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An automatic video-object oriented steganographic system is proposed for biometrics authentication over error-prone networks.
Initially, the host video object is automatically extracted through analysis of videoconference sequences. Next, the biometric pattern
corresponding to the segmented video object is encrypted by a chaotic ciphermodule. Afterwards, the encrypted biometric signal is
inserted to themost significant wavelet coefficients of the video object, using its qualified significant wavelet trees (QSWTs). QSWTs
provide both invisibility and significant resistance against lossy transmission and compression, conditions that are typical in error
prone networks. Finally, the inverse discrete wavelet transform (IDWT) is applied to provide the stego-object. Experimental results
under various losses and JPEG compression ratios indicate the security, robustness, and efficiency of the proposed biometrics
hiding system.

1. Introduction

Person authentication is one of the most important issues in
contemporary societies. It ensures that a system’s resources
are not obtained fraudulently by illegal users. Real-life
physical transactions are generally accomplished using paper
ID while electronic transactions are based on password
authentication, the most simple and convenient authenti-
cation mechanism over insecure networks. In [1], a remote
password authentication scheme was proposed by employing
a one-way hash function, which was later used for designing
the famous S/KEY one-time password system [2]. However,
in such schemes, a verification table should be maintained
on the remote server in order to validate the legitimacy
of the requesting users; if intruders break into the server,
they can modify the verification table. Therefore, many
password authentication schemes [3–7] have recognized this
problem, and different solutions have been proposed to avoid
verification tables.

One very popular solution is based on cryptographic
keys, which are long and random (e.g., 128 bits for the
Advanced Encryption Standard [8]), thus it is difficult to

memorize. As a result, these keys are stored somewhere (e.g.,
on a server or smart card) and they are released based on
some alternative authentication mechanism (e.g., password).
However, several passwords are simple and they can be easily
guessed (especially based on social engineering methods) or
broken by simple dictionary attacks [9]. In this case, user
protection is only as secure as the password (weakest link)
used to release the correct decrypting key for establishing
user authenticity. Simple passwords are easy to guess;
complex passwords are difficult to remember, and some
users tend to “store” complex passwords at easily accessible
locations. Furthermore, most people use the same password
across different applications; if a malicious user determines a
single password, they can access multiple applications.

Many of these password-based authentication problems
can be confronted by the incorporation of biometrics [10,
11]. Biometrics authentication refers to establishing identity
based on the physical and/or behavioral characteristics of
a person such as face, fingerprint, hand geometry, iris,
voice, way of walking, and so forth. Biometric systems offer
several advantages over traditional password-based schemes.
They are inherently more reliable, since biometric traits
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cannot be lost or forgotten, they are more difficult to forge,
copy, share, and distribute, and they require the person
being authenticated to be present at the time and point
of authentication. Thus, a biometrics-based authentication
scheme is a powerful alternative to traditional systems, and it
can be easily combined with password techniques to enhance
the offered security.

In order to further promote the wide spread utilization
of biometric techniques to applications over error prone
networks, increased security and especially robustness of
the biometric data is necessary. Towards this direction,
proper combination of encryption and steganography can
achieve this goal. In particular, cryptographic algorithms
can scramble biometric signals so that they cannot be
understood. In a real-world scenario, encryption can be
applied to the biometric signals for increasing security; the
templates that can reside in either a central database or a
token (e.g., smart card, or a biometric-enabled device such as
a cellular phone with a fingerprint sensor), can be encrypted
after enrollment. During authentication, these encrypted
templates can be decrypted and used for generating the
matching result with the biometric data obtained online.
As a result, the encrypted templates are secured since they
cannot be utilized or modified without decrypting them
with the correct key, which is typically secret. On the other
hand, steganographic methods can hide encrypted biometric
signals so that they cannot be seen, hence, reducing the
chances of illegal modifications. Generally, steganography
utilizes typical digital media such as text, images, audio, or
video files as a carrier (called a host or cover signal) for hiding
private information in such a way that unauthorized parties
cannot detect or even notice its presence [12].

Several steganographic algorithms have been proposed in
the literature, most of which are performed in pixel domain,
where more capacity [13] is provided. Many of the existing
approaches are based on least significant bit (LSB) insertion,
where the LSBs of the cover file are directly changed with
message bits. Examples of LSB schemes can be found in
[14, 15]. However, LSB methods are vulnerable to extraction
[16, 17], and they are very sensitive to image manipulations.
For example, converting an image from BMP to JPEG
and then back would destroy the hidden information [16].
Furthermore, if an enciphered message is LSB-embedded
and transmitted over a mobile network, then it may not be
possible to decipher it, even in case of little losses.

On the other hand, a limited number of methods to
confront these problems have been proposed. In [18], spread
spectrum image steganography (SSIS) was introduced. The
SSIS incorporated the use of error control codes to correct
the large number of bit errors. In [19], the message is hidden
in the sign/bit values of insignificant children of the detail
subbands, in nonsmooth regions of the image. Using this
technique, steganographic messages can be sent in lossy
environments, with some robustness against detection or
attack. However, low losses are considered, and the prob-
lem of compression remains. A very interesting approach
is proposed in [20]. The message is comprised of two
components: a soft-authenticator watermark for authenti-
cation and tamper assessment of the given image, and a

chrominance watermark employed to improve the efficiency
of compression. The approach is implemented as a DCT-
DWT dual domain, but, unfortunately, the authenticator
watermark is not encrypted, making it possible to extract
it.

There are also some schemes focusing on steganography
of biometric signals. In [21], an amplitude modulation-
based steganographic scheme is proposed, which, however,
is not tested under compression or lossy transmission. In
[22], a wavelet-based steganographic method for minutiae
embedding is proposed. Nevertheless, if opponents know
the embedding algorithm, they can easily extract the hidden
information. In [23], fingerprints are hidden in the region
of interest of images. Both DFT and DWT domains are
examined. However, again, no encryption is incorporated,
thus it is easy to extract the hidden fingerprints. Another
interesting, but not resistant to compression, method is
proposed in [24], where a remote multimodal biometrics
authentication framework that works on the basis of fragile
watermarking is designed. Finally, in [25], a DCT-SVD-
based watermarking scheme is proposed for ownership
protection using biometrics. The scheme is not tested under
compression or lossy transmission.

In order to confront the problem of user authentica-
tion, in this paper, we propose an efficient wavelet-based
steganographic method for biometric signals hiding in video
objects, which focuses on optimizing the authentication rate
of hidden biometric data over error prone transmissions.
Interesting techniques for object-oriented data hiding have
been presented in the literature, for example [26, 27],
however, most of them do not particularly consider the case
of biometric data. Thus the main contributions and novelties
of the proposed system are as follows. (a) It is one of the
first to use video objects to hide their respective biometrics.
By this way “dual” authentication is accomplished, the
first by visual perception of the figured person, and the
second by extraction and matching of the hidden pattern.
(b) Biometric signals are encrypted before hiding, using a
fast chaotic method. The statistical properties of this novel
combination are analyzed and presented. (c) A DWT-based
algorithm is adapted for biometrics hiding. In contrast to
most steganographic algorithms that are capacity-efficient,
the proposed algorithm is very robust to several types of
signal distortions. Even though it has been incorporated in
a limited number of watermarking schemes, its stegano-
graphic potential has not been examined. (d) Resistance of
steganographic biometrics systems to signal distortions has
not been sufficiently investigated in the literature, a topic
that is extensively considered in this paper. By this way, the
proposed scheme contributes to illustrate the perspective
of encrypted biometrics authentication systems over error
prone networks.

In particular, in the proposed system, the biometric
signal is initially enciphered using a chaotic pseudorandom
bit generator and a chaos-driven cipher, based on mixed
feedback and time-variant S-boxes. The use of a chaos-based
cryptographic module is justified by the following facts.
(a) Chaos presents many desired cryptographic qualities,
such as sensitivity to initial conditions, a feature that is
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Figure 1: An overview of the proposed system.

very important to an encryption scheme, (b) a chaotic
pseudo-random bit generator works very well as a one-time
pad generator [28, 29], and one-time pads have been proven
to be information-theoretically secure, (c) implementations
of popular public key encryption methods, such as RSA or
El Gamal cannot provide suitable encryption rates, while
security of these algorithms relies on the difficulty of quickly
factorizing large numbers or solving the discrete logarithm
problem, topics that are seriously challenged by recent
advances in number theory and distributed computing and
(d) private-key bulk encryption algorithms such as Triple
DES or Blowfish, similarly to chaotic algorithms, are more
suitable for transmission of large amounts of data. However,
due to the complexity of their internal structure, they are not
particularly fast in terms of execution speed and cannot be
concisely and clearly explained, so as to enable detection of
cryptanalytic vulnerabilities.

After encryption, a videoconference image, containing
the owner of the biometric signal, is analyzed, and the host
video object (VO) is automatically extracted based on the
method proposed in [30]. Next, a DWT-based algorithm
is proposed for hiding the encrypted biometric signal to
the host video object. The proposed algorithm hides the
encrypted information into the largest-value qualified signif-
icant wavelet trees (QSWTs) of energy-efficient pairs of sub-
bands. Compared to other related schemes, the incorporated
approach has the following advantages [31]. (a) It is one
of the most efficient algorithms of the literature that better
support robust hiding of visually recognizable patterns, (b) it
is hierarchical and has multiresolution characteristics, (c) the
embedded information is hard to detect by the human visual
system (HVS), and (d) it is among the best known techniques
with regards to survival of hidden information after image
compression.

More specifically, initially the extracted host object is
decomposed into two levels by the separable 2-D wavelet

transform, providing three pairs of subbands (HL2, HL1),
(LH2, LH1), and (HH2, HH1). Afterwards, the pair of
subbands with the highest energy content is detected, and
a QSWTs approach is incorporated [32] in order to select
the coefficients where the encrypted biometric signal should
be casted. Finally, the signal is redundantly embedded
to both subbands of the selected pair, using a nonlinear
energy-adaptable insertion procedure. Differences between
the original and the stego-object are imperceptible to the
HVS while biometric signals can be retrieved even under
compression and transmission losses. Experimental results
exhibit the efficiency and robustness of the proposed scheme,
an overview of which is provided in Figure 1.

The rest of this paper is organized as follows. In Section 2,
a short description of QSWTs together with the essential
definitions is provided. In Section 3, the chaotic encryption
scheme is analyzed while Section 4 discusses the proposed
biometrics hiding method. Experimental results are given in
Sections 5 and 6 concludes this paper.

2. Qualified SignificantWavelet Trees (QSWTs)

By applying the DWT once to an image, four parts of high,
middle, and low frequencies (i.e., LL1, HL1, LH1, HH1) are
produced, where subbands HL1, LH1, and HH1 contain the
finest scale wavelet coefficients. The next coarser scale wavelet
coefficients can be obtained by decomposing and critically
subsampling subband LL1. This process can be repeated
several times, based on the specific application. Furthermore,
the original image can be reconstructed using the IDWT.
In the proposed biometrics hiding scheme, coefficients
with local information in the subbands are chosen as the
target coefficients for inserting a fingerprint image. The
coefficients’ selection is based on the QSWT derived from
EZW [33], and the basic definitions follow.
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Firstly, a parent-child relationship is defined between
wavelet coefficients at different scales, corresponding to the
same location. Excluding the highest frequency subbands
(i.e., HL1, LH1, and HH1), every coefficient at a given scale
can be related to a set of coefficients at the next finer scale
of similar orientation. The coefficient at the coarse scale
is called the parent, and all coefficients corresponding to
the same spatial location at the next finer scale of similar
orientation are called children. For a given parent, the set
of all coefficients at all finer scales of similar orientation
corresponding to the same location are called descendants.

Definition 1. A wavelet coefficient xn(i, j) ∈ D is a parent
of xn−1(p, q), where D is a subband labeled HLn, LHn, HHn,
p = i ∗ 2 − 1 | i ∗ 2, q = j ∗ 2 − 1 | j ∗ 2, n > 1, i > 1 and
j > 1.

Definition 2. If a wavelet coefficient xn(i, j) at the coarsest
scale and its descendants xn−k(p, q) satisfy |xn(i, j)| < T ,
|xn−k(p, q)| < T , for a given threshold T, then they are called
wavelet zerotrees, where 1 < k < n.

Definition 3. If a wavelet coefficient xn(i, j) at the coarsest
scale satisfy |xn(i, j)| > T , for a given threshold T, then
xn(i, j) is called a significant coefficient.

Definition 4. If a wavelet coefficient xn(i, j) ∈ D at the
coarsest scale is a parent of xn−1(p, q), where D is a subband
labeled HLn, LHn, HHn, satisfy |xn(i, j)| > T1, |xn−1(p, q)| >
T2 for given thresholds T1 and T2, then xn(i, j) and its
children are called a QSWT.

3. The Chaotic Encryption Scheme

Since the process of hiding secret content within host files
does not provide maximum security, in this paper each bio-
metric signal is initially encrypted before hiding. Encryption
is achieved by the proposed chaotic cryptographic module,
an overview of which is given in Figure 2. The subsystem
consists of a chaotic pseudo-random bit generator and a
chaos-based cipher module. Details are provided in the
following subsections.

3.1. Keys Generation Based on C-PRBG. In most secure
cryptographic schemes, the security of the encrypted content
mainly depends on the size of the key. In our system, for
each biometric signal a different key is used, which has a

size of 256 bits, leading to a symmetric cipher. Each key
is generated by a chaotic pseudo-random bit generator (C-
PRBG). C-PRBGs based on a single chaotic system can be
insecure, since the produced pseudorandom sequence may
expose some information about the employed chaotic system
[34]. For this reason, in this paper, we propose a PRBG
based on a triplet of chaotic systems, which can provide
higher security than other C-PRBGs [35], as three chaotic
systems are employed. The basic idea of the C-PRBG is to
generate pseudo-random bits by mixing three different and
asymptotically independent chaotic orbits.

Towards this direction, let F1(x1, p1), F2(x2, p2) and
F3(x3, p3), be three different 1-D chaotic maps:

x1(i + 1) = F1
(
x1(i), p1

)
,

x2(i + 1) = F2
(
x2(i), p2

)
,

x3(i + 1) = F3
(
x3(i), p3

)
,

(1)

where p1, p2, and p3 are control parameters, x1(0), x2(0),
and x3(0) are initial conditions and {x1(i)}, {x2(i)}, {x3(i)}
denote the three chaotic orbits. Then a pseudo-random bit
sequence can be defined as

k(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, F3
(
x1(i), p3

)
> F3

(
x2(i), p3

)

k(i− 1), F3
(
x1(i), p3

) = F3
(
x2(i), p3

)

0, F3
(
x1(i), p3

)
< F3

(
x2(i), p3

)
.

(2)

According to this scheme, the generation of each bit of a key
is controlled by the orbit of the third chaotic system, having
as initial conditions the outputs of the other two chaotic
systems.

3.2. The Encryption Module. After generating a pseudo-
random key for each biometric signal, the cipher module is
activated. Before encryption, the samples of each biometric
signal are properly ordered. In case of 1-D signals (e.g.,
voice), the order is the same as the sequence of samples while
in 2-D signals (e.g., fingerprint image) pixels are scanned
from top-left to bottom-right, providing plaintext pixels
Pi. Next, we take into consideration the fact that multiple
iterations of chaotic functions lead to slow ciphers while
a small number of iterations may raise security problems,
so that the encryption algorithm is both fast and secure
[35]. In order to make possible a single iteration of the
chaotic systems while maintaining high security standards,
the proposed scheme combines a simple chaotic stream
cipher and two simple chaotic block ciphers (with time
variant S-boxes) to implement a complex product cipher.

Considering Figure 2, the operation of the cipher module
can be described as follows: assume that Pi and Ci represent
the ith plaintext and ith ciphertext samples, respectively,
(both in n-bit formats). Then the encryption procedure is
defined by

Ci = fS
({

fS(Pi, i)⊕ xi
}
, i
)
, (3)
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t = 0
QSWT[t] = ∅
For i = 1 to NP2

For j = 1 to MP2 /∗MP2 ×NP2 is the size of subband LH2
∗/

If x2(i, j) ≥ T1

If {x1(2∗ i− 1, 2∗ j − 1) ≥ T2 and x1(2∗ i− 1, 2∗ j) ≥ T2

And x1(2∗ i, 2∗ j − 1) ≥ T2 and x1(2∗ i, 2∗ j) ≥ T2}
or {[x1(2∗ i− 1, 2∗ j − 1) + x1(2∗ i− 1, 2∗ j) + x1(2∗ i, 2∗ j − 1) + x1(2∗ i, 2∗ j)]/4 ≥ T2}
QSWT[t] = {x2(i, j), x1(2∗ i− 1, 2∗ j − 1), x1(2∗ i− 1, 2∗ j), x1(2∗ i, 2∗ j − 1), x1(2∗ i, 2∗ j)}

t = t + 1
End If

End If
End For j

End For i

Algorithm 1: Algorithm for QSWTs detection.

where symbol ⊕ represents the XOR function, fS(·, i)
are time-variant n × n S-boxes (bijections defined on
{0, 1, . . . , 2n − 1}) and xi is produced from the states of
three chaotic functions. Here, the fS are also pseudorandomly
controlled by the chaotic functions. The secret key provides
the initial conditions and control parameters of the employed
chaotic systems. The increased complexity of the proposed
cipher against possible attacks is due to the mixed feedback
(internal and external): fS(Pi, i) at FB1, fS(Pi, i) ⊕ xi at FB2

and ciphertext feedback Ci at FB3, which lead the cipher to
acyclic behavior.

The procedure is terminated after all ordered signal sam-
ples are enciphered, providing the final encrypted biometric
signal. This encrypted signal is then used by the hiding
module.

3.3. The DecryptionModule. The decryptionmodule receives
at its input a vector of enciphered signal samples, the initial
control parameters and initial conditions for the triplet of
chaotic maps (C-PRBG module), and the initial cipher value
C0 (used at the first feedback).

Afterwards, the digital chaotic systems produce the
same specific values used during encryption, but now for
decryption purposes. The procedure is terminated after the
final sample is decrypted and all decrypted samples are
reordered (in case of 2D signals), to provide the initial
biometrics signal.

4. The Proposed Biometrics HidingMethod

In the proposed biometrics hiding method, one of the initial
steps includes detection of the QSWTs for a pair of subbands
of the host video object. Towards this direction, let us assume
that the host video object is decomposed into two levels
using the DWT to provide three pairs of subbands: P1 :
(HL2,HL1, P2 : (LH2, LH1), and P3 : (HH2,HH1). In
this paper, and after extensive experimentation, just two
levels are used, where 1 to 4 levels’ decomposition has
been examined. According to our findings, the best tradeoff
between complexity and robustness was provided for 2 levels.

Next, in the proposed scheme, the selected pair contains
the highest energy content compared to the other two pairs,
that is: select Pi : EPi = max(EP1,EP2,EP3), where

EPk =
MPk∑

i=1

NPk∑

j=1

[
x2
(
i, j
)]2 +

2MPk∑

p=1

2NPk∑

q=1

[
x1
(
i, j
)]2, k = 1, 2, 3

(4)

with x2(i, j) ∈ R, R = {HL2 LH2,HH2}, x1(p, q) ∈ S, S =
{HL1,LH1,HH1}, and MPk × NPk is the size of one of the
subbands at level 2.

4.1. The Hiding Strategy. After selecting the pair of subbands
containing the highest energy content, QSWTs are found for
this pair, and the encrypted biometric signal is embedded
by modifying the values of the detected QSWTs. Let us
assume, without loss of generality, that pair P2 : (LH2,LH1)
is selected. Initially, the threshold values of each subband are
estimated as

T1 = 1
NP2 ∗MP2

∗
MP2∑

i=1

NP2∑

j=1

(
x2
(
i, j
))
, x2

(
i, j
) ∈ LH2

T2 = 1
2NP2 ∗ 2MP2

∗
2MP2∑

p=1

2NP2∑

q=1

(
x1
(
i, j
))
, x1

(
i, j
) ∈ LH1.

(5)

Next, the QSWTs are detected according to Algorithm 1.
Afterwards, summation of the coefficients of QSWT[i]

for i = 0 to t is calculated, and if the encrypted biometric
signal is of size a × b (in case of 2-D signals), then the top
a × b QSWTs (based on the summation results) are selected
for embedding the signal. For this reason, initially, the gray
level values of the encrypted biometric signal are sorted in
descending order, producing a gray-levels vector. Then for
i = 1 to a× b the coefficients w(k, l) of the gray-levels matrix
are embedded as follows:

x′2
(
i, j
) = x2

(
i, j
)∗ (1 + c2 ∗w(k, l)), (6)
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where x2(i, j) ∈ LH2, c2 is a scaling constant that balances
unobstructedness and robustness, and x′2(i, j) is a coefficient
of the LH2 subband of the stego-object. This nonlinear
insertion procedure is similar to [36] and adapts the message
to the energy of each wavelet coefficient. Thereby, when
x2(i, j) is small, the embedded message energy is also small
to avoid artifacts while when x2(i, j) is large, the embedded
message energy is increased for robustness. Similarly, for the
coefficients of subband LH1, we have

x′1
(
i, j
) = x1

(
i, j
)∗ (1 + c1 ∗w(k, l)), (7)

where x1(i, j) = max{x1(2∗i−1, 2∗ j−1), x1(2∗i−1, 2∗ j),
x1(2∗ i, 2∗ j − 1), x1(2∗ i, 2∗ j)}.

Finally, the 2-D IDWT is applied to the modified and
unchanged subbands to form the stego-object.

4.2. Message Recovery. Considering that the stego-object (or
a distorted version of it) has reached its destination, the
encrypted biometric signal is initially extracted by following
a reverse (to the embedding method) process. Towards this
direction, let us assume that the recipient of the stego-object
has also received the size of the encrypted 2-D biometric
signal (a × b), the scaling constants (c1, c2), and possesses
the original host video object. Then the following steps are
performed in the recipient’s side.

Step 1. Initially, the received stego-object X ′ and original
video object X , which we assume that every authentication
authority could have locally stored or securely obtained for
example, from a central authentication database, are decom-
posed into two levels with seven subbands using the DWT,

Y = DWT(X)

Y′ = DWT(X ′).
(8)

Step 2. Using the size a × b, the embedded positions
are detected by following the hiding process described in
Section 4.1. Then the coefficients of subband LH2 (LH1) of
Y are subtracted from the coefficients of subband LH2 (LH1)
of Y ′, and the result is scaled down by the value of coefficient
of LH2 (LH1) of Y , multiplied by c2(c1).

For i = 1 to a× b

w(2)
i = x′(2)i − x(2)i

x(2)i ∗ c2

w(1)
i = x′(1)i − x(1)i

x(1)i ∗ c1

(9)

Step 3. The resulting hidden message coefficients w(2)
i and

w(1)
i are averaged and rearranged to provide the encrypted

biometric signal.

Step 4. The original biometric signal is recovered by decrypt-
ing the enciphered signal (see Section 3.3).

Here, it should be mentioned that if the same video
object X is used for every authentication attempt, the scheme
may become vulnerable to attacks. In order to confront this
problem, the sender and receiver may share multiple video
objects (poses) for each user. In each authentication session,
the sender may select one pose and inform the receiver of the
selected pose’s ID. This is a methodology more resistant to
attacks, which can become even more efficient if new poses
of the users are periodically collected.

5. Experimental Results

For evaluation purposes, the proposed video-objects ori-
ented biometric signals hiding scheme is examined in terms
of security and efficiency. In particular, the database of
the POLY-BIO project [37] was used, which contains more
than 1500 biometric signals, 300 of which are fingerprints.
The authentication setting, which focused on fingerprints,
was simulation-based and included three different scenarios
that are described in the following paragraphs. The general
methodology included (a) extraction of the host video
object from a videoconference image and detection of the
QSWTs to embed the encrypted signal, (b) encryption of
the fingerprint, (c) embedding of the encrypted signal to
the host video object, (d) compression of the final content
and simulated noisy transmission, (e) decompression, and
extraction of the encrypted signal, (f) decryption and (g)
authentication.

In particular, for presentation purposes the proposed,
scheme is applied to the images depicted in Figures 3(a)
and 4(a), where each frame is of size 630 × 840 pixels. The
respective 2-D fingerprint signals for these two persons are
shown in Figures 3(b) and 4(b). Their size is 106 × 90
pixels.

Initially the images are analyzed according to the method
proposed in [30], and the two extracted host video objects
are presented in Figures 3(d) and 4(d). Afterwards, the
encryption algorithm is activated for enciphering each
biometric signal. In our experiments, the three chaotic
maps that are incorporated (both in the C-PRBG module
and the cipher module) are piecewise linear chaotic maps
(PWLCMs) of the form:

F
(
x, p

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

p
x ∈ [0, p)

x − p
(
(1/2)− p

) , x ∈
[
p,

1
2

]

F
(
1− x, p

)
, x ∈

(
1
2
, 1
]
,

(10)

where 0 < P < 1/2, with initial control parameters set as
p1 = 0.15, p2 = 0.27, and p3 = 0.43. The final encrypted
biometric signals are depicted in Figures 3(c) and 4(c) (in 2-
D form). As it can be observed, the encrypted content looks
completely random and does not provide any clues relevant
to the content or minutiae distribution. In particular, this
fact is further illustrated in Figures 5(a) and 5(b), where
the histograms of Figures 3(c) and 4(c) are presented,
respectively. Both histograms approximate the histogram of
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(a) (b) (c)

(d) (e)

Figure 3: (a) The first videoconference frame containing a man, (b) the fingerprint of the man of Figure 3(a), (c) encrypted biometric
signal of Figure 3(b), (d) the automatically extracted man video object, (e) the stego-object containing the encrypted biometric signal of
Figure 3(c).

(a) (b) (c)

(d) (e)

Figure 4: (a) The second videoconference frame containing a woman, (b) the fingerprint of the woman of Figure 4(a), (c) encrypted
biometric signal of Figure 4(b), (d) the automatically extracted woman video object, (e) the stego-object containing the encrypted biometric
signal of Figure 4(c).

a table with random values. This is a very important security
merit, as the encrypted biometric signals approximate the
statistics of a randomly generated 2-D signal, independently
of the plaintext.

Here, it should be mentioned that due to the acyclic
behavior of the encryptionmodule, the output keystream has
all the merits of one-time pads, and thus it is very difficult
to cryptanalyze, using statistical attacks. For this reason
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Figure 5: (a) Histogram of encrypted biometric signal of Figure 3(c), (b) histogram of encrypted biometric signal of Figure 4(c), and (c)
decryption of pattern of Figure 3(c) using a key that differs by one bit.

some tests have been performed to check the security of
the encryption system. Towards this direction, let us assume
that an unauthorized user knows the QSWTs, where the
encrypted biometric signal of Figure 3(c) is hidden and tries
to decrypt it by, brute force attack. Let us also assume that he
has also obtained a rearranged version of the image, where
all pixels are on proper position. If the exact key is used, then
the content can be decrypted. However, even if the key differs
by just one bit, the content will not be decrypted as it can be
seen in Figure 5(c).

Next, the robustness of the proposed biometrics hid-
ing method has been extensively evaluated under various
simulation tests, performed using MATLAB. In particular,
during experimentation, the host video objects of Figures
3(d) and 4(d) were used, in which, the encrypted biometric
signals of Figures 3(c) and 4(c) were hidden, respectively.
Then according to the size of the encrypted biometric signals,
the top 106 × 90 QSWTs were selected for both host video
objects to embed the signals. For simplicity, in the performed
experiments, c1 and c2 were fixed in all frequency bands
and were chosen to be c1 = 0.15 and c2 = 0.2. The stego-
objects can be seen in Figures 3(e) and 4(e), providing
PSNRs of 46.17 and 45.44 dB, respectively. As it can be
observed, the embedded encrypted biometric signals have
caused imperceptible changes to the host video objects.

Afterwards, since the proposed system is designed for
user authentication under error-prone transmissions, the
case of mobile networks is further studied as a typical
example, and the system’s resistance is investigated under
different JPEG compression ratios and various bit error
rates (BERs). More particularly, compression ratios between
1.6 and 7.1 were used while BERs took values between
3 × 10−4 and 3 × 10−3, considering that typical average
BERs for cellular mobile radio channels are in the interval
[10−4 10−3] [38]. In our simulations, we assume unreliable
connectionless mobile transmission protocols, where errors
occur only in the data field of each packet (headers remain
intact). Furthermore, here it should be mentioned that even
though the majority of mobile applications use “closed”
image formats, there are some that use JPEG (e.g., Image
Converter by AOXUE.studio or Image Converter 5th v3.0.0
for Symbian s60 5th edition), while the market tendency
for JPEG-enabled applications is increasing. Finally, in all
experiments, fingerprint authentication is based on the
minutiae string matching algorithm presented in [39].

Under these assumptions, in order to fully illustrate the
authentication capabilities of the proposed scheme and to
compare it to another steganographicmethod, three different
scenarios have been investigated. In the first scenario (SC1),
the original biometric data is compressed and transmitted
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Figure 6: First Scenario. Authentication of 112 biometric signals,
under four different JPEG compression ratios and various BERs.
SC1: first scenario. PR: proposed scheme. CR: compression ratio.

over error-prone channels without being encrypted or
hidden. In the second scenario (SC2), the original biometric
data is hidden into their respective host-objects using either
the proposed method (PR) or another interesting stegano-
graphic method (ZG), introduced by Zhang et al. [40]. The
final content is compressed and transmitted over error-prone
channels. In the third scenario (SC3), which is the full usage
scenario of the proposed scheme, the original biometric
data is initially encrypted, and now, in contrast to SC2, the
encrypted data is hidden to the respective host-objects. The
final stego-objects are compressed and transmitted. In all
three scenarios, the authentication accuracy is examined.

In particular in Figure 6, the authentication results of
SC1 for more than 100 biometric signals are presented. In
this case, where the original biometric signal is not hidden
to a host-object, the average authentication rate was 72.07%.
Furthermore, as it can be observed, compression increase
has a more significant impact on authentication results
compared to BER increase. This is expected, since distortion
due to BER is local while compression has more global
effects. In Figure 7, the authentication results of SC2 for
the same 112 biometric signals, hidden in their respective
stego-objects, is presented, both for the proposed scheme
(PR) and the scheme by Zhang et al. (ZG). In this case, the
average authentication rate of PR is 74.62 while ZG provides
a rate of 4.67%. It is clear that capacity-efficient schemes
such as Zhang’s cannot survive to signal distortions. This is
typical if we focus on the details of such methods. In Zhang’s
method, in the first layer of the embedding, one secret bit
is inserted into each host pixel. If a secret bit is identical
to the LSB of the corresponding pixel, no modification
is made. Otherwise, the pixel value should be added or
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Figure 7: Second scenario. Biometric signals authentication for 112
stego-objects, under four different JPEG compression ratios and
various BERs. SC2: second scenario. PR: proposed scheme (red).
ZG: Scheme by Zhang et al. (black). CR: compression ratio.
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Figure 8: Third scenario. Biometric signals authentication for 112
stego-objects, under four different JPEG compression ratios and
various BERs. SC3: third scenario. PR: proposed scheme (red). ZG:
Scheme by Zhang et al. (black). CR: compression ratio.



10 EURASIP Journal on Information Security

Table 1: Biometric signal retrieval results for the stego-object of Figure 3(e), under different combinations of compression ratios and BERs.

Initial
fingerprint

JPEG
compression

Factor BER1 (3×10−4) BER2 (1×10−3) BER3 (3×10−3)

PSNR (dB) 39.9 38.4 36.1

Ratio: 2.6
Retrieved
fingerprint

PSNR (dB) 37.7 35.9 34.2

Ratio: 5.1
Retrieved
fingerprint

Table 2: Biometric signal retrieval results for the stego-object of Figure 4(e), under different combinations of compression ratios and BERs.

Initial
fingerprint

JPEG
compression

Factor BER1 (3×10−4) BER2 (1×10−3) BER3 (3×10−3)

PSNR (dB) 39.1 37.3 35.4

Ratio: 2.6
Retrieved
fingerprint

PSNR (dB) 36.9 35.3 33.9

Ratio: 5.1
Retrieved
fingerprint

subtracted by one, and the choice of addition or subtraction
will be determined in the second layer embedding, thus both
adding/subtracting change the LSB. If a pixel value is odd,
adding and subtracting one flips and keeps the second LSB,
respectively. On the other hand, if a pixel value is even, the
two operations cause opposite results in the second LSB.
Thus the hidden information is hosted by the LSBs of the
final content, which are very sensitive to signal distortions.

Now, regarding SC3 (full usage scenario), the experiment
is repeated for the same 112 biometric patterns, however, in
this case the original signals are firstly encrypted and then
hidden to host-objects. Results of the retrieved biometric
signals for video objects of Figures 3(e) and 4(e) are provided
in Tables 1 and 2, respectively. As it can be observed, the
retrieved biometric signals are visually apprehensible for the
examined combinations of compression ratios and BERs.

In Figure 8, the authentication results of SC3 is pre-
sented, both for the proposed scheme (PR) and the scheme

by Zhang et al. (ZG). In this case, the average authentication
rate of PR is 69.7 while ZG’s rate is 3.18%. Considering
the 3 different scenarios, it is observed that when the
original biometric signal is compressed and transmitted
(SC1), the authentication rate is higher than in case of
encryption (SC3). This is expected, since an encrypted
by a one-time pad signal is less resistant to the plain
signal. One encrypted pixel error usually produces more
significant visual artifacts during decryption. Furthermore,
from the authentication side of view, the best results were
accomplished for the settings of SC2. However, even though
SC3 is not the most efficient in terms of authentication
performance or complexity, compared to SC1 and SC2,
it is the most secure, a merit that may make it the first
choice in real-world applications. Finally, the proposed
scheme is more robust to signal distortions, compared to
typical steganographic schemes that are based on LSBs’
manipulation.
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6. Conclusions

Biometric signals enter more and more into our everyday
lives, since governments resort to their use in accomplish-
ing crucial procedures (e.g., citizen authentication). Thus
there is an urgent need to further develop and integrate
biometric authentication techniques into practical applica-
tions.

Towards this direction, in this paper, the domain of
biometrics authentication over error-prone networks has
been examined. Since steganography by itself does not
ensure secrecy, it was combined with a chaotic encryption
system. The proposed procedure, other than providing
results that are imperceptible to human visual system,
it also outputs a stego-object that can resist different
signal distortions. Experimental results on the database
of POLY-BIO project [37], which contains more than
1500 biometric signals, illustrate the performance of the
proposed system. Experiments have been designed to fulfill
the requirements of three different scenarios. In the first
scenario (SC1), the original biometric data was compressed
and transmitted over error-prone channels without being
encrypted or hidden. In the second scenario (SC2), the
original biometric data was hidden into their respective
host-objects, and the final content was compressed and
transmitted over error-prone channels. In the third scenario
(SC3), the original biometric data was initially encrypted
and hidden into the respective host-objects and the final
stego-objects were compressed and transmitted. All exper-
iments have been performed for JPEG compression and
typical BERs of wireless links. By examining the three
scenarios, it was found that SC2 provided the highest
authentication rate (about 75%). However, even though
SC3 did not result into the best authentication scores or
lowest complexity, it is the most secure among the three.
Finally, the proposed scheme was also compared to a
typical steganographic scheme based on LSBs’ manipulation,
which it outperformed, for the specified signal distortion
conditions.

In future research, the effects of compression and mobile
transmission of other hidden biometric signals (e.g., voice
or iris) should also be examined, or cases of other common
signal distortions such as additive noise or image resize
operations could be considered. Another very interesting
research topic focuses on tackling the problem of lost
biometric data. Several techniques could be examined from
the areas of image error concealment, region restoration, or
region matching. Based on the focus of the first area, the
lost biometric data can be concealed from the authentication
module, so that it attempts to perform authentication
even though parts are missing (maybe parts that do not
contain any crucial information, for example, termina-
tions/bifurcations in case of fingerprints). Restoration aims
at reproducing lost regions, usually using interpolation
techniques. In this case also, if the restored region would
not contain crucial information, results could be interesting.
Finally, region matching and classification methods can also
play an important role in authenticating a partially complete
biometric signal.
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