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For evaluation of biometric performance of biometric components and system, the availability of independent databases and
desirably independent evaluators is important. Both databases of significant size and independent testing institutions provide
the precondition for fair and unbiased benchmarking. In order to show generalization capabilities of the system under test,
it is essential that algorithm developers do not have access to the testing database, and thus the risk of tuned algorithms is
minimized. In this paper, we describe the GUC100 multiscanner fingerprint database that has been created for independent
and in-house (semipublic) performance and interoperability testing of third party algorithms. The GUC100 was collected by
using six different fingerprint scanners (TST, L-1, Cross Match, Precise Biometrics, Lumidigm, and Sagem). Over several months,
fingerprint images of all 10 fingers from 100 subjects on all 6 scanners were acquired. In total, GUC100 contains almost 72.000
fingerprint images. The GUC100 database enables us to evaluate various performances and interoperability settings by taking into
account different influencing factors such as fingerprint scanner and image quality. The GUC100 data set is freely available to other
researchers and practitioners provided that they conduct their testing in the premises of the Gjøvik University College in Norway,
or alternatively submit their algorithms (in compiled form) to run on GUC100 by researchers in Gjøvik. We applied one public
and one commercial fingerprint verification algorithm on GUC100, and the reported results indicate that GUC100 is a challenging
database.

1. Introduction

The interest in biometric systems is rapidly increasing due to
the demands on high security applications. Although various
types of human characteristics are observed in biometric
authentication, the most popular biometric systems are
based on fingerprinting [1, 2]. The two important aspects
in performance evaluation of fingerprint recognition algo-
rithms (and other biometrics in general) are the availability
of independent databases and desirably testing bodies too.
The advantages of such databases and third party testing
bodies are that firstly it allows more direct and unbiased
benchmarking of different algorithms, and secondly it
increases trustworthiness of the performance report, since
developers do not have a direct access to the database for
tuning algorithm’s parameters to adapt to the database. How-
ever, creating and distributing large-scale databases publicly

is not an easy task because of the involved costs and time as
well as jurisdictional limits. Due to the nature of the collected
data (i.e., human physiology), creation and distribution of
the large scale biometric databases raises privacy concerns
and may not be permitted by data protection authorities in
some countries (especially in Europe). Even if data collection
is permitted, usually it is requested to destroy collected data
after the completion of the project, for example, as in [3].

Nevertheless, in the biometric community, several finger-
print databases were established for research purposes [4–
10]. A short summary of some reported fingerprint databases
is given in Table 1. In this table, the columns #SC, #SB, #FS,
#UF, and #NF represent the number of fingerprint scanners,
number of volunteers contributing to the data collection,
number of fingers per subject, total number of unique
fingers, and number of images per finger, respectively. Pre-
viously public databases were provided by NIST (National
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Table 1: Summary of some fingerprint image databases.

Database #SC #SB #FS #UF #NF Comment

BioFinger [3] 11 30 8 240 9 Not available any more

NIST29 [4] — — — 2160 2 Available for purchase

NIST4 [5] — — — 2000 2 Available for purchase

NIST14 [6] — — 27000 2 Available for purchase

FVC2000 [7]

1 19 up to 4 110 8

Available publicly1 19 up to 4 110 8

1 19 up to 6 110 8

FVC2002 [8]

1 30 4 110 8

Available publicly1 30 4 110 8

1 30 4 110 8

FVC2004 [9]

1 30 4 110 8

Available publicly1 30 4 110 8

1 30 4 110 8

FVC2006 [10]

1 — — 150 12

Available publicly1 — — 150 12

1 — — 150 12

FVC-onGoing [11] Web-based automated evaluation system for fingerprint
recognition algorithms, sequestered database

BioSec [12] 3 200 4 800 24 Available publicly from mid-2006

MCYT [13] 2 330 all 10 3300 24 Publicly available

GUC100 (this paper) 6 100 all 10 1000 72 Available for in-house (semi-public) testing

Institute of Standards and Technology) which consists of
thousands of fingerprint images, for example, SD29 [4], SD4
[5], and SD14 [6]. However, these images are rolled ones
that is, scanned from inked tenprint paper card. Such type
of images is quite different from electronically captured ones
and is not suited well for evaluation of algorithms that should
be operated in an “on-line” application. In spite of this, the
NIST fingerprint databases are still being used in research
community and are available for purchase [4–6]. In addition,
in the context of the MINEX project NIST composed
a large-scale fingerprint data set for in-house testing of
algorithms [14]. The database series FVC200x [7–10] were
designed for the Fingerprint Verification Competition (FVC)
where several competing algorithms were tested on them.
Every FVC200x database consists of 4 disjoint data sets.
Out of the four, in three data sets, images were captured
electronically by some commercially available fingerprint
scanners. The fourth database consisted of synthetically
generated fingerprint images (therefore not listed in the
Table 1). In fact in databases FVC2000, 2002, and 2004, the
#UF and #NF were 120 and 12, respectively, but only 110 and
8 were used. There are also multimodal databases, where the
fingerprint is collected as one of the modalities [12, 13, 15].

This paper describes a multi-scanner fingerprint data-
base, which has been created for independent and in-house
performance and interoperability testing. In the rest of the
paper, we will refer to this database as GUC100 (GUC stands
for Gjøvik University College.)

The rest of the paper is organized as follows. Section 2
describes objectives, targeted application scenarios, and

availability of the GUC100 database. Section 3 details more
on the data collection process, subject demographics pop-
ulation, fingerprint scanners, and so on. Section 4 presents
an overview of interoperability testing on the GUC100
database as well as some factors that can be considered
while conducting a test on the GUC100 database. Section 5
provides performance of two publicly available fingerprint
verification software on GUC100 database. Section 6 points
out to some possible biases in the database which are
needed to be taken into account when interpreting results of
evaluation on GUC100. Section 7 summarizes the paper.

2. Objectives, Scenarios, and
Availability of the Database

The primary objective of the GUC100 database is to enable
performance evaluation of fingerprint algorithms in cross-
scanner (interoperability) scenarios where enrolment and
verification scanners are different. The targeted performance
accuracy with this database is aimed at FRR 1% (or lower) at
FAR 0.1%.

Although evaluation of products from a single biometric
supplier is essential from the supplier’s perspective, testing
of scenarios, where products (e.g., sensor, minutia extractor,
minutia comparator) are provided by different suppliers,
is very important for both integrators and operators to
proof the interoperability prior to component integration
and/or system roll-out. This refers to the settings where, for
example, the enrolment and verification fingerprint images
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Table 2: Some characteristics of fingerprint scanners.

Scanner Area [mm] Temperature range [Celsius] Technology

TST BiRD3 19 × 16 5–50 Optical

L-1 DFR2100 32 × 28 0–40 TIR (Total Internal Reflection)

Cross Match LSCAN100 31 × 31 10–40 TIR (Total Internal Reflection)

Precise 250MC 18 × 12.8 0–50 Capacitive

Lumidigm V100 27.94 × 17.78 0–40 MSI (MultiSpectral Images)

Sagem MorphoSmart 21 × 21 0–40 TIR (Total Internal Reflection)

are acquired by different capture devices. For instance, in a
biometric passport case, the document issued by a country
where the enrolment image is captured by one scanner shall
be able to be verified by another country where the probe
image is very likely to be acquired by a different scanner.
The GUC100 fingerprint database provides 15 and 30 cross-
scanner combinations for a symmetric and an asymmetric
comparators, respectively.

The GUC100 database is intended for technology testing
which is an offline evaluation of biometric components using
a pre-existing corpus [16]. In creating the GUC100, we
aimed at increasing several dimensions of the database as the
numbers in Table 1 (last row) indicate. The database aims to
simulate an indoor, covert (i.e., supervised), and verification
(i.e., one to one) application environments. It is useful for
performance evaluation not only at the traditional minutiae
level but also at the pseudonymous identifier level which is
more privacy protective compared to conventional minutiae
templates [17, 18].

In exploitation of this database we follow—due to
privacy regulations in Norway—the principal of “If the data
cannot travel to the algorithm, then the algorithm shall travel
to the data”. This means that copies of GUC100 database
cannot be distributed to other parties outside of GUC
campus. However, algorithm developers are free to visit GUC
and perform testing of their algorithm in its premises or
submit their (binary code) fingerprint recognition algorithm
to GUC team for testing. The interested party can contact
authors of this paper or visit the GUC100 webpage for any
updates on the database at http://www.nislab.no/guc100. The
minimum specification for a fingerprint encoder is that it
should be able to produce a template from fingerprint image
in PNG format, and a fingerprint comparator should be able
to compare two templates and produce a comparison score. If
there are any specific requirements then they will be posted in
aforementioned GUC100 webpage. It is also possible to send
requests or inquires about database to the E-mail address:
turbines@hig.no. It is worth mentioning that the database
is available for algorithm evaluation until 2021. After that
the database will be destroyed due to the agreement with
Norwegian Data Privacy Authority (NSD) [19].

3. GUC100 Fingerprint Database

The GUC100 database was collected at GUC (Gjøvik Univer-
sity College) in Norway during February 2008–January 2009.

Before starting the data collection, we obtained permission
from the Norwegian Data Privacy Authority (NSD) [19]. In
addition, all volunteers signed a consent form. Although due
to Norwegian regulations the database cannot be sent over
to other parties, but it is freely accessible and available for
testing within GUC’s campus to external parties.

3.1. Population. The number of subjects who participated in
the data collection was 100: 80 males and 20 females. The
average ages of male and female groups were about 30.5
(±12.3) and 28.3 (±8) years old, respectively. Participants
were mostly students and staff at GUC.

3.2. Fingerprint Scanners. The GUC100 database was col-
lected by using six fingerprint scanners from different
suppliers. The scanners were TST BiRD3, L-1 DFR2100,
Cross Match LSCAN100, Precise 250MC, Lumidigm V100,
and Sagem MorphoSmart. All these scanners, except TST
BiRD3, were based on touching interaction. The TST scanner
was based on touchless interaction. The resolution of all
scanners was 500 dpi. Photos of the fingerprint scanners
are given in Figure 2, and some of their properties are
presented in Table 2(In this table, the order of scanners
does not indicate any preference, it merely follows the order
in Figure 2.) In this table, the columns Area, Temperature
range, and Technology represent acquisition area, operating
temperature range and sensor technology of the scanners,
respectively.

The lack of the swipe sensor in GUC100 database
can be justified by the fact that database is intended to
simulate and predict performance for public, commercial,
and governmental applications but not for access to per-
sonal devices, where swipe sensors are in common use.
Furthermore, the main purpose of the database is not
comparing performance of various scanner technology but
rather benchmarking different algorithms and investigating
cross-scanner interoperability.

Example images of the same finger in one session for each
scanner are shown in Figure 1. As it can be seen from the
figure, due to the scanner principle, the nature of fingerprint
images from the TST scanner is rather different compared to
the images from the other scanners.

3.3. Data Collection. The data collection was conducted in
an indoor environment. Each subject attended 12 sessions
during a period of several months. The average time interval
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(a) TST (b) L-1 (c) Cross Match

(d) Precise (e) Lumidigm (f) Sagem

Figure 1: Images of the same finger in one session on all scanners.

Figure 2: Fingerprint scanners (from left to right): TST, L-1, Cross Match, Precise, Lumidigm, and Sagem.

between each session was about one week. A restriction was
applied such that the participant was not allowed to attend
more than one session per day. We believe that introducing
such long time delays (i.e., in terms of days and weeks)
between acquisition sessions allows natural variations of the
fingerprint skin to occur and thus to cover more realistic
scenarios. All sessions were carried out under supervision
of a human operator, so that no extreme rotations of the
fingerprints are included in the database. During the capture
process no objective quality measurements were taken, and
the quality of the images was determined visually (i.e.,
subjectively) by the human operator.

For each person, the first 3 sessions were uncontrolled
and the other 9 sessions were controlled (the term controlled
refers to signal quality control by means of adjustment of the

environmental factors that was conducted by an operator.)
The reason for introducing such controlled session was that
when the data collection was started in February 2008, it
was not straightforward to capture good quality fingerprint
image (visual jugement) without some extra action. Thus,
in the controlled sessions, some actions were undertaken to
improve image quality for example, subjects could wet/clean
their fingers (by touching wet sponge) before touching
scanners platens, or sometimes they were instructed to apply
more finger pressure on scanners. This was mostly required
on cold days with outside temperature below zero and
mainly for L-1 and Cross Match scanners. In uncontrolled
sessions, no extra actions were undertaken to get better
images. Figure 3 presents an example of images of a single
finger over all 12 sessions. In addition, over most sessions of
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Figure 3: Images of the same finger in 12 sessions over several months on one scanner (left to right, top to down).

the data collection, the environmental conditions were also
recorded on line (i.e., during data capture of the subject),
which include inside and outside temperatures as well as the
humidity of the room.

In each session (both in controlled and uncontrolled
ones), subjects provided all 10 fingers on each of the 6
scanners. Participants presented their fingers in the following
order: left small finger, . . ., left thumb, right thumb, . . ., right
ring and right small finger. The order of visiting scanners
was as follow: first they presented all 10 fingers (in the above
mentioned order) in TST scanner, then in L-1, Cross Match,
Precise, Lumidigm, and finally in Sagem scanner. In every
session, 60, fingerprint images per person were obtained. In
total, GUC100 database contains 71934 (= 100 × 10 × 6 ×
12 − 66) fingerprint images. Few images were discarded due
to the duplication or mislabeling.

In order to speed up data collection time and reduce
human errors, we also developed a graphical user interface
integrating all scanners. The program integrates image cap-
turing functions from all scanners into a common interface

and automatically saves the captured fingerprints according
to the filename convention. The visual interface of this
software is shown in Figure 4. This program made the data
collection process easier and faster, and every session took
about 5–7 minutes per subject.

In addition, two separate smaller fingerprint databases
are also available that can be used for algorithm development
[20]. They consist of fingerprint images from 45 and 40 sub-
jects (these are different subjects from GUC100 database),
respectively.

3.4. Fingerprint Image Quality. We applied NIST Fingerprint
Image Quality (NFIQ) algorithm [21] to have an overview
of image qualities in GUC100 database. For each fingerprint
image, the NFIQ algorithm returns number 1 (best quality),
2, 3, 4, or 5 (worst quality). The aim of the this work is not
comparing performances of individual scanners; therefore,
here the NFIQ scores are not provided separately for each
scanner. Figure 5 shows distribution of NIFIQ scores over all
scanners (except TST). The NFIQ scores for TST images are
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not included due to the nature of images. The ordinate of
the figure is given in percentage (%). It is worth noting that
quality score may be affected by the order the subject uses
the scanners, and other image quality algorithms can also be
applied on the database.

4. Interoperability and Parameters

4.1. Interoperability Performance and Matrices. From a cus-
tomer perspective, performance interoperability of biometric
components is very important. Performance interoperability
is an essential measure to ensure that biometric subsystems
from different suppliers are capable of generating and com-
paring samples and tomeet at the same time an absolute level
of performance within some margin [22]. Interoperabil-
ity performance results of biometric components/systems
provide a better choice on selecting products and thus
reduce dependency on a single supplier. The GUC100
fingerprint database enables performance evaluation of not
only components from a single supplier but also com-
ponents from different suppliers in intra- and intersensor
settings. Such interoperability can be viewed at two different
processing levels which are image and minutiae template
levels.

Figure 6 depicts interoperability perspective at the image
level according to ISO interoperability schema [22]. In this
figure, the blue octagons, blue ellipses, and green round rect-
angle represent fingerprint scanners (S), fingerprint images
(FP) and IMage-based Comparators (IMC), respectively. In
this figure (also in Figure 7), the subscripts denote product
supplier’s id. In Figures 6, 7, and 8, the TST, IDT, CMT, PBA,
LUM, and SAG stand for TST, L-1 (Identix), Cross Match,
Precise, Lumidigm, and Sagem, respectively. The A and B
indicate some arbitrary suppliers. In addition, in this figure
(also in Figure 7), the left part of comparators (i.e., IMC and
MTC) represents enrolment and the right part represents
verification. In Figure 6, the dimension of interoperability is
3. In first dimension there are 6 scanners (enrolment mode),
in second dimension there are 2 IMC, in third dimension
there are 6 scanners (verification mode).

Figure 7 depicts interoperability picture at the minutia
level according to ISO interoperability schema [22]. In this
figure, the blue octagons, blue circles, yellow round rect-
angles, yellow circles, and green round rectangle represent
fingerprint scanners (S), fingerprint images (FP), Minutia
Template Encoder (MTE), minutiae template (T), andMinu-
tia Template Comparator (MTC), respectively. In addition,
the superscripts (s) and (p) denote whether MTE/MTC
produces/processes proprietary or standard data formats
(e.g., ISO standard on finger minutiae [23]), respectively.
In Figure 7, the dimension of interoperability is 5. In first
dimension there are 6 scanners (enrolment mode), in second
dimension there are 4 MTE (enrolment mode), in third
dimension there are 4 MTC, in fourth dimension there are
4 MTE (verification mode), and in fifth dimension there are
6 scanners (verification mode).

4.2. Evaluation Parameters. The GUC100 database enables
evaluation of various configurations of native and inter-

Figure 4: Visual interface of the software tool.
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Figure 5: NFIQ distribution.

operability performances by focusing on some influencing
factors. Such factors can be the following.

(i) Fingerprint Scanner. Scanner interoperability is an
important issue, although not very much inves-
tigated. It has been shown that when enrolment
and verification images are acquired by different
scanners, the performance deteriorates significantly
[24]. Recently, some methods have been proposed
to address this problem [25, 26]. At the same time,
interestingly, experimental evaluation indicates that
fusing scores from different scanners results in better
performance compared to fusing different instances
of the same sensor [27, 28]. In addition to disparate
fingerprint scanners, if MTE and MTC are also pro-
vided by different suppliers, then the interoperability
schema gets more complex, for example, as the red
path in Figure 7 highlights. The GUC100 database
provides 6 intrascanner and 15 inter-scanner combi-
nations for the specified pair of MTC and MTE.
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Figure 6: Interoperability picture at the image level.

(ii) Image Quality. Image quality is a very important fac-
tor that influences performance [29]. As mentioned
earlier, each fingerprint image is associated with the
NFIQ score that indicates its quality. Depending on
application, one can test performance on various
configurations in the context of image quality, for
example, use only good quality images for the
enrolment and then medium to low quality images
for the verification; use only good quality images both
for the enrolment and verification, and so forth.

(iii) Session Type. Usually in biometric system the enrol-
ment phase is conducted in a controlled way where
the image quality, finger positioning, and so forth.
are controlled or instructed to some extent. On the
other hand, the verification phase can be performed
in a more relaxed environment where no feedbacks
to the user are expected. Therefore, one may use
images from controlled sessions only for enrolment
while images from uncontrolled sessions only for
verification. It is worth noting that the image quality
and session type parameters might be somewhat cor-
related because in controlled session image qualities
were usually (not necessarily always) better compared
to in uncontrolled sessions.

In addition to aforementioned factors, the GUC100
database may enable performance evaluations in the context
of some other parameters such as temperature, humidity,
and finger type (e.g., thumb finger, small finger).

5. Experimental Results

We have applied a public and a commercial fingerprint
verification software for validating the value of the database.
The publicly available fingerprint verification software was

NIST’s MINDTCT and BOZORTH3 [30]. The second soft-
ware was Neurotechnology VeriFinger which is commercially
available [31]. In this work, we use images from all ten fingers
for genuine comparisons, but due to the large number of
comparisons (and consequently long time), we use images
from only one finger (left index) for impostor comparisons.
In addition, we use only one finger for estimating impostor
scores and also compare only the same session samples.
Thus by denoting n = 100 number of subjects, k = 10
number of fingers per subject, and m = 12 number of
images per finger and also by assuming asymmetric template
comparator, we can have about 132000 = n · k · m · (m −
1) genuine comparisons (scores) and 118800 = m · n ·
(n − 1) impostor comparisons (scores). Performance metric
curves in terms of FAR/FRR plots for each scanner are
presented in Figure 8. Plots are given both when enrolment
and verification scanners are the same and when they are
different. The EERs of the curves are also shown in the
legends of the plots.

As can be observed from the figures in general, when
enrolment and verification scanners are different, EERs are
higher compared to when they are the same. Tables 3 and 4
provide summarizing statistics (median and mean) of cross-
scanner comparisons (interoperability) in terms of EER for
Neurotechnology and NIST algorithms, respectively. In these
tables, the last two columns indicate average performance
degradation with respect to same scanner comparison which
are computed according to the following:

Degradation = (EER2 − EER1)
EER1

· 100%, (1)

where EER1 is the EER of same scanner comparison (i.e., no
interoperability—second column) and EER2 is the average
(median or mean) EER of cross scanner comparison (i.e.,
interoperability—columns three and four in the tables).
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Figure 7: Interoperability picture at the minutia level.

Table 3: Neurotechnology: median, mean, and degradation in cross-scanner comparison (interop) in terms of EER.

Scanner EER (no interop.), % Median EER (interop.), % Mean EER (interop.), % Median degradation, % Mean degradation, %

S1 1.56 2.88 4.196 84.62 168.97

S2 3.73 3.53 5.83 −5.36 56.3

S3 1.93 2.94 4.158 52.33 115.44

S4 1.89 4.04 5.17 113.76 173.54

S5 4.3 9.86 11.382 129.3 164.7

S6 3.19 3.54 5.212 10.97 63.39

Table 4: NIST: median, mean, and degradation in cross-scanner comparison (interop) in terms of EER.

Scanner EER (no interop.), % Median EER (interop.), % Mean EER (interop.), % Median degradation, % Mean degradation, %

S1 4.94 7.85 11.578 58.91 134.37

S2 9.25 9.66 13.51 4.43 46.05

S3 4.95 7.46 11.866 50.71 139.72

S4 4.72 8 12.38 69.49 162.29

S5 26.3 29.88 29.828 13.61 13.41

S6 6 7.97 11.952 32.83 99.2

6. Limitations of the Database

There are few factors that may introduce bias, and one needs
to take them into account when interpreting performance
reports which are produced using GUC100 database. Since
it is not always easy to recruit representative persons for
experiments, the demographics of the subjects in GUC100
database in terms of gender (mostly men) and age (mostly
adults) are not ideally balanced. Therefore, caution must be
taken when analysing results in the context of the gender or
when generalizing results to the other population of users like
for instance, children or old people.

The order of finger presentation and order of scanner
selection are fixed and not randomized. Although not in-

vestigated or proved yet, this may introduce bias when com-
paring performance of scanners (e.g., due to habituation).
Thus, the main purposes of the GUC100 database are intero-
perability and benchmarking different algorithms but not
comparing performance of different scanner technologies. In
addition, interoperability results are primarily related to the
scanner set used in GUC100, for other types of fingerprint
scanners, the performance results might not be adequately
generalized.

7. Summary

In this paper, we presented a GUC100 fingerprint data-
base which was created for in-house performance and
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Figure 8: Performance of public and commercial algorithms on GUC100.
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interoperability evaluation of fingerprint recognition algo-
rithms in technology testing. The GUC100 database consists
of 71934 fingerprint images of all 10 fingers from 100 subjects
which were acquired by using 6 different scanners. The data
collection was carried out during February 2008–January
2009 at the campus of the Gjøvik University College (GUC)
in Norway. The GUC100 database is referred as “in-house”
(semi-public) which means that the database is freely avail-
able for researchers and practitioners provided that all testing
shall be conducted in the premises of GUC. Thus, the inter-
ested parties (i.e., industry, research institution, independent
developers, etc.) can visit GUC premises and perform
training and testing by themselves or alternatively submit
their (binary) algorithms to be tested by researchers at GUC.
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