemade an interesting observation in the net-

work traces of Storm and Nugache. Nugache and Storm
have been hailed as cousins [36]. Nugache which became
well known amongst analysts has a ‘TCP port 8 botnet’
[37] since it used the unassigned port 8 over TCP for
several communications. However, while examining the
network traces of Storm, we observed some activity over
TCP on port 8. This is not a typical behavior of Storm.We
suspect that these hosts believed to have been infected by
Storm also had Nugache infection on them (although we
do not have the facility to verify this). This could possibly
explain high detection rate for Nugache.

6 Discussion
6.1 Possible evasions
PeerShark clusters flows based on their behavior and
then forms conversations from the flows within a cluster.
Since it employs both approaches, PeerShark over-
comes many limitations of past efforts. P2P bots which

Table 2 Performance of classifiers on test data

Decision trees Random forests Bayesian network

Class Precision Recall FP rate Precision Recall FP rate Precision Recall FP rate

Malicious 95.3% 93.4% 0.2% 95.3% 94.9% 0.2% 91.9% 88.4% 0.3%

Benign 99.7% 99.8% 6.6% 99.8% 99.8% 5.1% 99.5% 99.7% 11.6%

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 10 of 12
http://jis.eurasipjournals.com/content/2014/1/15

Table 3 Performance of classifiers on unseen P2P botnets

Decision trees Random forests Bayesian network

Classified Classified Accuracy (%) Classified Classified Accuracy (%) Classified Classified Accuracy (%)
malicious benign malicious benign malicious benign

Zeus 2,696 55 98% 2,717 34 98.76% 2,660 91 96.69%

Nugache 42 7 85.71% 43 6 87.76% 48 1 97.96%

randomize port numbers and switch between TCP/UDP
distort the network administrator’s view of the actual
communication happening between two hosts. Flow-
based techniques are insufficient for such cases. The
conversation-generation scheme adopted by PeerShark
can effectively address this issue by aggregating flows
of the same cluster into a single conversation. Previous
works employing conversation-based approaches could
not separate P2P bots and apps on the same machine.
By segregating flows into different clusters based on their
behavior, the approach adopted by PeerShark can effec-
tively separate P2P bot and app traffic running on the
same machine.
However, in order to differentiate between benign and

malicious P2P traffic, PeerShark relies on ‘behavioral’
differences in the flows/conversations of P2P bots and
apps. If two bot-peersmimic a benign P2P application, our
system may fail in detecting them accurately. To elaborate
more on this, consider the following scenario: a bot-
master could configure his bots to engage in occasional
file-sharing activity with each other on a regular P2P net-
work (like eMule, uTorrent, etc.). Seeing such benign-like
activity on a host, PeerShark is likely to mis-classify the
flows/conversations between them as ‘benign’. But, since
occasional file-sharing by bots involves network band-
width usage (and, say, accompanying monetary charges),
such an activity has the likelihood of getting noticed by
the owner of the system or a network administrator and
is thus fraught with risks for the bot-master. Nonethe-
less, we admit that it is possible for bot-masters to design
smarter bots which mimic benign-like behavior and/or
add noise (or randomness) to their communication pat-
terns and thus evade the present detection mechanism of
PeerShark. Authors in [38] argue on a similar case by
building a botnet with Skype and validate their assertions
with simulations.
Furthermore, assume the case of a peer A which is

engaged in P2P file sharing with a benign peer B, but
is also covertly a part of a botnet and is engaged in
exchanging command-and-control with a malicious peer
C. PeerShark will see these as two conversations, namely
A to B and A to C. Since PeerShark regards a conver-
sations as ‘malicious’ even if either of the IPs (source or
destination) is malicious, A to C is identified as ‘malicious’
without hesitation. But since the conversation between A

and B also involves one malicious peer (namely A), this
conversation will also be tagged as ‘malicious’. Although
it is a limitation on the part of PeerShark to regard that
peer B is engaged in a malicious conversation, it is not a
serious shortcoming. Since peer B is, as a matter of fact,
conversing with a peer which has been compromised, it
runs high risk of being infected in the future. Thus, raising
an alarm for conversations between A and B (apart from
those between A and C) is not completely unwarranted.
Finally, as described in the packet filtering module

(Section 4), PeerShark discards all packets having a zero
payload. This was necessary to remove corrupted packets
and sanitize the network traces obtained from authors in
[24]. However, such an approach has an inherent draw-
back of dropping all legitimate packets with zero payload,
such as TCP connection establishment (SYN) packets. It
can be exploited by an active adversary who may use zero
payload TCP packets (SYN or ACK packets) to exchange
simple commands between bots.

6.2 A note onmulti-class classification
In the preliminary version of our work [32], we had
attempted a multi-class classification approach which
could categorize the exact P2P application running on a
host. Initially, we attempted multi-class classification for
this work as well. The detection accuracy and false pos-
itive rate for P2P botnets was nearly the same as that
of binary classification approach. However, within the
benign P2P applications, we saw a false positive rate of
2% to 10%. Although in terms of percentage, the false
positive rate is not high, it comes up to thousands of con-
versations in terms of the actual number of conversations.
In particular, we saw many misclassified conversations
between Vuze and Frostwire. Such misclassification may
be attributed the fact that the majority of our benign
P2P data consists of ‘torrent’ based applications. uTorrent,
Vuze, and Frostwire are all ‘torrent’ based (while eMule
is not). Thus, it is quite natural that conversations of one
torrent-based app were misclassified as that of another.
However this distribution is representative of the real
world where the share of P2P in Internet traffic is dying,
and BitTorrent is the only aspect of P2P which continues
to dominate [6].
New P2P botnets continue to be seen every year. Many

of these are just variants or ‘tweaks’ of older ones. For

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 11 of 12
http://jis.eurasipjournals.com/content/2014/1/15

example, Citadel used a tweaked variant of Zeus [12]. A
multi-class approach will only be able to correctly classify
those botnets for which it has been trained. It will either
miss new variants or call them as ‘unknown’ (as in [24]).
Rather than calling a variant of an old botnet as ‘unknown’,
we find a binary classification approach more suitable.
Further, since a multi-class or binary-class approach had
little impact on the detection accuracy of P2P botnets, we
decided to go in favor of a simpler and intuitive binary
approach.
However, in a specific case where a network administra-

tor needs to profile the exact P2P application running on
a host, multi-class classification is the only solution. For
the interested reader, we briefly share our experimental
findings in this regard with respect to Gaussian mixture
models (GMMs) [39]. In the flow-clustering phase elabo-
rated previously, we explained the use X-means algorithm,
which is a variant of K-means for the purpose of clus-
tering flows. X-means reported four clusters in the data,
which corresponded to the four benign P2P applications.
As noted earlier, this was quite natural since more than
90% of the flows belong to P2P applications. Moreover,
we also got large false positives amongst the benign P2P
applications, indicating that their data points lie in over-
lapping clusters. GMMs are a natural choice in such cases
since they are well known for clustering problems involv-
ing overlapping clusters. We repeated the flow-clustering
experiments with the entire dataset (all eight applica-
tions) using GMMs with the optimization approach of
expectation-maximization (EM) [40]. The flow-clustering
phase with GMMs generated seven clusters for the eight
applications, with each application except Storm having a
cluster where it was dominantly present (clusters of Storm
and Waledac overlapped). However, we observed that
GMMs with EM is an extremely slow clustering approach.
X-means outperforms GMMs by hundreds of times. X-
means did not require number of clusters as an input,
whereas GMMs with EM does. Thus, we did not find it
suitable for PeerShark. Since this approach is not the
mainstay of PeerShark, we do not spend more time on
it. But an interested reader can leverage from the ability of
GMMs and EM to separate overlapping clusters.

7 Conclusions
In this paper, we presented our system PeerShark,
which uses a ‘best of both worlds’ approach by combining
flow-based and conversation-based approaches to accu-
rately segregate P2P botnets from benign P2P applications
in network traffic. PeerShark clusters flows based on
statistical features obtained from their network behavior
and then creates conversations between the flows in the
same cluster. Using several statistical features extracted
from each conversation, we build supervised machine
learning models to separate P2P botnets from benign P2P

applications. With the models built on three classifiers,
PeerShark could consistently detect P2P botnets with a
true positive rate (or recall) ranging between 88% to 95%
and achieved a low false positive rate of 0.2% to 0.3%.
PeerShark could also detect unseen and unknown P2P
botnet traffic with high accuracy.
As a part of work in progress, we are extending our

approach with a distributed model for data collection
where data collectors sit closer to the nodes inside the
network (say at wi-fi access points). This will give greater
visibility of the network traffic which occurs over LAN
and never touches the backbone router of an enterprise.
Such insight can be very valuable for detecting P2P bots
inside a network perimeter which try to evade detection
by maintaining connectivity with each other over LAN in
a P2P fashion and limit the conversations with the out-
side world via one or two designated peers only (as seen in
Stuxnetc).

Endnotes
aSkype has now moved to a cloud-based architecture

[41].
bPersonal communication with Babak Rahbarinia

(November 2013) [24] w.r.t Storm, Waledac and Zeus.
cSee [42] for details.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported by grant number 12(13)/2012-ESD for scientific
research under Cyber Security area from the Department of Information
Technology, Govt. of India, New Delhi, India.

Author details
1BITS-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
2University of Illinois at Chicago, Chicago, IL 60607, USA.

Received: 11 August 2014 Accepted: 12 September 2014

References
1. Ipoque Internet study 2008/2009. http://www.ipoque.com/en/resources/

internet-studies. Accessed 4 Jan 2014
2. S Androutsellis-Theotokis, D Spinellis, A survey of peer-to-peer content

distribution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)
3. P Kopiczko, W Mazurczyk, K Szczypiorski, Stegtorrent: a steganographic

method for the p2p file sharing service, in Proceedings of the 2013 IEEE
Security and PrivacyWorkshops (SPW ’13) (IEEE Computer Society
Washington, DC, USA, 2013), pp. 151–157

4. R-A Shang, Y-C Chen, P-C Chen, Ethical decisions about sharing music
files in the p2p environment. J. Bus. Ethics. 80(2), 349–365 (2008)

5. T Isdal, M Piatek, A Krishnamurthy, T Anderson, Privacy-preserving p2p
data sharing with oneswarm, in Proceedings of the ACM SIGCOMM 2010
Conference, vol. 40 (ACM New York, NY, USA, 2010), pp. 111–122

6. Sandvine Global Internet Phenomena Report 2013. https://www.
sandvine.com/trends/global-internet-phenomena/. Accessed 4 Jan 2014

7. J Buford, H Yu, EK Lua, P2P Networking and Applications. (Morgan
Kaufmann Publishers Inc., San Francisco, 2008)

8. C Kanich, N Weavery, D McCoy, T Halvorson, C Kreibichy, K Levchenko, V
Paxson, GM Voelker, S Savage, Show me the money: characterizing
spam-advertised revenue, in Proceedings of the 20th USENIX Conference on
Security, (SEC’11) (USENIX Association Berkeley, CA, USA, 2011), pp. 15–15

http://www.ipoque.com/en/resources/internet-studies
http://www.ipoque.com/en/resources/internet-studies
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/

Narang et al. EURASIP Journal on Information Security 2014, 2014:15 Page 12 of 12
http://jis.eurasipjournals.com/content/2014/1/15

9. Microsoft Security Intelligence Report, Volume 9, January-June 2010.
http://www.microsoft.com/security/sir/. Accessed 1 Feb 2014

10. C Rossow, D Andriesse, T Werner, B Stone-Gross, D Plohmann, CJ Dietrich,
H Bos, Sok: P2PWNED - modeling and evaluating the resilience of
peer-to-peer botnets, in Security and Privacy (SP), 2013 IEEE SymposiumOn
(IEEE Computer Society Washington, DC, USA, 2013), pp. 97–111

11. D Fisher, 88 percent of Citadel botnets down. http://threatpost.com/
microsoft-88-percent-of-citadel-botnets-down/101503. Accessed 9 Jan
2014

12. D Drinkwater, Gameover trojan rises from the dead. http://www.
scmagazineuk.com/gameover-trojan-rises-from-the-dead/article/
357964/. Accessed 20 Jul 2014

13. T Greene, ZeuS botnet has a new use: stealing bank access codes via SMS.
http://www.networkworld.com/news/2010/092910-zeus-botnet-sms-
banks.html. Accessed 9 Jun 2013

14. J Stewart, Storm worm DDoS attack. http://www.secureworks.com/
cyber-threat-intelligence/threats/storm-worm/. Accessed 1 Feb 2014

15. A Lelli, Waledac botnet back on rise. http://www.symantec.com/connect/
blogs/return-dead-waledacstorm-botnet-back-rise. Accessed 1 Feb 2014

16. J Leyden, Fridge hacked. Car hacked. Next up, your light bulbs. http://
www.theregister.co.uk/2014/07/07/wifi_enabled_led_light_bulb_is_
hackable_shocker/. Accessed 12 Jul 2014

17. S Sen, O Spatscheck, D Wang, Accurate, scalable in-network identification
of p2p traffic using application signatures, in Proceedings of the 13th
International Conference onWorldWideWeb (WWW ’04) (ACM New York,
NY, USA, 2004), pp. 512–521

18. J Li, S Zhang, Y Lu, J Yan, Real-time p2p traffic identification, in Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008 (IEEE, USA,
2008), pp. 1–5

19. M Iliofotou, H-C Kim, M Faloutsos, M Mitzenmacher P Pappu, G Varghese,
Graph-based p2p traffic classification at the internet backbone, in
Proceedings of the 28th IEEE International Conference on Computer
CommunicationsWorkshops (INFOCOM’09) (IEEE Press Piscataway, NJ, USA,
2009), pp. 37–42

20. G Gu, R Perdisci, J Zhang, W Lee, Botminer: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. (USENIX
Association, Berkeley, CA, USA, 2008), pp. 139–154

21. J François, S Wang, R State, T Engel, Bottrack: tracking botnets using
netflow and pagerank, in Proceedings of the 10th International IFIP TC 6
Conference on Networking - Volume Part I NETWORKING’11 (Springer Berlin,
Heidelberg, 2011), pp. 1–14

22. H Hang, X Wei, M Faloutsos, T Eliassi-Rad, Entelecheia: detecting p2p
botnets in their waiting stage, in IFIP Networking Conference, 2013 (IEEE
USA, 2013), pp. 1–9

23. R Schoof, R Koning, Detecting Peer-to-peer Botnets. University of
Amsterdam (2007). University of Amsterdam. Technical report

24. B Rahbarinia, R Perdisci, A Lanzi, K Li, Peerrush: mining for unwanted p2p
traffic, in Detection of Intrusions andMalware, and Vulnerability Assessment
(Springer Berlin, Heidelberg, 2013), pp. 62–82

25. P Narang, JM Reddy, C Hota, Feature selection for detection of
peer-to-peer botnet traffic, in Proceedings of the 6th ACM India Computing
Convention (Compute ’13) (ACM New York, NY, USA, 2013), pp. 16:1–16:9

26. J Zhang, R Perdisci, W Lee, U Sarfraz, X Luo, Detecting stealthy p2p botnets
using statistical traffic fingerprints, in Proceedings of the 2011 IEEE/IFIP 41st
International Conference on Dependable Systems & Networks (DSN ’11) (IEEE
Computer Society Washington, DC, USA, 2011), pp. 121–132

27. J Zhang, R Perdisci, W Lee, X Luo, U Sarfraz, Building a scalable system for
stealthy p2p-botnet detection. IEEE Trans. Inf. Forensics Security.
9(1), 27–38 (2014)

28. T-F Yen, MK Reiter, Are your hosts trading or plotting? Telling p2p
file-sharing and bots apart, in Proceedings of the 2010 30th International
Conference on Distributed Computing Systems (ICDCS ’10) (IEEE Computer
Society Washington, DC, USA, 2010), pp. 241–252

29. T Karagiannis, K Papagiannaki, M Faloutsos, Blinc: multilevel traffic
classification in the dark, in SIGCOMMComput. Commun. Rev., vol. 35 (ACM
New York, NY, USA, 2005), pp. 229–240

30. T Karagiannis, A Broido, M Faloutsos, K Claffy, Transport layer identification
of p2p traffic, in Proceedings of the 4th ACM SIGCOMMConference on
Internet Measurement (IMC ’04) (ACM New York, NY, USA, 2004),
pp. 121–134

31. L Li, S Mathur, B Coskun, Gangs of the internet: towards automatic
discovery of peer-to-peer communities, in Communications and Network
Security (CNS), 2013 IEEE Conference On (IEEE USA, 2013), pp. 64–72

32. P Narang, S Ray, C Hota, VN Venkatakrishnan, Peershark: detecting
peer-to-peer botnets by tracking conversations, in Proceedings of the 2014
IEEE Security and PrivacyWorkshops (SPW’14) (IEEE Computer Society
Washington, DC, USA, 2014). in press

33. MM Masud, J Gao, L Khan, J Han, B Thuraisingham, Mining
concept-drifting data stream to detect peer to peer botnet traffic (2008).
Univ. of Texas at Dallas Technical Report# UTDCS-05- 08

34. D Pelleg, AW Moore, X-means: extending k-means with efficient
estimation of the number of clusters, in Proceedings of the Seventeenth
International Conference onMachine Learning (ICML ’00) (Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 2000), pp. 727–734

35. M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten, The
WEKA data mining software: an update. ACM SIGKDD Explor. Newslett.
11(1), 10–18 (2009)

36. D Fisher, Storm, Nugache lead dangerous new botnet barrage. http://
searchsecurity.techtarget.com/news/1286808/Storm-Nugache-lead-
dangerous-new-botnet-barrage. Accessed 20 Jul 2014

37. S Stover, D Dittrich, J Hernandez, S Dietrich, Analysis of the storm and
nugache trojans: p2p is here. USENIX; login. 32(6), 18–27 (2007)

38. A Nappa, A Fattori, M Balduzzi, M Dell’Amico, L Cavallaro, Take a deep
breath: a stealthy, resilient and cost-effective botnet using skype, in
Detection of Intrusions andMalware, and Vulnerability Assessment (Springer
Berlin, Heidelberg, 2010), pp. 81–100

39. D Reynolds Gaussian mixture models, in Encyclopedia of Biometrics, ed. by
S Li, A Jain (Springer, 2009), pp. 659–663

40. TK Moon, The expectation-maximization algorithm. IEEE Signal
Processing Mag. 13(6), 47–60 (1996)

41. M Gillett, Skype’s cloud-based architecture. http://blogs.skype.com/2012/
07/26/what-does-skypes-architecture-do/. Accessed 3 Jul 2014

42. LO Murchu, Stuxnet P2P component. http://www.symantec.com/
connect/blogs/stuxnet-p2p-component. Accessed 12 Feb 2014

doi:10.1186/s13635-014-0015-3
Cite this article as: Narang et al.: PeerShark: flow-clustering and
conversation-generation for malicious peer-to-peer traffic identification.
EURASIP Journal on Information Security 2014 2014:15.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.microsoft.com/security/sir/
http://threatpost.com/microsoft-88-percent-of-citadel-botnets-down/101503
http://threatpost.com/microsoft-88-percent-of-citadel-botnets-down/101503
http://www.scmagazineuk.com/gameover-trojan-rises-from-the-dead/article/357964/
http://www.scmagazineuk.com/gameover-trojan-rises-from-the-dead/article/357964/
http://www.scmagazineuk.com/gameover-trojan-rises-from-the-dead/article/357964/
http://www.networkworld.com/news/2010/092910-zeus-botnet-sms-banks.html
http://www.networkworld.com/news/2010/092910-zeus-botnet-sms-banks.html
http://www.secureworks.com/cyber-threat-intelligence/threats/storm-worm/
http://www.secureworks.com/cyber-threat-intelligence/threats/storm-worm/
http://www.symantec.com/connect/blogs/return-dead-waledacstorm-botnet-back-rise
http://www.symantec.com/connect/blogs/return-dead-waledacstorm-botnet-back-rise
http://www.theregister.co.uk/2014/07/07/wifi_enabled_led_light_bulb_is_hackable_shocker/
http://www.theregister.co.uk/2014/07/07/wifi_enabled_led_light_bulb_is_hackable_shocker/
http://www.theregister.co.uk/2014/07/07/wifi_enabled_led_light_bulb_is_hackable_shocker/
http://searchsecurity.techtarget.com/news/1286808/Storm-Nugache-lead-dangerous-new-botnet-barrage
http://searchsecurity.techtarget.com/news/1286808/Storm-Nugache-lead-dangerous-new-botnet-barrage
http://searchsecurity.techtarget.com/news/1286808/Storm-Nugache-lead-dangerous-new-botnet-barrage
http://blogs.skype.com/2012/07/26/what-does-skypes-architecture-do/
http://blogs.skype.com/2012/07/26/what-does-skypes-architecture-do/
http://www.symantec.com/connect/blogs/stuxnet-p2p-component
http://www.symantec.com/connect/blogs/stuxnet-p2p-component

	Abstract
	Keywords

	Introduction
	Background and related work
	Background
	Related work

	System design
	System overview
	Flow-clustering phase
	Conversation-generation phase

	Design choices and implementation details
	Data
	Packet filtering module
	Flow creation module
	Flow clustering module
	Conversation generation module

	Results and evaluation
	Training and testing datasets
	Classifiers
	Evaluation metrics
	Testing on unseen data

	Discussion
	Possible evasions
	A note on multi-class classification

	Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	Author details
	References

